Rutkowska A, Rachon D. Bisphenol A (BPA) and its potential role in the pathogenesis of the polycystic ovary syndrome (PCOS). Gynecol Endocrinol. 2014;30(4):260–5.
Article
CAS
PubMed
Google Scholar
Conforti A, Mascia M, Cioffi G, De Angelis C, Coppola G, De Rosa P, et al. Air pollution and female fertility: a systematic review of literature. Reprod Biol Endocrinol. 2018;16(1):117.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gregoraszczuk EL, Ptak A. Endocrine-disrupting chemicals: some actions of POPs on female reproduction. Int J Endocrinol. 2013;2013:828532.
PubMed
PubMed Central
Google Scholar
Cao XL, Zhang J, Goodyer CG, Hayward S, Cooke GM, Curran IH. Bisphenol A in human placental and fetal liver tissues collected from greater Montreal area (Quebec) during 1998-2008. Chemosphere. 2012;89(5):505–11.
Article
CAS
PubMed
Google Scholar
Lee J, Choi K, Park J, Moon HB, Choi G, Lee JJ, et al. Bisphenol A distribution in serum, urine, placenta, breast milk, and umbilical cord serum in a birth panel of mother-neonate pairs. Sci Total Environ. 2018;626:1494–501.
Article
CAS
PubMed
Google Scholar
Wang Y, Zhu Q, Dang X, He Y, Li X, Sun Y. Local effect of Bisphenol A on the estradiol synthesis of ovarian granulosa cells from PCOS. Gynecol Endocrinol. 2017;33(1):21–5.
Article
CAS
PubMed
Google Scholar
Santos-Silva AP, Andrade MN, Pereira-Rodrigues P, Paiva-Melo FD, Soares P, Graceli JB, et al. Frontiers in endocrine disruption: impacts of organotin on the hypothalamus-pituitary-thyroid axis. Mol Cell Endocrinol. 2017.
Cocci P, Capriotti M, Mosconi G, Palermo FA. Effects of endocrine disrupting chemicals on estrogen receptor alpha and heat shock protein 60 gene expression in primary cultures of loggerhead sea turtle (Caretta caretta) erythrocytes. Environ Res. 2017;158:616–24.
Article
CAS
PubMed
Google Scholar
Engel A, Buhrke T, Imber F, Jessel S, Seidel A, Volkel W, et al. Agonistic and antagonistic effects of phthalates and their urinary metabolites on the steroid hormone receptors ERalpha, ERbeta, and AR. Toxicol Lett. 2017;277:54–63.
Article
CAS
PubMed
Google Scholar
Rattan S, Zhou C, Chiang C, Mahalingam S, Brehm E, Flaws JA. Exposure to endocrine disruptors during adulthood: consequences for female fertility. J Endocrinol. 2017;233(3):R109–29.
Article
CAS
PubMed
PubMed Central
Google Scholar
Konieczna A, Rutkowska A, Rachon D. Health risk of exposure to Bisphenol A (BPA). Rocz Panstw Zakl Hig. 2015;66(1):5–11.
CAS
PubMed
Google Scholar
Fenichel P, Chevalier N, Brucker-Davis F. Bisphenol A: an endocrine and metabolic disruptor. Ann Endocrinol (Paris). 2013;74(3):211–20.
Article
CAS
Google Scholar
Bisphenol A (BPA)-current state of knowledge and future actions by WHO and FAO, in International Food Safety Authorities Network (INFOSAN) Information Note No. 5/2009 - Bisphenol A. 2009.
Brotons JA, Olea-Serrano MF, Villalobos M, Pedraza V, Olea N. Xenoestrogens released from lacquer coatings in food cans. Environ Health Perspect. 1995;103(6):608–12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Geens T, Aerts D, Berthot C, Bourguignon JP, Goeyens L, Lecomte P, et al. A review of dietary and non-dietary exposure to bisphenol-A. Food Chem Toxicol. 2012;50(10):3725–40.
Article
CAS
PubMed
Google Scholar
Giulivo M, Lopez de Alda M, Capri E, Barcelo D. Human exposure to endocrine disrupting compounds: Their role in reproductive systems, metabolic syndrome and breast cancer. A review. Environ Res. 2016;151:251–64.
Article
CAS
PubMed
Google Scholar
Tsutsumi O. Assessment of human contamination of estrogenic endocrine-disrupting chemicals and their risk for human reproduction. J Steroid Biochem Mol Biol. 2005;93(2–5):325–30.
Article
CAS
PubMed
Google Scholar
Caserta D, Di Segni N, Mallozzi M, Giovanale V, Mantovani A, Marci R, et al. Bisphenol A and the female reproductive tract: an overview of recent laboratory evidence and epidemiological studies. Reprod Biol Endocrinol. 2014;12:37.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kendziorski JA, Belcher SM. Strain-specific induction of endometrial periglandular fibrosis in mice exposed during adulthood to the endocrine disrupting chemical bisphenol A. Reprod Toxicol. 2015;58:119–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sifakis S, Androutsopoulos VP, Tsatsakis AM, Spandidos DA. Human exposure to endocrine disrupting chemicals: effects on the male and female reproductive systems. Environ Toxicol Pharmacol. 2017;51:56–70.
Article
CAS
PubMed
Google Scholar
Wei M, Chen X, Zhao Y, Cao B, Zhao W. Effects of prenatal environmental exposures on the development of endometriosis in female offspring. Reprod Sci. 2016;23(9):1129–38.
Article
CAS
PubMed
Google Scholar
Hewlett M, Chow E, Aschengrau A, Mahalingaiah S. Prenatal exposure to endocrine disruptors: a developmental etiology for polycystic ovary syndrome. Reprod Sci. 2016.
Chen X, Wang Y, Xu F, Wei X, Zhang J, Wang C, et al. The rapid effect of Bisphenol-A on long-term potentiation in Hippocampus involves estrogen receptors and ERK activation. Neural Plast. 2017;2017:5196958.
PubMed
PubMed Central
Google Scholar
Richter CA, Birnbaum LS, Farabollini F, Newbold RR, Rubin BS, Talsness CE, et al. In vivo effects of bisphenol A in laboratory rodent studies. Reprod Toxicol. 2007;24(2):199–224.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shi XY, Wang Z, Liu L, Feng LM, Li N, Liu S, et al. Low concentrations of bisphenol A promote human ovarian cancer cell proliferation and glycolysis-based metabolism through the estrogen receptor-alpha pathway. Chemosphere. 2017;185:361–7.
Article
CAS
PubMed
Google Scholar
Zhang Y, Wei F, Zhang J, Hao L, Jiang J, Dang L, et al. Bisphenol A and estrogen induce proliferation of human thyroid tumor cells via an estrogen-receptor-dependent pathway. Arch Biochem Biophys. 2017;633:29–39.
Article
CAS
PubMed
Google Scholar
Lee HJ, Chattopadhyay S, Gong EY, Ahn RS, Lee K. Antiandrogenic effects of bisphenol A and nonylphenol on the function of androgen receptor. Toxicol Sci. 2003;75(1):40–6.
Article
CAS
PubMed
Google Scholar
Zhou W, Liu J, Liao L, Han S, Liu J. Effect of bisphenol a on steroid hormone production in rat ovarian theca-interstitial and granulosa cells. Mol Cell Endocrinol. 2008;283(1–2):12–8.
Article
CAS
PubMed
Google Scholar
Xi W, Lee CKF, Yeung WSB, Giesy JP, Wong MH, Zhang XW, et al. Effect of perinatal and postnatal bisphenol a exposure to the regulatory circuits at the hypothalamus-pituitary-gonadal axis of CD-1 mice. Reprod Toxicol. 2011;31(4):409–17.
Article
CAS
PubMed
Google Scholar
Lee SG, Kim JY, Chung JY, Kim YJ, Park JE, Oh S, et al. Bisphenol a exposure during adulthood causes augmentation of follicular atresia and luteal regression by decreasing 17beta-estradiol synthesis via downregulation of aromatase in rat ovary. Environ Health Perspect. 2013;121(6):663–9.
Article
PubMed
PubMed Central
Google Scholar
Gamez JM, Penalba R, Cardoso N, Bernasconi PS, Carbone S, Ponzo O, et al. Exposure to a low dose of bisphenol a impairs pituitary-ovarian axis in prepubertal rats effects on early folliculogenesis. Environ Toxicol Pharmacol. 2015;39(1):9–15.
Article
CAS
PubMed
Google Scholar
Peretz J, Gupta RK, Singh J, Hernandez-Ochoa I, Flaws JA. Bisphenol a impairs follicle growth, inhibits steroidogenesis, and downregulates rate-limiting enzymes in the estradiol biosynthesis pathway. Toxicol Sci. 2011;119(1):209–17.
Article
CAS
PubMed
Google Scholar
Mansur A, Adir M, Yerushalmi G, Hourvitz A, Gitman H, Yung Y, et al. Does BPA alter steroid hormone synthesis in human granulosa cells in vitro? Hum Reprod. 2016;31(7):1562–9.
Article
CAS
PubMed
Google Scholar
Peretz J, Flaws JA. Bisphenol a down-regulates rate-limiting Cyp11a1 to acutely inhibit steroidogenesis in cultured mouse antral follicles. Toxicol Appl Pharmacol. 2013;271(2):249–56.
Article
CAS
PubMed
PubMed Central
Google Scholar
Trapphoff T, Heiligentag M, El Hajj N, Haaf T, Eichenlaub-Ritter U. Chronic exposure to a low concentration of bisphenol a during follicle culture affects the epigenetic status of germinal vesicles and metaphase II oocytes. Fertil Steril. 2013;100(6):1758–67 e1.
Article
CAS
PubMed
Google Scholar
Peretz J, Craig ZR, Flaws JA. Bisphenol A inhibits follicle growth and induces atresia in cultured mouse antral follicles independently of the genomic estrogenic pathway. Biol Reprod. 2012;87(3):63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pan X, Wang X, Sun Y, Dou Z, Li Z. Inhibitory effects of preimplantation exposure to bisphenol-a on blastocyst development and implantation. Int J Clin Exp Med. 2015;8(6):8720–9.
CAS
PubMed
PubMed Central
Google Scholar
Xiao S, Diao H, Smith MA, Song X, Ye X. Preimplantation exposure to bisphenol A (BPA) affects embryo transport, preimplantation embryo development, and uterine receptivity in mice. Reprod Toxicol. 2011;32(4):434–41.
PubMed
PubMed Central
Google Scholar
Berger RG, Foster WG, de Catanzaro D. Bisphenol-A exposure during the period of blastocyst implantation alters uterine morphology and perturbs measures of estrogen and progesterone receptor expression in mice. Reprod Toxicol. 2010;30(3):393–400.
Article
CAS
PubMed
Google Scholar
Varayoud J, Ramos JG, Bosquiazzo VL, Lower M, Munoz-de-Toro M, Luque EH. Neonatal exposure to bisphenol A alters rat uterine implantation-associated gene expression and reduces the number of implantation sites. Endocrinology. 2011;152(3):1101–11.
Article
CAS
PubMed
Google Scholar
Olson, M.R., R. Su, J.A. Flaws, and A.T. Fazleabas, Bisphenol A impairs decidualization of human uterine stromal fibroblasts. Reproductive toxicology, 2017.
Book
Google Scholar
Forte M, Mita L, Cobellis L, Merafina V, Specchio R, Rossi S, et al. Triclosan and bisphenol A affect decidualization of human endometrial stromal cells. Mol Cell Endocrinol. 2016;422:74–83.
Article
CAS
PubMed
Google Scholar
vom Saal FS, Akingbemi BT, Belcher SM, Birnbaum LS, Crain DA, Eriksen M, et al. Chapel Hill bisphenol A expert panel consensus statement: integration of mechanisms, effects in animals and potential to impact human health at current levels of exposure. Reprod Toxicol. 2007;24(2):131–8.
Article
CAS
Google Scholar
Vandenberg LNES, Belcher SM, Ben-Jonathan N, Dolinoy DC, Hugo ER, Hunt PA, Newbold RR, Rubin BS, Saili KS, Soto AS, Wang HS, vom Saal FS. Low dose effects of bisphenol A. An integrated review of in vitro, laboratory animal, and epidemiology studies. Endocr Disruptors. 2013:e25078.
Brust V, Schindler PM, Lewejohann L. Lifetime development of behavioural phenotype in the house mouse (Mus musculus). Front Zool. 2015;12(Suppl 1):S17.
Article
PubMed
PubMed Central
Google Scholar
Hormann AM, Vom Saal FS, Nagel SC, Stahlhut RW, Moyer CL, Ellersieck MR, et al. Holding thermal receipt paper and eating food after using hand sanitizer results in high serum bioactive and urine total levels of bisphenol A (BPA). PLoS One. 2014;9(10):e110509.
Article
CAS
PubMed
PubMed Central
Google Scholar
Provvisiero DP, Pivonello C, Muscogiuri G, Negri M, de Angelis C, Simeoli C, et al. Influence of bisphenol A on type 2 diabetes mellitus. Int J Environ Res Public Health. 2016;13(10).
Kang JH, Katayama Y, Kondo F. Biodegradation or metabolism of bisphenol A: from microorganisms to mammals. Toxicology. 2006;217(2–3):81–90.
Article
CAS
PubMed
Google Scholar
Toxicological and health aspects of bisphenol A, in report of joint FAO/WHO Expert Meeting. 2010; Ottawa.
Ginsberg G, Rice DC. Does rapid metabolism ensure negligible risk from Bisphenol A? Environ Health Perspect. 2009;117(11):1639–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gauderat G, Picard-Hagen N, Toutain PL, Corbel T, Viguie C, Puel S, et al. Bisphenol A glucuronide deconjugation is a determining factor of fetal exposure to bisphenol A. Environ Int. 2016;86:52–9.
Article
CAS
PubMed
Google Scholar
Shanle EK, Xu W. Endocrine disrupting chemicals targeting estrogen receptor signaling: identification and mechanisms of action. Chem Res Toxicol. 2011;24(1):6–19.
Article
CAS
PubMed
Google Scholar
Alonso-Magdalena P, Ropero AB, Soriano S, Garcia-Arevalo M, Ripoll C, Fuentes E, et al. Bisphenol-a acts as a potent estrogen via non-classical estrogen triggered pathways. Mol Cell Endocrinol. 2012;355(2):201–7.
Article
CAS
PubMed
Google Scholar
Vandenberg LN, Chahoud I, Heindel JJ, Padmanabhan V, Paumgartten FJ, Schoenfelder G. Urinary, circulating, and tissue biomonitoring studies indicate widespread exposure to bisphenol A. Environ Health Perspect. 2010;118(8):1055–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
vom Saal FS, Myers JP. Bisphenol A and risk of metabolic disorders. JAMA. 2008;300(11):1353–5.
Article
Google Scholar
Braun JM. Early-life exposure to EDCs: role in childhood obesity and neurodevelopment. Nat Rev Endocrinol. 2017;13(3):161–73.
Article
CAS
PubMed
Google Scholar
Ziv-Gal A, Flaws JA. Evidence for bisphenol A-induced female infertility: a review (2007-2016). Fertil Steril. 2016;106(4):827–56.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zegers-Hochschild F, Adamson GD, de Mouzon J, Ishihara O, Mansour R, Nygren K, et al. International Committee for Monitoring Assisted Reproductive Technology (ICMART) and the World Health Organization (WHO) revised glossary of ART terminology, 2009. Fertil Steril. 2009;92(5):1520–4.
Article
CAS
PubMed
Google Scholar
Petraglia F, Serour GI, Chapron C. The changing prevalence of infertility. Int J Gynaecol Obstet. 2013;123(Suppl 2):S4–8.
Article
PubMed
Google Scholar
Norwitz ER, Schust DJ, Fisher SJ. Implantation and the survival of early pregnancy. N Engl J Med. 2001;345(19):1400–8.
Article
CAS
PubMed
Google Scholar
Wilcox AJ, Weinberg CR, O'Connor JF, Baird DD, Schlatterer JP, Canfield RE, et al. Incidence of early loss of pregnancy. N Engl J Med. 1988;319(4):189–94.
Article
CAS
PubMed
Google Scholar
Caserta D, Bordi G, Ciardo F, Marci R, La Rocca C, Tait S, et al. The influence of endocrine disruptors in a selected population of infertile women. Gynecol Endocrinol. 2013;29(5):444–7.
Article
CAS
PubMed
Google Scholar
Buck Louis GM, Sundaram R, Sweeney AM, Schisterman EF, Maisog J, Kannan K. Urinary bisphenol A, phthalates, and couple fecundity: the Longitudinal Investigation of fertility and the environment (LIFE) Study. Fertil Steril. 2014;101(5):1359–66.
Article
CAS
PubMed
Google Scholar
La Rocca C, Tait S, Guerranti C, Busani L, Ciardo F, Bergamasco B, et al. Exposure to endocrine disrupters and nuclear receptor gene expression in infertile and fertile women from different Italian areas. Int J Environ Res Public Health. 2014;11(10):10146–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Velez MP, Arbuckle TE, Fraser WD. Female exposure to phenols and phthalates and time to pregnancy: the maternal-infant research on environmental chemicals (MIREC) study. Fertil Steril. 2015;103(4):1011–20 e2.
Article
CAS
PubMed
Google Scholar
Bloom MS, Kim D, Vom Saal FS, Taylor JA, Cheng G, Lamb JD, et al. Bisphenol A exposure reduces the estradiol response to gonadotropin stimulation during in vitro fertilization. Fertil Steril. 2011;96(3):672–7 e2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mok-Lin E, Ehrlich S, Williams PL, Petrozza J, Wright DL, Calafat AM, et al. Urinary bisphenol A concentrations and ovarian response among women undergoing IVF. Int J Androl. 2010;33(2):385–93.
Article
CAS
PubMed
Google Scholar
Ehrlich S, Williams PL, Missmer SA, Flaws JA, Berry KF, Calafat AM, et al. Urinary bisphenol A concentrations and implantation failure among women undergoing in vitro fertilization. Environ Health Perspect. 2012;120(7):978–83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fujimoto VY, Kim D, von Saal FS, Lamb JD, Taylor JA, Bloom MS. Serum unconjugated bisphenol A concentrations in women may adversely influence oocyte quality during in vitro fertilization. Fertil Steril. 2011;95(5):1816–9.
Article
CAS
PubMed
Google Scholar
Chavarro JE, Minguez-Alarcon L, Chiu YH, Gaskins AJ, Souter I, Williams PL, et al. Soy intake modifies the relation between urinary Bisphenol a concentrations and pregnancy outcomes among women undergoing assisted reproduction. J Clin Endocrinol Metab. 2016;101(3):1082–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Buffet NC, Bouchard P. The neuroendocrine regulation of the human ovarian cycle. Chronobiol Int. 2001;18(6):893–919.
CAS
PubMed
Google Scholar
Bates GW, Bowling M. Physiology of the female reproductive axis. Periodontol. 2013;61(1):89–102.
Article
Google Scholar
Tsutsumi R, Webster NJ. GnRH pulsatility, the pituitary response and reproductive dysfunction. Endocr J. 2009;56(6):729–37.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lehman MN, Hileman SM, Goodman RL. Neuroanatomy of the kisspeptin signaling system in mammals: comparative and developmental aspects. Adv Exp Med Biol. 2013;784:27–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Alviggi C, Clarizia R, Mollo A, Ranieri A, De Placido G. Who needs LH in ovarian stimulation? Reprod BioMed Online. 2011;22(Suppl 1):S33–41.
Article
PubMed
Google Scholar
Alviggi C, Mollo A, Clarizia R, De Placido G. Exploiting LH in ovarian stimulation. Reprod BioMed Online. 2006;12(2):221–33.
Article
CAS
PubMed
Google Scholar
Sato J, Nasu M, Tsuchitani M. Comparative histopathology of the estrous or menstrual cycle in laboratory animals. J Toxicol Pathol. 2016;29(3):155–62.
Article
PubMed
PubMed Central
Google Scholar
Wang X, Chang F, Bai Y, Chen F, Zhang J, Chen L. Bisphenol A enhances kisspeptin neurons in anteroventral periventricular nucleus of female mice. J Endocrinol. 2014a;221(2):201–13.
Article
CAS
PubMed
Google Scholar
Fernandez M, Bianchi M, Lux-Lantos V, Libertun C. Neonatal exposure to bisphenol a alters reproductive parameters and gonadotropin releasing hormone signaling in female rats. Environ Health Perspect. 2009;117(5):757–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fernandez M, Bourguignon N, Lux-Lantos V, Libertun C. Neonatal exposure to bisphenol a and reproductive and endocrine alterations resembling the polycystic ovarian syndrome in adult rats. Environ Health Perspect. 2010;118(9):1217–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Naule L, Picot M, Martini M, Parmentier C, Hardin-Pouzet H, Keller M, et al. Neuroendocrine and behavioral effects of maternal exposure to oral bisphenol A in female mice. J Endocrinol. 2014;220(3):375–88.
Article
CAS
PubMed
Google Scholar
Monje L, Varayoud J, Munoz-de-Toro M, Luque EH, Ramos JG. Exposure of neonatal female rats to bisphenol a disrupts hypothalamic LHRH pre-mRNA processing and estrogen receptor alpha expression in nuclei controlling estrous cyclicity. Reprod Toxicol. 2010;30(4):625–34.
Article
CAS
PubMed
Google Scholar
Adewale HB, Jefferson WN, Newbold RR, Patisaul HB. Neonatal Bisphenol-A exposure alters rat reproductive development and ovarian morphology without impairing activation of gonadotropin-releasing hormone neurons. Biol Reprod. 2009;81(4):690–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kurian JR, Keen KL, Kenealy BP, Garcia JP, Hedman CJ, Terasawa E. Acute influences of Bisphenol a exposure on hypothalamic release of gonadotropin-releasing hormone and Kisspeptin in female rhesus monkeys. Endocrinology. 2015;156(7):2563–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mahoney MM, Padmanabhan V. Developmental programming: impact of fetal exposure to endocrine-disrupting chemicals on gonadotropin-releasing hormone and estrogen receptor mRNA in sheep hypothalamus. Toxicol Appl Pharmacol. 2010;247(2):98–104.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhou J, Qu F, Jin Y, Yang DX. The extracts of Pacific oyster (Crassostrea gigas) alleviate ovarian functional disorders of female rats with exposure to bisphenol a through decreasing FSHR expression in ovarian tissues. Afr J Tradit Complement Altern Med. 2014;11(5):1–7.
Article
PubMed
PubMed Central
Google Scholar
Moore-Ambriz TR, Acuna-Hernandez DG, Ramos-Robles B, Sanchez-Gutierrez M, Santacruz-Marquez R, Sierra-Santoyo A, et al. Exposure to bisphenol A in young adult mice does not alter ovulation but does alter the fertilization ability of oocytes. Toxicol Appl Pharmacol. 2015;289(3):507–14.
Article
CAS
PubMed
Google Scholar
Zaid SSM, Othman S, Kassim NM. Protective role of Ficus deltoidea against BPA-induced impairments of the follicular development, estrous cycle, gonadotropin and sex steroid hormones level of prepubertal rats. J Ovarian Res. 2018;11(1):99.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lopez-Rodriguez D, Franssen D, Sevrin E, Gerard A, Balsat C, Blacher S, et al. Persistent vs transient alteration of folliculogenesis and estrous cycle after neonatal vs adult exposure to bisphenol A. Endocrinology. 2019.
Veiga-Lopez A, Luense LJ, Christenson LK, Padmanabhan V. Developmental programming: gestational bisphenol-a treatment alters trajectory of fetal ovarian gene expression. Endocrinology. 2013;154(5):1873–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Grive KJ, Freiman RN. The developmental origins of the mammalian ovarian reserve. Development. 2015;142(15):2554–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wear HM, McPike MJ, Watanabe KH. From primordial germ cells to primordial follicles: a review and visual representation of early ovarian development in mice. J Ovarian Res. 2016;9(1):36.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gossman W, Fagan SE, Sosa-Stanley JN, Peterson DC Anatomy, abdomen and pelvis, uterus, in StatPearls. 2019; Treasure Island (FL).
Egashira M, Hirota Y. Uterine receptivity and embryo-uterine interactions in embryo implantation: lessons from mice. Reprod Med Biol. 2013;12(4):127–32.
Article
PubMed
PubMed Central
Google Scholar
Zhao Q, Ma Y, Sun NX, Ye C, Zhang Q, Sun SH, et al. Exposure to bisphenol A at physiological concentrations observed in Chinese children promotes primordial follicle growth through the PI3K/Akt pathway in an ovarian culture system. Toxicol in Vitro. 2014;28(8):1424–9.
Article
CAS
PubMed
Google Scholar
Zhou C, Wang W, Peretz J, Flaws JA. Bisphenol A exposure inhibits germ cell nest breakdown by reducing apoptosis in cultured neonatal mouse ovaries. Reprod Toxicol. 2015;57:87–99.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ziv-Gal A, Craig ZR, Wang W, Flaws JA. Bisphenol A inhibits cultured mouse ovarian follicle growth partially via the aryl hydrocarbon receptor signaling pathway. Reprod Toxicol. 2013;42:58–67.
Article
CAS
PubMed
Google Scholar
Li Q, Davila J, Kannan A, Flaws JA, Bagchi MK, Bagchi IC. Chronic exposure to Bisphenol A affects uterine function during early pregnancy in mice. Endocrinology. 2016;157(5):1764–74.
Article
CAS
PubMed
PubMed Central
Google Scholar
Berger A, Ziv-Gal A, Cudiamat J, Wang W, Zhou C, Flaws JA. The effects of in utero bisphenol A exposure on the ovaries in multiple generations of mice. Reprod Toxicol. 2016;60:39–52.
Article
CAS
PubMed
Google Scholar
Wang W, Hafner KS, Flaws JA. In utero bisphenol A exposure disrupts germ cell nest breakdown and reduces fertility with age in the mouse. Toxicol Appl Pharmacol. 2014b;276(2):157–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Newbold RR, Jefferson WN, Padilla-Banks E. Prenatal exposure to bisphenol A at environmentally relevant doses adversely affects the murine female reproductive tract later in life. Environ Health Perspect. 2009;117(6):879–85.
Article
CAS
PubMed
PubMed Central
Google Scholar
Newbold RR, Jefferson WN, Padilla-Banks E. Long-term adverse effects of neonatal exposure to bisphenol A on the murine female reproductive tract. Reprod Toxicol. 2007;24(2):253–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mendoza-Rodriguez CA, Garcia-Guzman M, Baranda-Avila N, Morimoto S, Perrot-Applanat M, Cerbon M. Administration of bisphenol A to dams during perinatal period modifies molecular and morphological reproductive parameters of the offspring. Reprod Toxicol. 2011;31(2):177–83.
Article
CAS
PubMed
Google Scholar
Berger RG, Hancock T, de Catanzaro D. Influence of oral and subcutaneous bisphenol-A on intrauterine implantation of fertilized ova in inseminated female mice. Reprod Toxicol. 2007;23(2):138–44.
Article
CAS
PubMed
Google Scholar
Berger RG, Shaw J, de Catanzaro D. Impact of acute bisphenol-A exposure upon intrauterine implantation of fertilized ova and urinary levels of progesterone and 17beta-estradiol. Reprod Toxicol. 2008;26(2):94–9.
Article
CAS
PubMed
Google Scholar
Zhang HQ, Zhang XF, Zhang LJ, Chao HH, Pan B, Feng YM, et al. Fetal exposure to bisphenol A affects the primordial follicle formation by inhibiting the meiotic progression of oocytes. Mol Biol Rep. 2012;39(5):5651–7.
Article
CAS
PubMed
Google Scholar
Rivera OE, Varayoud J, Rodriguez HA, Munoz-de-Toro M, Luque EH. Neonatal exposure to bisphenol A or diethylstilbestrol alters the ovarian follicular dynamics in the lamb. Reprod Toxicol. 2011;32(3):304–12.
Article
CAS
PubMed
Google Scholar
Rivera OE, Varayoud J, Rodriguez HA, Santamaria CG, Bosquiazzo VL, Osti M, et al. Neonatal exposure to xenoestrogens impairs the ovarian response to gonadotropin treatment in lambs. Reproduction. 2015;149(6):645–55.
Article
CAS
PubMed
Google Scholar
Santamaria C, Durando M, Munoz de Toro M, Luque EH, Rodriguez HA. Ovarian dysfunctions in adult female rat offspring born to mothers perinatally exposed to low doses of bisphenol A. J Steroid Biochem Mol Biol. 2016;158:220–30.
Article
CAS
PubMed
Google Scholar
Chao HH, Zhang XF, Chen B, Pan B, Zhang LJ, Li L, et al. Bisphenol A exposure modifies methylation of imprinted genes in mouse oocytes via the estrogen receptor signaling pathway. Histochem Cell Biol. 2012;137(2):249–59.
Article
CAS
PubMed
Google Scholar
Souter I, Smith KW, Dimitriadis I, Ehrlich S, Williams PL, Calafat AM, et al. The association of bisphenol-A urinary concentrations with antral follicle counts and other measures of ovarian reserve in women undergoing infertility treatments. Reprod Toxicol. 2013;42:224–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Matarese G, De Placido G, Nikas Y, Alviggi C. Pathogenesis of endometriosis: natural immunity dysfunction or autoimmune disease? Trends Mol Med. 2003;9(5):223–8.
Article
CAS
PubMed
Google Scholar
Rotterdam EA-SPCWG. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome. Fertil Steril. 2004;81(1):19–25.
Article
Google Scholar
Signorile PG, Spugnini EP, Mita L, Mellone P, D'Avino A, Bianco M, et al. Pre-natal exposure of mice to bisphenol a elicits an endometriosis-like phenotype in female offspring. Gen Comp Endocrinol. 2010;168(3):318–25.
Article
CAS
PubMed
Google Scholar
Shin BS, Yoo SD, Cho CY, Jung JH, Lee BM, Kim JH, et al. Maternal-fetal disposition of bisphenol a in pregnant Sprague-Dawley rats. J Toxicol Environ Health A. 2002;65(5–6):395–406.
Article
CAS
PubMed
Google Scholar
Itoh H, Iwasaki M, Hanaoka T, Sasaki H, Tanaka T, Tsugane S. Urinary bisphenol-A concentration in infertile Japanese women and its association with endometriosis: a cross-sectional study. Environ Health Prev Med. 2007;12(6):258–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Revised American Fertility Society classification of endometriosis: 1985. Fertil Steril. 1985;43(3):351–2.
Cobellis L, Colacurci N, Trabucco E, Carpentiero C, Grumetto L. Measurement of bisphenol A and bisphenol B levels in human blood sera from healthy and endometriotic women. Biomed Chromatogr. 2009;23(11):1186–90.
Article
CAS
PubMed
Google Scholar
Simonelli A, Guadagni R, De Franciscis P, Colacurci N, Pieri M, Basilicata P, et al. Environmental and occupational exposure to bisphenol A and endometriosis: urinary and peritoneal fluid concentration levels. Int Arch Occup Environ Health. 2017;90(1):49–61.
Article
CAS
PubMed
Google Scholar
Rashidi BH, Amanlou M, Lak TB, Ghazizadeh M, Eslami B. A case-control study of bisphenol a and endometrioma among subgroup of Iranian women. J Res Med Sci. 2017;22:7.
Article
PubMed
PubMed Central
Google Scholar
Upson K, Sathyanarayana S, De Roos AJ, Koch HM, Scholes D, Holt VL. A population-based case-control study of urinary bisphenol A concentrations and risk of endometriosis. Hum Reprod. 2014;29(11):2457–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Moreira Fernandez MA, Cardeal ZL, Carneiro MM, Andre LC. Study of possible association between endometriosis and phthalate and bisphenol A by biomarkers analysis. J Pharm Biomed Anal. 2019;172:238–42.
Article
CAS
PubMed
Google Scholar
Alviggi C, Conforti A, De Rosa P, Strina I, Palomba S, Vallone R, et al. The distribution of stroma and antral follicles differs between insulin-resistance and hyperandrogenism-related polycystic ovarian syndrome. Front Endocrinol (Lausanne). 2017;8:117.
Article
Google Scholar
Dominguez MA, Petre MA, Neal MS, Foster WG. Bisphenol A concentration-dependently increases human granulosa-lutein cell matrix metalloproteinase-9 (MMP-9) enzyme output. Reprod Toxicol. 2008;25(4):420–5.
Article
CAS
PubMed
Google Scholar
Patisaul HB, Mabrey N, Adewale HB, Sullivan AW. Soy but not bisphenol A (BPA) induces hallmarks of polycystic ovary syndrome (PCOS) and related metabolic co-morbidities in rats. Reprod Toxicol. 2014;49:209–18.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vermeulen A. Environment, human reproduction, menopause, and andropause. Environ Health Perspect. 1993;101(Suppl 2):91–100.
Article
PubMed
PubMed Central
Google Scholar
Hu Y, Wen S, Yuan D, Peng L, Zeng R, Yang Z, et al. The association between the environmental endocrine disruptor bisphenol A and polycystic ovary syndrome: a systematic review and meta-analysis. Gynecol Endocrinol. 2018;34(5):370–7.
Article
CAS
PubMed
Google Scholar
Tarantino G, Valentino R, Di Somma C, D'Esposito V, Passaretti F, Pizza G, et al. Bisphenol A in polycystic ovary syndrome and its association with liver-spleen axis. Clin Endocrinol. 2013;78(3):447–53.
Article
CAS
Google Scholar
Rojas J, Chavez M, Olivar L, Rojas M, Morillo J, Mejias J, et al. Polycystic ovary syndrome, insulin resistance, and obesity: navigating the pathophysiologic labyrinth. Int J Reprod Med. 2014;2014:719050.
PubMed
PubMed Central
Google Scholar
Rossi A, Ruoppolo M, Formisano P, Villani G, Albano L, Gallo G, Crisci D, Moccia A, Parenti G, Strisciuglio P, Melis D. Insulin-resistance in glycogen storage disease type Ia: linking carbohydrates and mitochondria? J Inherit Metab Dis. 2018;41(6):985-95. https://doi.org/10.1007/s10545-018-0149-4. Epub 2018 Feb 12. PubMed PMID: 29435782.
Melis D, Rossi A, Pivonello R, Salerno M, Balivo F, Spadarella S, Muscogiuri G, Casa RD, Formisano P, Andria G, Colao A, Parenti G. Glycogen storage disease type Ia (GSDIa) but not Glycogen storage disease type Ib (GSDIb) is associated to an increased risk of metabolic syndrome: possible role of microsomal glucose 6-phosphate accumulation. Orphanet J Rare Dis. 2015;10:91. https://doi.org/10.1186/s13023-015-0301-2. PubMed PMID: 26219379; PubMed Central PMCID:PMC4518509.
Zhou W, Fang F, Zhu W, Chen ZJ, Du Y, Zhang J. Bisphenol A and ovarian reserve among infertile women with polycystic ovarian syndrome. Int J Environ Res Public Health. 2016;14(1).
Dechaud H, Ravard C, Claustrat F, de la Perriere AB, Pugeat M. Xenoestrogen interaction with human sex hormone-binding globulin (hSHBG). Steroids. 1999;64(5):328–34.
Article
CAS
PubMed
Google Scholar
Akin L, Kendirci M, Narin F, Kurtoglu S, Saraymen R, Kondolot M, et al. The endocrine disruptor bisphenol A may play a role in the aetiopathogenesis of polycystic ovary syndrome in adolescent girls. Acta Paediatr. 2015;104(4):e171–7.
Article
CAS
PubMed
Google Scholar
Takeuchi T, Tsutsumi O, Ikezuki Y, Takai Y, Taketani Y. Positive relationship between androgen and the endocrine disruptor, bisphenol a, in normal women and women with ovarian dysfunction. Endocr J. 2004;51(2):165–9.
Article
CAS
PubMed
Google Scholar