Dumesic DA, Oberfield SE, Stener-Victorin E, Marshall JC, Laven JS, Legro RS. Scientific Statement on the Diagnostic Criteria, Epidemiology, Pathophysiology, and Molecular Genetics of Polycystic Ovary Syndrome. Endocr Rev. 2015;36(5):487–525. https://doi.org/10.1210/er.2015-1018.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lizneva D, Suturina L, Walker W, Brakta S, Gavrilova-Jordan L, Azziz R. Criteria, prevalence, and phenotypes of polycystic ovary syndrome. Fertil Steril. 2016;106(1):6–15. https://doi.org/10.1016/j.fertnstert.2016.05.003.
Article
PubMed
Google Scholar
De Leo V, Musacchio MC, Cappelli V, Massaro MG, Morgante G, Petraglia F. Genetic, hormonal and metabolic aspects of PCOS: an update. Reprod Biol Endocrinol. 2016;14:38. https://doi.org/10.1186/s12958-016-0173-x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Matalliotakis I, Kourtis A, Koukoura O, Panidis D. Polycystic ovary syndrome: etiology and pathogenesis. Arch Gynecol Obstet. 2006;274(4):187–97. https://doi.org/10.1007/s00404-006-0171-x.
Article
CAS
PubMed
Google Scholar
Pasquali R, Stener-Victorin E, Yildiz BO, Duleba AJ, Hoeger K, Mason H, et al. PCOS Forum: Research in Polycystic Ovary Syndrome Today and Tomorrow. Clinical endocrinology. 2011;74(4):424–33. https://doi.org/10.1111/j.1365-2265.2010.03956.x.
Article
PubMed
PubMed Central
Google Scholar
Heider U, Pedal I, Spanel-Borowski K. Increase in nerve fibers and loss of mast cells in polycystic and postmenopausal ovaries. Fertil Steril. 2001;75(6):1141–7.
Article
CAS
Google Scholar
Dissen GA, Lara HE, Leyton V, Paredes A, Hill DF, Costa ME, et al. Intraovarian excess of nerve growth factor increases androgen secretion and disrupts estrous cyclicity in the rat. Endocrinology. 2000;141(3):1073–82. https://doi.org/10.1210/endo.141.3.7396.
Article
CAS
PubMed
Google Scholar
Lara HE, Ferruz JL, Luza S, Bustamante DA, Borges Y, Ojeda SR. Activation of ovarian sympathetic nerves in polycystic ovary syndrome. Endocrinology. 1993;133(6):2690–5. https://doi.org/10.1210/endo.133.6.7902268.
Article
CAS
PubMed
Google Scholar
Aguado LI, Ojeda SR. Prepubertal rat ovary: hormonal modulation of beta-adrenergic receptors and of progesterone response to adrenergic stimulation. Biology of Reproduction. 1986;34(1):45–50. https://doi.org/10.1095/biolreprod34.1.45.
Article
CAS
PubMed
Google Scholar
Hernandez ER, Jimenez JL, Payne DW, Adashi EY. Adrenergic regulation of ovarian androgen biosynthesis is mediated via beta 2-adrenergic theca-interstitial cell recognition sites. Endocrinology. 1988;122(4):1592–602. https://doi.org/10.1210/endo-122-4-1592.
Article
CAS
PubMed
Google Scholar
Wasilewska-Dziubinska E, Borowiec M, Chmielowska M, Wolinska-Witort E, Baranowska B. Alfa 1 adrenergic potentiation of progesterone accumulation stimulated by vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) in cultured rat granulosa cells. Neuro Endocrinol Lett. 2002;23(2):141–8.
CAS
PubMed
Google Scholar
Mayerhofer A, Dissen GA, Costa ME, Ojeda SR. A role for neurotransmitters in early follicular development: induction of functional follicle-stimulating hormone receptors in newly formed follicles of the rat ovary. Endocrinology. 1997;138(8):3320–9. https://doi.org/10.1210/endo.138.8.5335.
Article
CAS
PubMed
Google Scholar
Lara HE, McDonald JK, Ahmed CE, Ojeda SR. Guanethidine-mediated destruction of ovarian sympathetic nerves disrupts ovarian development and function in rats. Endocrinology. 1990;127(5):2199–209. https://doi.org/10.1210/endo-127-5-2199.
Article
CAS
PubMed
Google Scholar
Burden HW. The adrenergic innervation of mammalian ovaries. In: Ben-Jonathan N, Bahr JM, Weiner RI, editors. Catecholamines as hormone regulators. New York: Raven Press; 1985;261–278.
Dorfman M, Arancibia S, Fiedler JL, Lara HE. Chronic Intermittent Cold Stress Activates Ovarian Sympathetic Nerves and Modifies Ovarian Follicular Development in the Rat. Biol Reprod. 2003;68(6):2038–43. https://doi.org/10.1095/biolreprod.102.008318.
Article
CAS
PubMed
Google Scholar
Morales-Ledesma L, Trujillo A, Apolonio J. In the pubertal rat, the regulation of ovarian function involves the synergic participation of the sensory and sympathetic innervations that arrive at the gonad. Reprod Biol Endocrinol. 2015;13:61. https://doi.org/10.1186/s12958-015-0062-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chavez-Genaro R, Lombide P, Dominguez R, Rosas P, Vazquez-Cuevas F. Sympathetic pharmacological denervation in ageing rats: effects on ovulatory response and follicular population. Reprod Fertil Dev. 2007;19(8):954–60.
Article
CAS
Google Scholar
Goldman JM, Parrish MB, Cooper RL, McElroy WK. Blockade of ovulation in the rat by systemic and ovarian intrabursal administration of the fungicide sodium dimethyldithiocarbamate. Reprod Toxicol. 1997;11(2–3):185–90. https://doi.org/10.1016/s0890-6238(97)00005-1.
Article
CAS
PubMed
Google Scholar
Itoh MT, Ishizuka B. α1-Adrenergic receptor in rat ovary: Presence and localization. Mol Cell Endocrinol. 2005;240(1–2):58–63. https://doi.org/10.1016/j.mce.2005.05.012.
Article
CAS
PubMed
Google Scholar
Laszlovsky I, Erdö SL. Characterization of β-adrenergic receptors in rat ovary. Eur J Pharmacol. 1983;96(1):101–4. https://doi.org/10.1016/0014-2999(83)90534-4.
Article
Google Scholar
Jordan AW. Changes in Ovarian β-Adrenergic Receptors During the Estrous Cycle of the Rat. Biol Reprod. 1981;24(2):245–8. https://doi.org/10.1095/biolreprod24.2.245.
Article
CAS
PubMed
Google Scholar
Luna SL, Neuman S, Aguilera J, Brown DI, Lara HE. In vivo beta-adrenergic blockade by propranolol prevents isoproterenol-induced polycystic ovary in adult rats. Horm Metab Res. 2012;44(9):676–81. https://doi.org/10.1055/s-0031-1301304.
Article
CAS
PubMed
Google Scholar
Fernandois D, Lara HE, Paredes AH. Blocking of beta-adrenergic receptors during the subfertile period inhibits spontaneous ovarian cyst formation in rats. Horm Metab Res. 2012;44(9):682–7. https://doi.org/10.1055/s-0032-1304607.
Article
CAS
PubMed
Google Scholar
Dominguez R, Gaitan CM, Mendez SA, Ulloa-Aguirre A. Effects of catecholaminergic blockade by haloperidol or propranolol at different stages of the oestrous cycle on ovulation and gonadotrophin levels in the rat. J Endocrinol. 1987;113(1):37–44. https://doi.org/10.1677/joe.0.1130037.
Article
CAS
PubMed
Google Scholar
Maliqueo M, Benrick A, Stener-Victorin E. Rodent models of polycystic ovary syndrome: phenotypic presentation, pathophysiology, and the effects of different interventions. Semin Reprod Med. 2014;32(3):183–93. https://doi.org/10.1055/s-0034-1371090.
Article
PubMed
Google Scholar
Peecher DL, Binder AK, Gabriel KI. Rodent models of mental illness in PCOS: The potential role of HPA dysregulation and lessons for behavioral researchers. Biol Reprod. 2018;100:590–600. https://doi.org/10.1093/biolre/ioy233.
Article
Google Scholar
Azziz R. Animal models for PCOS — not the real thing. Nature Reviews Endocrinology. 2017;13:–382. https://doi.org/10.1038/nrendo.2017.57.
Article
Google Scholar
Shaaban Z, Jafarzadeh Shirazi MR, Nooranizadeh MH, Tamadon A, Rahmanifar F, Ahmadloo S, et al. Decreased Expression of Arginine-Phenylalanine-Amide-Related Peptide-3 Gene in Dorsomedial Hypothalamic Nucleus of Constant Light Exposure Model of Polycystic Ovarian Syndrome. Int J Fertil Steril. 2018;12(1):43–50. https://doi.org/10.22074/ijfs.2018.5206.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shi D, Vine DF. Animal models of polycystic ovary syndrome: a focused review of rodent models in relationship to clinical phenotypes and cardiometabolic risk. Fertil Steril. 2012;98(1):185–93. https://doi.org/10.1016/j.fertnstert.2012.04.006.
Article
PubMed
Google Scholar
Brawer JR, Munoz M, Farookhi R. Development of the polycystic ovarian condition (PCO) in the estradiol valerate-treated rat. Biol Reprod. 1986;35(3):647–55.
Article
CAS
Google Scholar
Sotomayor-Zarate R, Dorfman M, Paredes A, Lara HE. Neonatal exposure to estradiol valerate programs ovarian sympathetic innervation and follicular development in the adult rat. Biol Reprod. 2008;78(4):673–80. https://doi.org/10.1095/biolreprod.107.063974.
Article
CAS
PubMed
Google Scholar
Barria A, Leyton V, Ojeda SR, Lara HE. Ovarian steroidal response to gonadotropins and beta-adrenergic stimulation is enhanced in polycystic ovary syndrome: role of sympathetic innervation. Endocrinology. 1993;133(6):2696–703. https://doi.org/10.1210/endo.133.6.8243293.
Article
CAS
PubMed
Google Scholar
Stener-Victorin E, Lundeberg T, Waldenstrom U, Manni L, Aloe L, Gunnarsson S, et al. Effects of electro-acupuncture on nerve growth factor and ovarian morphology in rats with experimentally induced polycystic ovaries. Biol Reprod. 2000;63(5):1497–503.
Article
CAS
Google Scholar
Rosa ESA, Guimaraes MA, Padmanabhan V, Lara HE. Prepubertal administration of estradiol valerate disrupts cyclicity and leads to cystic ovarian morphology during adult life in the rat: role of sympathetic innervation. Endocrinology. 2003;144(10):4289–97. https://doi.org/10.1210/en.2003-0146.
Article
CAS
Google Scholar
Manni L, Holmäng A, Lundeberg T, Aloe L, Stener-Victorin E. Ovarian expression of alpha (1)- and beta (2)-adrenoceptors and p75 neurotrophin receptors in rats with steroid-induced polycystic ovaries. Autonomic Neuroscience. 2005;118(1–2):79–87. https://doi.org/10.1016/j.autneu.2005.01.004.
Article
CAS
Google Scholar
Morales-Ledesma L, Linares R, Rosas G, Moran C, Chavira R, Cardenas M, et al. Unilateral sectioning of the superior ovarian nerve of rats with polycystic ovarian syndrome restores ovulation in the innervated ovary. Reprod Biol Endocrinol. 2010;8:99. https://doi.org/10.1186/1477-7827-8-99.
Article
CAS
PubMed
PubMed Central
Google Scholar
Espinoza JA, Alvarado W, Venegas B, Dominguez R, Morales-Ledesma L. Pharmacological sympathetic denervation prevents the development of polycystic ovarian syndrome in rats injected with estradiol valerate. Reprod Biol Endocrinol. 2018;16(1):86. https://doi.org/10.1186/s12958-018-0400-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Manni L, Lundeberg T, Holmang A, Aloe L, Stener-Victorin E. Effect of electro-acupuncture on ovarian expression of alpha (1)- and beta (2)-adrenoceptors, and p75 neurotrophin receptors in rats with steroid-induced polycystic ovaries. Reprod Biol Endocrinol. 2005;3:21. https://doi.org/10.1186/1477-7827-3-21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Manni L, Cajander S, Lundeberg T, Naylor AS, Aloe L, Holmang A, et al. Effect of exercise on ovarian morphology and expression of nerve growth factor and alpha(1)- and beta(2)-adrenergic receptors in rats with steroid-induced polycystic ovaries. J Neuroendocrinol. 2005;17(12):846–58. https://doi.org/10.1111/j.1365-2826.2005.01378.x.
Article
CAS
PubMed
Google Scholar
Venegas-Meneses B, Padilla JF, Juarez CE, Moran JL, Moran C, Rosas-Murrieta NH, et al. Effects of ovarian dopaminergic receptors on ovulation. Endocrine. 2015;50(3):783–96. https://doi.org/10.1007/s12020-015-0636-4.
Article
CAS
PubMed
Google Scholar
Bagavandoss P, Grimshaw S. Distribution of adenylyl cyclases in the rat ovary by immunofluorescence microscopy. Anat Rec (Hoboken). 2012;295(10):1717–26. https://doi.org/10.1002/ar.22550.
Article
CAS
Google Scholar
Bagavandoss P, Grimshaw S. Temporal and spatial distribution of the cannabinoid receptors (CB1, CB2) and fatty acid amide hydroxylase in the rat ovary. Anat Rec (Hoboken). 2010;293(8):1425–32. https://doi.org/10.1002/ar.21181.
Article
CAS
PubMed
Google Scholar
Stener-Victorin E. Hypothetical physiological and molecular basis for the effect of acupuncture in the treatment of polycystic ovary syndrome. Mol Cell Endocrinol. 2013;373(1–2):83–90. https://doi.org/10.1016/j.mce.2013.01.006.
Article
CAS
PubMed
Google Scholar
Sverrisdottir YB, Mogren T, Kataoka J, Janson PO, Stener-Victorin E. Is polycystic ovary syndrome associated with high sympathetic nerve activity and size at birth? Am J Physiol Endocrinol Metab. 2008;294(3):E576–81. https://doi.org/10.1152/ajpendo.00725.2007.
Article
CAS
PubMed
Google Scholar
Lara HE, Porcile A, Espinoza J, Romero C, Luza SM, Fuhrer J, et al. Release of norepinephrine from human ovary: coupling to steroidogenic response. Endocrine. 2001;15(2):187–92. https://doi.org/10.1385/endo:15:2:187.
Article
CAS
PubMed
Google Scholar
Lara HE, Dissen GA, Leyton V, Paredes A, Fuenzalida H, Fiedler JL, et al. An increased intraovarian synthesis of nerve growth factor and its low affinity receptor is a principal component of steroid-induced polycystic ovary in the rat. Endocrinology. 2000;141(3):1059–72. https://doi.org/10.1210/endo.141.3.7395.
Article
CAS
PubMed
Google Scholar
Linares R, Hernandez D, Moran C, Chavira R, Cardenas M, Dominguez R, et al. Unilateral or bilateral vagotomy induces ovulation in both ovaries of rats with polycystic ovarian syndrome. Reprod Biol Endocrinol. 2013;11:68. https://doi.org/10.1186/1477-7827-11-68.
Article
CAS
PubMed
PubMed Central
Google Scholar
Adashi EY, Hsueh AJ. Stimulation of beta 2-adrenergic responsiveness by follicle-stimulating hormone in rat granulosa cells in vitro and in vivo. Endocrinology. 1981;108(6):2170–8. https://doi.org/10.1210/endo-108-6-2170.
Article
CAS
PubMed
Google Scholar
Aguado LI, Petrovic SL, Ojeda SR. Ovarian beta-adrenergic receptors during the onset of puberty: characterization, distribution, and coupling to steroidogenic responses. Endocrinology. 1982;110(4):1124–32. https://doi.org/10.1210/endo-110-4-1124.
Article
CAS
PubMed
Google Scholar
Fohr KJ, Mayerhofer A, Sterzik K, Rudolf M, Rosenbusch B, Gratzl M. Concerted action of human chorionic gonadotropin and norepinephrine on intracellular-free calcium in human granulosa-lutein cells: evidence for the presence of a functional alpha-adrenergic receptor. J Clin Endocrinol Metab. 1993;76(2):367–73. https://doi.org/10.1210/jcem.76.2.8381798.
Article
CAS
PubMed
Google Scholar
Webley GE, Luck MR, Hearn JP. Stimulation of progesterone secretion by cultured human granulosa cells with melatonin and catecholamines. J Reprod Fertil. 1988;84(2):669–77.
Article
CAS
Google Scholar
Ojeda SR, Lara HE. Role of the Sympathetic Nervous System in the Regulation of Ovarian Function. In: Pirke KM, Wuttke W, Schweiger U, editors. The Menstrual Cycle and Its Disorders: Influences of Nutrition, Exercise and Neurotransmitters. Berlin: Springer Berlin Heidelberg; 1989. p. 26–32.
Chapter
Google Scholar
Parra C, Fiedler JL, Luna SL, Greiner M, Padmanabhan V, Lara HE. Participation of vasoactive intestinal polypeptide in ovarian steroids production during the rat estrous cycle and in the development of estradiol valerate-induced polycystic ovary. Reproduction. 2007;133(1):147–54. https://doi.org/10.1530/rep.1.01214.
Article
CAS
PubMed
Google Scholar
Morales-Ledesma L, Vieyra E, Ramirez DA, Trujillo A, Chavira R, Cardenas M, et al. Effects on steroid hormones secretion resulting from the acute stimulation of sectioning the superior ovarian nerve to pre-pubertal rats. Reprod Biol Endocrinol. 2012;10:88. https://doi.org/10.1186/1477-7827-10-88.
Article
CAS
PubMed
PubMed Central
Google Scholar