Hirshfield AN. Development of follicles in the mammalian ovary. In: International review of cytology: Elsevier; 1991;124:43–101. https://doi.org/10.1016/S0074-7696(08)61524-7.
Oktay K, Briggs D, Gosden RG. Ontogeny of follicle-stimulating hormone receptor gene expression in isolated human ovarian follicles. J Clin Endocrinol Metab. 1997;82(11):3748–51.
CAS
PubMed
Google Scholar
Orisaka M, Tajima K, Tsang BK, Kotsuji F. Oocyte-granulosa-theca cell interactions during preantral follicular development. J Ovarian Res. 2009;2(1):9.
Article
PubMed
PubMed Central
CAS
Google Scholar
Rodgers RJ, Irving-Rodgers HF. Formation of the ovarian follicular antrum and follicular fluid. Biol Reprod. 2010;82(6):1021–9.
Article
CAS
PubMed
Google Scholar
McNeilly AS, Tay CC, Glasier A. Physiological mechanisms underlying lactational amenorrhea. Ann N Y Acad Sci. 1994;709(1):145–55.
Article
CAS
PubMed
Google Scholar
Vanholder T, Leroy JL, Soom AV, Opsomer G, Maes D, Coryn M, de Kruif A. Effect of non-esterified fatty acids on bovine granulosa cell steroidogenesis and proliferation in vitro. Anim Reprod Sci. 2005;87(1–2):33–44.
Article
CAS
PubMed
Google Scholar
Aardema H, Lolicato F, van de Lest CH, Brouwers JF, Vaandrager AB, van Tol HT, Roelen BA, Vos PL, Helms JB, Gadella BM. Bovine cumulus cells protect maturing oocytes from increased fatty acid levels by massive intracellular lipid storage. Biol Reprod. 2013;88(6):164.
Article
PubMed
Google Scholar
Silvestris E, de Pergola G, Rosania R, Loverro G. Obesity as disruptor of the female fertility. Reprod Biol Endocrinol. 2018;16(1):22.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kannan S, Srinivasan D, Raghupathy PB, Bhaskaran RS. Association between duration of obesity and severity of ovarian dysfunction in rat-cafeteria diet approach. J Nutr Biochem. 2019;71:132–43.
Article
CAS
PubMed
Google Scholar
Jorritsma R, Wensing T, Kruip TA, Vos PL, Noordhuizen JP. Metabolic changes in early lactation and impaired reproductive performance in dairy cows. Vet Res. 2003;34(1):11–26.
Article
CAS
PubMed
Google Scholar
Golla N, Chopra A, Boya S, Kumar TVC, Onteru SK, Singh D. High serum free fatty acids and low leptin levels: plausible metabolic indicators of negative energy balance in early lactating Murrah buffaloes. J Cell Physiol. 2019;234(6):7725–33.
Article
CAS
PubMed
Google Scholar
Valckx SD, Arias-Alvarez M, De PI, Fievez V, Vlaeminck B, Fransen E, Bols PE, Leroy JL. Fatty acid composition of the follicular fluid of normal weight, overweight and obese women undergoing assisted reproductive treatment: a descriptive cross-sectional study. Reprod Biol Endocrinol. 2014;12:13. https://doi.org/10.1186/1477-7827-12-13.:13-12.
Article
PubMed
PubMed Central
Google Scholar
Holte J, Bergh T, Berne C, Lithell H. Serum lipoprotein lipid profile in women with the polycystic ovary syndrome: relation to anthropometric, endocrine and metabolic variables. Clin Endocrinol. 1994;41(4):463–71.
Article
CAS
Google Scholar
Niu Z, Lin N, Gu R, Sun Y, Feng Y. Associations between insulin resistance, free fatty acids, and oocyte quality in polycystic ovary syndrome during in vitro fertilization. J Clin Endocrinol Metab. 2014;99(11):E2269–76.
Article
CAS
PubMed
PubMed Central
Google Scholar
Temel İ, Çelik Ö, HASÇALIK Ş, Çelik N, Şahin İ, Aydin S. Serum nonesterified fatty acids, ghrelin, and homocysteine levels in women with polycystic ovary syndrome. Turkish J Med Sci. 2010;40(2):221–8.
CAS
Google Scholar
Valckx S, De Pauw I, De Neubourg D, Inion I, Berth M, Fransen E, Bols P, Leroy J. BMI-related metabolic composition of the follicular fluid of women undergoing assisted reproductive treatment and the consequences for oocyte and embryo quality. Hum Reprod. 2012;27(12):3531–9.
Article
CAS
PubMed
Google Scholar
Leroy JL, Vanholder T, Mateusen B, Christophe A, Opsomer G, de Kruif A, Genicot G, Van SA. Non-esterified fatty acids in follicular fluid of dairy cows and their effect on developmental capacity of bovine oocytes in vitro. Reproduction. 2005;130(4):485–95.
Article
CAS
PubMed
Google Scholar
Song Y-X, Hu P, Bai Y-L, Zhao C, Xia C, Xu C. Plasma metabolic characterisation of dairy cows with inactive ovaries and oestrus during the peak of lactation. J Veterinary Res. 2019;63(3):359–67.
Article
CAS
Google Scholar
Jafari Dehkordi A, Mirshokraei P, Dehghani A. Metabolic profiles of high-yielding dairy cows with ovarian cysts formation. Iranian J Veterinary Med. 2016;9(4):241–8.
Google Scholar
Marutsova V, Marutsov P. Subclinical and clinical ketosis in sheep–relationships between body condition scores and blood β-HYDROXYBUTYRATE and non-esterified fatty acids concentrations. Tradition Modernity Veterinary Med. 2018;3(1):30–6.
Google Scholar
Gayet C, Bailhache E, Dumon H, Martin L, Siliart B, Nguyen P. Insulin resistance and changes in plasma concentration of TNFα, IGF1, and NEFA in dogs during weight gain and obesity. J Anim Physiol Anim Nutr. 2004;88(3–4):157–65.
Article
CAS
Google Scholar
Tvrzicka E, Kremmyda L-S, Stankova B, Zak A. Fatty acids as biocompounds: their role in human metabolism, health and disease-a review. part 1: classification, dietary sources and biological functions. Biomed Pap Med Fac Palacky Univ Olomouc. 2011;155(2):117–30.
Article
CAS
Google Scholar
Karpe F, Dickmann JR, Frayn KN. Fatty acids, obesity, and insulin resistance: time for a reevaluation. Diabetes. 2011;60(10):2441–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Grapov D, Adams SH, Pedersen TL, Garvey WT, Newman JW. Type 2 diabetes associated changes in the plasma non-esterified fatty acids, oxylipins and endocannabinoids. PLoS One. 2012;7(11):e48852.
Trombetta A, Togliatto G, Rosso A, Dentelli P, Olgasi C, Cotogni P, Brizzi MF. Increase of Palmitic acid concentration impairs endothelial progenitor cell and bone marrow–derived progenitor cell bioavailability: role of the STAT5/PPARγ transcriptional complex. Diabetes. 2013;62(4):1245–57.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang X, Wu LL, Chura LR, Liang X, Lane M, Norman RJ, Robker RL. Exposure to lipid-rich follicular fluid is associated with endoplasmic reticulum stress and impaired oocyte maturation in cumulus-oocyte complexes. Fertil Steril. 2012;97(6):1438–43.
Article
CAS
PubMed
Google Scholar
Calonge R, Kireev R, Guijarro A, Cortes S, Andres C. Lipid Dysregulation in seminal and follicular fluids could be related with male and female infertility. Endocrinol Metab Int J. 2018;6(1):00156.
Google Scholar
Jorritsma R, Cesar M, Hermans J, Kruitwagen C, Vos P, Kruip T. Effects of non-esterified fatty acids on bovine granulosa cells and developmental potential of oocytes in vitro. Anim Reprod Sci. 2004;81(3–4):225–35.
Article
CAS
PubMed
Google Scholar
Valckx SD, Van Hoeck V, Arias-Alvarez M, Maillo V, Lopez-Cardona AP, Gutierrez-Adan A, Berth M, Cortvrindt R, Bols PE, Leroy JL. Elevated non-esterified fatty acid concentrations during in vitro murine follicle growth alter follicular physiology and reduce oocyte developmental competence. Fertil Steril. 2014;102(6):1769–1776.e1761.
Article
CAS
PubMed
Google Scholar
Sharma A, Baddela VS, Becker F, Dannenberger D, Viergutz T, Vanselow J. Elevated free fatty acids affect bovine granulosa cell function: a molecular cue for compromised reproduction during negative energy balance. Endocrine Connect. 2019;1(aop):493–505.
Zachut M, Arieli A, Lehrer H, Argov N, Moallem U. Dietary unsaturated fatty acids influence preovulatory follicle characteristics in dairy cows. Reproduction. 2008;135(5):683–92.
Article
CAS
PubMed
Google Scholar
Elis S, Desmarchais A, Maillard V, Uzbekova S, Monget P, Dupont J. Cell proliferation and progesterone synthesis depend on lipid metabolism in bovine granulosa cells. Theriogenology. 2015;83(5):840–53.
Article
CAS
PubMed
Google Scholar
Yenuganti VR, Viergutz T, Vanselow J. Oleic acid induces specific alterations in the morphology, gene expression and steroid hormone production of cultured bovine granulosa cells. Gen Comp Endocrinol. 2016;232:134–44.
Article
CAS
PubMed
Google Scholar
Stachowska E, Baskiewicz M, Marchlewicz M, Mariusz Kaczmarczyk KC, Wiszniewska B, Machalinski B, Chlubek D. Conjugated linoleic acids regulate triacylglycerol and cholesterol concentrations in macrophages/foam cells by the modulation of CD36 expression. Acta Biochim Pol. 2010;57(3):379.
CAS
PubMed
Google Scholar
Gillot I, Jehl-Pietri C, Gounon P, Luquet S, Rassoulzadegan M, Grimaldi P, Vidal F. Germ cells and fatty acids induce translocation of CD36 scavenger receptor to the plasma membrane of Sertoli cells. J Cell Sci. 2005;118(14):3027–35.
Article
CAS
PubMed
Google Scholar
Chorner Z, Barbeau P-A, Castellani L, Wright DC, Chabowski A, Holloway GP. Dietary α-linolenic acid supplementation alters skeletal muscle plasma membrane lipid composition, sarcolemmal FAT/CD36 abundance, and palmitate transport rates. Am J Phys Regul Integr Comp Phys. 2016;311(6):R1234–42.
Google Scholar
Mu YM, Yanase T, Nishi Y, Tanaka A, Saito M, Jin CH, Mukasa C, Okabe T, Nomura M, Goto K, et al. Saturated FFAs, palmitic acid and stearic acid, induce apoptosis in human granulosa cells. Endocrinology. 2001;142(8):3590–7.
Article
CAS
PubMed
Google Scholar
Chen Z, Lei L, Wen D, Yang L. Melatonin attenuates palmitic acid-induced mouse granulosa cells apoptosis via endoplasmic reticulum stress. J Ovarian Res. 2019;12(1):43.
Article
PubMed
PubMed Central
Google Scholar
Shibahara H, Ishiguro A, Inoue Y, Koumei S, Kuwayama T, Iwata H. Mechanism of palmitic acid-induced deterioration of in vitro development of porcine oocytes and granulosa cells. Theriogenology. 2020;141:54–61.
Article
CAS
PubMed
Google Scholar
Xie YL, Pan YE, Chang CJ, Tang PC, Huang YF, Walzem RL, Chen SE. Palmitic acid in chicken granulosa cell death-lipotoxic mechanisms mediate reproductive inefficacy of broiler breeder hens. Theriogenology. 2012;78(9):1917–28.
Article
CAS
PubMed
Google Scholar
Quirk SM, Cowan RG, Harman RM. The susceptibility of granulosa cells to apoptosis is influenced by oestradiol and the cell cycle. J Endocrinol. 2006;189(3):441–53.
Article
CAS
PubMed
Google Scholar
Bellanger S, Battista M-C, Fink GD, Baillargeon J-P. Saturated fatty acid exposure induces androgen overproduction in bovine adrenal cells. Steroids. 2012;77(4):347–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sutton-McDowall ML, Wu LL, Purdey M, Abell AD, Goldys EM, Macmillan KL, Thompson JG, Robker RL. Nonesterified fatty acid-induced endoplasmic reticulum stress in cattle cumulus oocyte complexes alters cell metabolism and developmental competence. Biol Reprod. 2016;94(1):23.
Article
PubMed
CAS
Google Scholar
Lolicato F, Brouwers JF, de Lest CH, Wubbolts R, Aardema H, Priore P, Roelen BA, Helms JB, Gadella BM. The cumulus cell layer protects the bovine maturing oocyte against fatty acid-induced lipotoxicity. Biol Reprod. 2015;92(1):16.
Article
PubMed
CAS
Google Scholar
Mani AM, Fenwick M, Cheng Z, Sharma M, Singh D, Wathes C. IGF1 induces up-regulation of steroidogenic and apoptotic regulatory genes via activation of phosphatidylinositol-dependent kinase/AKT in bovine granulosa cells. Reproduction. 2010;139(1):139–51.
Article
CAS
PubMed
Google Scholar
Xu L, Wang W, Zhang X, Ke H, Qin Y, You L, Li W, Lu G, Chan W-Y, Leung PC. Palmitic acid causes insulin resistance in granulosa cells via activation of JNK. J Mol Endocrinol. 2019;62(4):197–206.
Article
CAS
PubMed
Google Scholar
Walsh S, Matthews D, Browne J, Forde N, Crowe M, Mihm M, Diskin M, Evans A. Acute dietary restriction in heifers alters expression of genes regulating exposure and response to gonadotrophins and IGF in dominant follicles. Anim Reprod Sci. 2012;133(1–2):43–51.
Article
CAS
PubMed
Google Scholar
Aardema H, Vos PL, Lolicato F, Roelen BA, Knijn HM, Vaandrager AB, Helms JB, Gadella BM. Oleic acid prevents detrimental effects of saturated fatty acids on bovine oocyte developmental competence. Biol Reprod. 2011;85(1):62–9.
Article
CAS
PubMed
Google Scholar
Alkhateeb H, Qnais E. Preventive effect of oleate on palmitate-induced insulin resistance in skeletal muscle and its mechanism of action. J Physiol Biochem. 2017;73(4):605–12.
Article
CAS
PubMed
Google Scholar
Yenuganti VR, Vanselow J. Oleic acid induces down-regulation of the granulosa cell identity marker FOXL2, and up-regulation of the Sertoli cell marker SOX9 in bovine granulosa cells. Reprod Biol Endocrinol. 2017;15(1):57.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sharma I, Singh D. Conjugated linoleic acids attenuate FSH-and IGF1-stimulated cell proliferation; IGF1, GATA4, and aromatase expression; and estradiol-17β production in buffalo granulosa cells involving PPARγ, PTEN, and PI3K/Akt. Reproduction. 2012;144(3):373–83.
Article
CAS
PubMed
Google Scholar
Qin C, Burghardt R, Smith R, Wormke M, Stewart J, Safe S. Peroxisome proliferator-activated receptor γ agonists induce proteasome-dependent degradation of cyclin D1 and estrogen receptor α in MCF-7 breast cancer cells. Cancer Res. 2003;63(5):958–64.
CAS
PubMed
Google Scholar
Fan W, Yanase T, Morinaga H, Mu Y-M, Nomura M, Okabe T, Goto K, Harada N, Nawata H. Activation of peroxisome proliferator-activated receptor-γ and retinoid X receptor inhibits aromatase transcription via nuclear factor-κB. Endocrinology. 2005;146(1):85–92.
Article
CAS
PubMed
Google Scholar
Catteau-Jonard S, Dewailly D. Pathophysiology of polycystic ovary syndrome: the role of hyperandrogenism. Front Horm Res. 2013;40:22–7. https://doi.org/10.1159/000341679 Epub@2012 Oct 18.:22–27.
Article
CAS
PubMed
Google Scholar
Huang R, Xue X, Li S, Wang Y, Sun Y, Liu W, Yin H, Tao T. Alterations of polyunsaturated fatty acid metabolism in ovarian tissues of polycystic ovary syndrome rats. J Cell Mol Med. 2018;22(7):3388–96.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sahmi F, Nicola ES, Zamberlam GO, Goncalves PD, Vanselow J, Price CA. Factors regulating the bovine, caprine, rat and human ovarian aromatase promoters in a bovine granulosa cell model. Gen Comp Endocrinol. 2014;200:10–7.
Article
CAS
PubMed
Google Scholar
Uhlenhaut NH, Jakob S, Anlag K, Eisenberger T, Sekido R, Kress J, Treier AC, Klugmann C, Klasen C, Holter NI, et al. Somatic sex reprogramming of adult ovaries to testes by FOXL2 ablation. Cell. 2009;139(6):1130–42.
Article
CAS
PubMed
Google Scholar
Sahmay S, Aydin Y, Oncul M, Senturk LM. Diagnosis of polycystic ovary syndrome: AMH in combination with clinical symptoms. J Assist Reprod Genet. 2014;31(2):213–20.
Article
PubMed
Google Scholar
Aly J, Kim K, Hill M, DeCherney A, Perkins N, Silver R, Sjaarda L, Schisterman E, Mumford S. Fatty acids and micronutrients are not associated with AMH levels in women with proven fecundity. Fertil Steril. 2018;110(4):e94.
Article
Google Scholar
Nabenishi H, Kitahara G, Takagi S, Yamazaki A, Osawa T. Relationship between plasma anti-Müllerian hormone concentrations during the rearing period and subsequent embryo productivity in Japanese black cattle. Domest Anim Endocrinol. 2017;60:19–24.
Article
CAS
PubMed
Google Scholar
Coyral-Castel S, Rame C, Fatet A, Dupont J. Effects of unsaturated fatty acids on progesterone secretion and selected protein kinases in goat granulosa cells. Domest Anim Endocrinol. 2010;38(4):272–83.
Article
CAS
PubMed
Google Scholar
Zhang N, Wang L, Luo G, Tang X, Ma L, Zheng Y, Liu SA, Price C, Jiang Z. Arachidonic acid regulation of intracellular signaling pathways and target gene expression in bovine ovarian Granulosa cells. Animals. 2019;9(6):374.
Article
Google Scholar
Van Hoeck V, Leroy J, Alvarez MA, Rizos D, Gutierrez-Adan A, Schnorbusch K, Bols P, Leese HJ, Sturmey RG. Oocyte developmental failure in response to elevated nonesterified fatty acid concentrations: mechanistic insights. Reproduction. 2013;145(1):33–44.
Article
PubMed
CAS
Google Scholar
Van HV, Sturmey RG, Bermejo-Alvarez P, Rizos D, Gutierrez-Adan A, Leese HJ, Bols PE, Leroy JL. Elevated non-esterified fatty acid concentrations during bovine oocyte maturation compromise early embryo physiology. PLoS One. 2011;6(8):e23183.
Article
CAS
Google Scholar
Aardema H, van Tol HT, Vos PL. An overview on how cumulus cells interact with the oocyte in a condition with elevated NEFA levels in dairy cows. Anim Reprod Sci. 2019;207:131–7.
Article
CAS
PubMed
Google Scholar
Walther TC, Farese RV Jr. The life of lipid droplets. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids. 2009;1791(6):459–66.
CAS
Google Scholar
Ambruosi B, Lacalandra G, Iorga A, De Santis T, Mugnier S, Matarrese R, Goudet G, Dell’Aquila M. Cytoplasmic lipid droplets and mitochondrial distribution in equine oocytes: implications on oocyte maturation, fertilization and developmental competence after ICSI. Theriogenology. 2009;71(7):1093–104.
Article
CAS
PubMed
Google Scholar
Romek M, Gajda B, Krzysztofowicz E, Smorąg Z. Lipid content of non-cultured and cultured pig embryo. Reprod Domest Anim. 2009;44(1):24–32.
Article
CAS
PubMed
Google Scholar
Zhang W, Yi K, Yan H, Zhou X. Advances on in vitro production and cryopreservation of porcine embryos. Anim Reprod Sci. 2012;132(3–4):115–22.
Article
CAS
PubMed
Google Scholar
Jungheim ES, Macones GA, Odem RR, Patterson BW, Lanzendorf SE, Ratts VS, Moley KH. Associations between free fatty acids, cumulus oocyte complex morphology and ovarian function during in vitro fertilization. Fertil Steril. 2011;95(6):1970–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zeron Y, Sklan D, Arav A. Effect of polyunsaturated fatty acid supplementation on biophysical parameters and chilling sensitivity of ewe oocytes. Mol Reprod Dev. 2002;61(2):271–8.
Article
CAS
PubMed
Google Scholar
Desmet KJ, Van Hoeck V, Gagné D, Fournier E, Thakur A, O’doherty A, Walsh C, Sirard M, Bols P, Leroy J. Exposure of bovine oocytes and embryos to elevated non-esterified fatty acid concentrations: integration of epigenetic and transcriptomic signatures in resultant blastocysts. BMC Genomics. 2016;17(1):1004.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dean W, Santos F, Stojkovic M, Zakhartchenko V, Walter J, Wolf E, Reik W. Conservation of methylation reprogramming in mammalian development: aberrant reprogramming in cloned embryos. Proc Natl Acad Sci. 2001;98(24):13734–8.
Article
CAS
PubMed
Google Scholar
Uysal F, Akkoyunlu G, Ozturk S. Dynamic expression of DNA methyltransferases (DNMTs) in oocytes and early embryos. Biochimie. 2015;116:103–13.
Article
CAS
PubMed
Google Scholar
Marei WF, Van Raemdonck G, Baggerman G, Bols PE, Leroy JL. Proteomic changes in oocytes after in vitro maturation in lipotoxic conditions are different from those in cumulus cells. Sci Rep. 2019;9(1):3673.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wutz A, Theussl H, Dausman J, Jaenisch R, Barlow D, Wagner E. Non-imprinted Igf2r expression decreases growth and rescues the Tme mutation in mice. Development. 2001;128(10):1881–7.
CAS
PubMed
Google Scholar
Shehab-El-Deen M, Leroy J, Maes D, Van Soom A. 252 VITRIFICATION OF BOVINE BLASTOCYSTS PRODUCED AFTER OOCYTE MATURATION IN MEDIA CONTAINING FATTY ACIDS. Reprod Fertil Dev. 2007;20(1):205–6.
Article
Google Scholar
Tripathi S, Nandi S, Gupta P, Mondal S. Influence of common saturated and unsaturated fatty acids on development of ovine oocytes in vitro. Asian J Anim Sci. 2015;9:420–6.
Article
CAS
Google Scholar
Sinclair K, Lunn L, Kwong W, Wonnacott K, Linforth R, Craigon J. Amino acid and fatty acid composition of follicular fluid as predictors of in-vitro embryo development. Reprod BioMed Online. 2008;16(6):859–68.
Article
CAS
PubMed
Google Scholar
Dumollard R, Duchen M, Carroll J. The role of mitochondrial function in the oocyte and embryo. Curr Top Dev Biol. 2007;77:21–49.
Article
CAS
PubMed
Google Scholar
Linyan Wu L, Dunning K, Yang X, Russell D, Lane M, Norman R, Robker R. High-fat diet causes lipotoxicity responses in cumulus-oocyte complexes and decreased fertilization rates; 2010.
Google Scholar
Luzzo KM, Wang Q, Purcell SH, Chi M, Jimenez PT, Grindler N, Schedl T, Moley KH. High fat diet induced developmental defects in the mouse: oocyte meiotic aneuploidy and fetal growth retardation/brain defects. PLoS One. 2012;7(11):e49217.
Article
CAS
PubMed
PubMed Central
Google Scholar
Takahashi T, Takahashi E, Igarashi H, Tezuka N, Kurachi H. Impact of oxidative stress in aged mouse oocytes on calcium oscillations at fertilization. Mol Reprod Dev. 2003;66(2):143–52.
Article
CAS
PubMed
Google Scholar
Gordo AC, Rodrigues P, Kurokawa M, Jellerette T, Exley GE, Warner C, Fissore R. Intracellular calcium oscillations signal apoptosis rather than activation in in vitro aged mouse eggs. Biol Reprod. 2002;66(6):1828–37.
Article
CAS
PubMed
Google Scholar
Sergeev IN, Norman AW. Calcium as a mediator of apoptosis in bovine oocytes and preimplantation embryos. Endocrine. 2003;22(2):169–75.
Article
CAS
PubMed
Google Scholar
Wu LL-Y, Dunning KR, Yang X, Russell DL, Lane M, Norman RJ, Robker RL. High-fat diet causes lipotoxicity responses in cumulus–oocyte complexes and decreased fertilization rates. Endocrinology. 2010;151(11):5438–45.
Article
CAS
PubMed
Google Scholar
Wong SL, Wu LL, Robker RL, Thompson JG, McDowall MLS. Hyperglycaemia and lipid differentially impair mouse oocyte developmental competence. Reprod Fertil Dev. 2015;27(4):583–92.
Article
CAS
PubMed
Google Scholar
Xu C, Bailly-Maitre B, Reed JC. Endoplasmic reticulum stress: cell life and death decisions. J Clin Invest. 2005;115(10):2656–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Demirtas L, Guclu A, Erdur FM, Akbas EM, Ozcicek A, Onk D, Turkmen K. Apoptosis, autophagy & endoplasmic reticulum stress in diabetes mellitus. Indian J Med Res. 2016;144(4):515.
CAS
PubMed
PubMed Central
Google Scholar
Rozpedek W, Pytel D, Mucha B, Leszczynska H, Diehl JA, Majsterek I. The role of the PERK/eIF2α/ATF4/CHOP signaling pathway in tumor progression during endoplasmic reticulum stress. Curr Mol Med. 2016;16(6):533–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang L-y, Wang D-h, X-y Z, Xu C-m. Mitochondrial functions on oocytes and preimplantation embryos. J Zhejiang Univ Sci B. 2009;10(7):483–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shingfield KJ, Beever DE, Reynolds CK, Gulati S, Humphries D, Lupoli B, Hervás G, Griinari JM. Effect of rumen protected conjugated linoleic acid on energy metabolism of dairy cows during early to mid-lactation: 2004: American Society of Animal Science. p. 2004. http://hdl.handle.net/10261/10545.
Robinson R, Pushpakumara P, Cheng Z, Peters A, Abayasekara D, Wathes D. Effects of dietary polyunsaturated fatty acids on ovarian and uterine function in lactating dairy cows. REPRODUCTION-CAMBRIDGE. 2002;124(1):119–31.
Article
CAS
Google Scholar
Marei WF, Wathes DC, Fouladi-Nashta AA. Impact of linoleic acid on bovine oocyte maturation and embryo development. Reproduction. 2010;139(6):979–88.
Article
CAS
PubMed
Google Scholar
Marei WF, Wathes DC, Fouladi-Nashta AA. Differential effects of linoleic and alpha-linolenic fatty acids on spatial and temporal mitochondrial distribution and activity in bovine oocytes. Reprod Fertil Dev. 2012;24(5):679–90.
Article
CAS
PubMed
Google Scholar
Khalil WA, Marei WF, Khalid M. Protective effects of antioxidants on linoleic acid–treated bovine oocytes during maturation and subsequent embryo development. Theriogenology. 2013;80(2):161–8.
Article
CAS
PubMed
Google Scholar
Marei WF, De Bie J, Mohey-Elsaeed O, Wydooghe E, Bols PE, Leroy JL. Alpha-linolenic acid protects the developmental capacity of bovine cumulus–oocyte complexes matured under lipotoxic conditions in vitro. Biol Reprod. 2017;96(6):1181–96.
Article
PubMed
Google Scholar
Wathes DC, Clempson AM, Pollott GE. Associations between lipid metabolism and fertility in the dairy cow. Reprod Fertil Dev. 2012;25(1):48–61.
Article
PubMed
CAS
Google Scholar
Feuerstein P, Cadoret V, Dalbies-Tran R, Guerif F, Bidault R, Royere D. Gene expression in human cumulus cells: one approach to oocyte competence. Hum Reprod. 2007;22(12):3069–77.
Article
CAS
PubMed
Google Scholar
Aardema H, van Tol HT, Wubbolts RW, Brouwers JF, Gadella BM, Roelen BA. Stearoyl-CoA desaturase activity in bovine cumulus cells protects the oocyte against saturated fatty acid stress. Biol Reprod. 2017;96(5):982–92.
Article
PubMed
PubMed Central
Google Scholar
Fayezi S, Ghaffari Novin M, Darabi M, Norouzian M, Nouri M, Farzadi L, Darabi M. Primary culture of human cumulus cells requires stearoyl-coenzyme a desaturase 1 activity for steroidogenesis and enhancing oocyte in vitro maturation. Reprod Sci. 2018;25(6):844–53.
Article
CAS
PubMed
Google Scholar