Bebington C, Bell SC, Doherty FJ, Fazleabas AT, Fleming SD: Localization of ubiquitin and ubiquitin cross-reactive protein in human and baboon endometrium and decidua during the menstrual cycle and early pregnancy. Biol Reprod. 1999, 60 (4): 920-928. 10.1095/biolreprod60.4.920.
Article
CAS
PubMed
Google Scholar
Austin KJ, Pru JK, Hansen TR: Complementary deoxyribonucleic acid sequence encoding bovine ubiquitin-cross reactive protein: a comparison with ubiquitn and a 15-kDa ubiquitin homolog. Endocrine. 1996, 5: 191-197.
Article
CAS
PubMed
Google Scholar
Hansen TR, Austin KJ, Johnson GA: Transient ubiquitin cross-reactive protein gene expression in the bovine endometrium. Endocrinology. 1997, 138 (11): 5079-5082. 10.1210/en.138.11.5079.
Article
CAS
PubMed
Google Scholar
Johnson GA, Austin KJ, Collins AM, Murdoch WJ, Hansen TR: Endometrial ISG17 mRNA and a related mRNA are induced by interferon-tau and localized to glandular epithelial and stromal cells from pregnant cows. Endocrine. 1999, 10 (3): 243-252.
Article
CAS
PubMed
Google Scholar
Joyce MM, Hansen TR, Johnson GA: Interferon-stimulated gene 17 is expressed in the porcine uterus and may be critical to placental development across species. Biol Reprod. 2002, 66 (Suppl 1): 185-
Google Scholar
Austin KJ, Bany BM, Belden EL, Rempel LA, Cross JC, Hansen TR: Interferon-stimulated gene-15 (Isg15) expression is up-regulated in the mouse uterus in response to the implanting conceptus. Endocrinology. 2003, 144 (7): 3107-3113. 10.1210/en.2002-0031.
Article
CAS
PubMed
Google Scholar
Bany BM, Cross JC: Post-implantation mouse conceptuses produce paracrine signals that regulate the uterine endometrium undergoing decidualization. Dev Biol. 2006, 294 (2): 445-456. 10.1016/j.ydbio.2006.03.006.
Article
CAS
PubMed
Google Scholar
Zhao C, Denison C, Huibregtse JM, Gygi S, Krug RM: Human ISG15 conjugation targets both IFN-induced and constitutively expressed proteins functioning in diverse cellular pathways. Proc Natl Acad Sci U S A. 2005, 102 (29): 10200-10205. 10.1073/pnas.0504754102.
Article
PubMed Central
CAS
PubMed
Google Scholar
Yuan W, Aramini JM, Montelione GT, Krug RM: Structural basis for ubiquitin-like ISG 15 protein binding to the NS1 protein of influenza B virus: a protein-protein interaction function that is not shared by the corresponding N-terminal domain of the NS1 protein of influenza A virus. Virology. 2002, 304 (2): 291-301. 10.1006/viro.2002.1663.
Article
CAS
PubMed
Google Scholar
Yuan W, Krug RM: Influenza B virus NS1 protein inhibits conjugation of the interferon (IFN)-induced ubiquitin-like ISG15 protein. Embo J. 2001, 20 (3): 362-371. 10.1093/emboj/20.3.362.
Article
PubMed Central
CAS
PubMed
Google Scholar
Padovan E, Terracciano L, Certa U, Jacobs B, Reschner A, Bolli M, Spagnoli GC, Borden EC, Heberer M: Interferon stimulated gene 15 constitutively produced by melanoma cells induces e-cadherin expression on human dendritic cells. Cancer Res. 2002, 62 (12): 3453-3458.
CAS
PubMed
Google Scholar
Giannakopoulos NV, Luo JK, Papov V, Zou W, Lenschow DJ, Jacobs BS, Borden EC, Li J, Virgin HW, Zhang DE: Proteomic identification of proteins conjugated to ISG15 in mouse and human cells. Biochem Biophys Res Commun. 2005, 336 (2): 496-506. 10.1016/j.bbrc.2005.08.132.
Article
CAS
PubMed
Google Scholar
Malakhova OA, Yan M, Malakhov MP, Yuan Y, Ritchie KJ, Kim KI, Peterson LF, Shuai K, Zhang DE: Protein ISGylation modulates the JAK-STAT signaling pathway. Genes Dev. 2003, 17 (4): 455-460. 10.1101/gad.1056303.
Article
PubMed Central
CAS
PubMed
Google Scholar
Malakhov MP, Kim KI, Malakhova OA, Jacobs BS, Borden EC, Zhang DE: High-throughput immunoblotting. Ubiquitiin-like protein ISG15 modifies key regulators of signal transduction. J Biol Chem. 2003, 278 (19): 16608-16613. 10.1074/jbc.M208435200.
Article
CAS
PubMed
Google Scholar
D'Cunha J, Ramanujam S, Wagner RJ, Witt PL, Knight E, Borden EC: In vitro and in vivo secretion of human ISG15, an IFN-induced immunomodulatory cytokine. J Immunol. 1996, 157 (9): 4100-4108.
PubMed
Google Scholar
D'Cunha J, Knight E, Haas AL, Truitt RL, Borden EC: Immunoregulatory properties of ISG15, an interferon-induced cytokine. Proc Natl Acad Sci U S A. 1996, 93 (1): 211-215. 10.1073/pnas.93.1.211.
Article
PubMed Central
PubMed
Google Scholar
Hansen TR, Austin KJ, Perry DJ, Pru JK, Teixeira MG, Johnson GA: Mechanism of action of interferon-tau in the uterus during early pregnancy. J Reprod Fertil Suppl. 1999, 54: 329-339.
CAS
PubMed
Google Scholar
Perry DJ, Austin KJ, Hansen TR: Cloning of interferon-stimulated gene 17: the promoter and nuclear proteins that regulate transcription. Mol Endocrinol. 1999, 13 (7): 1197-1206. 10.1210/me.13.7.1197.
Article
CAS
PubMed
Google Scholar
Austin KJ, Bany BM, Belden EL, Rempel LA, Cross JC, Hansen TR: Interferon-stimulated gene-15 (Isg15) expression is up-regulated in the mouse uterus in response to the implanting conceptus. Endocrinology. 2003, 144: 3107-3113. 10.1210/en.2002-0031.
Article
CAS
PubMed
Google Scholar
Hess AP, Hamilton AE, Talbi S, Dosiou C, Nyegaard M, Nayak N, Genbecev-Krtolica O, Mavrogianis P, Ferrer K, Kruessel J, Fazleabas AT, Fisher SJ, Giudice LC: Decidual Stromal Cell Response to Paracrine Signals from the Trophoblast: Amplification of Immune and Angiogenic Modulators. Biol Reprod. 2006
Google Scholar
Finley D, Chau V: Ubiquitination. Annu Rev Cell Biol. 1991, 7: 25-69. 10.1146/annurev.cb.07.110191.000325.
Article
CAS
PubMed
Google Scholar
Pantaleon M, Kanai-Azuma M, Mattick JS, Kaibuchi K, Kaye PL, Wood SA: FAM deubiquitylating enzyme is essential for preimplantation mouse embryo development. Mech Dev. 2001, 109 (2): 151-160. 10.1016/S0925-4773(01)00551-2.
Article
CAS
PubMed
Google Scholar
Moazed D, Johnson D: A deubiquitinating enzyme interacts with SIR4 and regulates silencing in S. cerevisiae. Cell. 1996, 86 (4): 667-677. 10.1016/S0092-8674(00)80139-7.
Article
CAS
PubMed
Google Scholar
Papa FR, Hochstrasser M: The yeast DOA4 gene encodes a deubiquitinating enzyme related to a product of the human tre-2 oncogene. Nature. 1993, 366 (6453): 313-319. 10.1038/366313a0.
Article
CAS
PubMed
Google Scholar
Park KC, Kim JH, Choi EJ, Min SW, Rhee S, Baek SH, Chung SS, Bang O, Park D, Chiba T, Tanaka K, Chung CH: Antagonistic regulation of myogenesis by two deubiquitinating enzymes, UBP45 and UBP69. Proc Natl Acad Sci U S A. 2002, 99 (15): 9733-9738. 10.1073/pnas.152011799.
Article
PubMed Central
CAS
PubMed
Google Scholar
D'Andrea A, Pellman D: Deubiquitinating enzymes: a new class of biological regulators. Crit Rev Biochem Mol Biol. 1998, 33 (5): 337-352. 10.1080/10409239891204251.
Article
PubMed
Google Scholar
Amerik AY, Hochstrasser M: Mechanism and function of deubiquitinating enzymes. Biochim Biophys Acta. 2004, 1695 (1-3): 189-207. 10.1016/j.bbamcr.2004.10.003.
Article
CAS
PubMed
Google Scholar
Wilkinson KD: Ubiquitination and deubiquitination: targeting of proteins for degradation by the proteasome. Semin Cell Dev Biol. 2000, 11 (3): 141-148. 10.1006/scdb.2000.0164.
Article
CAS
PubMed
Google Scholar
Liu LQ, Ilaria R, Kingsley PD, Iwama A, van Etten RA, Palis J, Zhang DE: A novel ubiquitin-specific protease, UBP43, cloned from leukemia fusion protein AML1-ETO-expressing mice, functions in hematopoietic cell differentiation. Mol Cell Biol. 1999, 19 (4): 3029-3038.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ritchie KJ, Malakhov MP, Hetherington CJ, Zhou L, Little MT, Malakhova OA, Sipe JC, Orkin SH, Zhang DE: Dysregulation of protein modification by ISG15 results in brain cell injury. Genes Dev. 2002, 16 (17): 2207-2212. 10.1101/gad.1010202.
Article
PubMed Central
CAS
PubMed
Google Scholar
Li XL, Blackford JA, Judge CS, Liu M, Xiao W, Kalvakolanu DV, Hassel BA: RNase-L-dependent destabilization of interferon-induced mRNAs. A role for the 2-5A system in attenuation of the interferon response. J Biol Chem. 2000, 275 (12): 8880-8888. 10.1074/jbc.275.12.8880.
Article
CAS
PubMed
Google Scholar
Malakhova O, Malakhov M, Hetherington C, Zhang DE: Lipopolysaccharide activates the expression of ISG15-specific protease UBP43 via interferon regulatory factor 3. J Biol Chem. 2002, 277 (17): 14703-14711. 10.1074/jbc.M111527200.
Article
CAS
PubMed
Google Scholar
Hemelaar J, Galardy PJ, Borodovsky A, Kessler BM, Ploegh HL, Ovaa H: Chemistry-based functional proteomics: mechanism-based activity-profiling tools for ubiquitin and ubiquitin-like specific proteases. J Proteome Res. 2004, 3 (2): 268-276. 10.1021/pr0341080.
Article
CAS
PubMed
Google Scholar
Hemelaar J, Borodovsky A, Kessler BM, Reverter D, Cook J, Kolli N, Gan-Erdene T, Wilkinson KD, Gill G, Lima CD, Ploegh HL, Ovaa H: Specific and covalent targeting of conjugating and deconjugating enzymes of ubiquitin-like proteins. Mol Cell Biol. 2004, 24 (1): 84-95. 10.1128/MCB.24.1.84-95.2004.
Article
PubMed Central
CAS
PubMed
Google Scholar
Malakhova OA, Kim KI, Luo JK, Zou W, Kumar KG, Fuchs SY, Shuai K, Zhang DE: UBP43 is a novel regulator of interferon signaling independent of its ISG15 isopeptidase activity. Embo J. 2006, 25 (11): 2358-2367. 10.1038/sj.emboj.7601149.
Article
PubMed Central
CAS
PubMed
Google Scholar
Osiak A, Utermohlen O, Niendorf S, Horak I, Knobeloch KP: ISG15, an interferon-stimulated ubiquitin-like protein, is not essential for STAT1 signaling and responses against vesicular stomatitis and lymphocytic choriomeningitis virus. Mol Cell Biol. 2005, 25 (15): 6338-6345. 10.1128/MCB.25.15.6338-6345.2005.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kim KI, Yan M, Malakhova O, Luo JK, Shen MF, Zou W, de la Torre JC, Zhang DE: Ube1L and protein ISGylation are not essential for alpha/beta interferon signaling. Mol Cell Biol. 2006, 26 (2): 472-479. 10.1128/MCB.26.2.472-479.2006.
Article
PubMed Central
CAS
PubMed
Google Scholar
Knobeloch KP, Utermohlen O, Kisser A, Prinz M, Horak I: Reexamination of the role of ubiquitin-like modifier ISG15 in the phenotype of UBP43-deficient mice. Mol Cell Biol. 2005, 25 (24): 11030-11034. 10.1128/MCB.25.24.11030-11034.2005.
Article
PubMed Central
CAS
PubMed
Google Scholar
Laemmli UK: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970, 227 (259): 680-685. 10.1038/227680a0.
Article
CAS
PubMed
Google Scholar
Stewart J, Bebington CR, Mukhtar DD: Lectin binding characteristics of mouse placental cells. J Anat. 2000, 196 ( Pt 3): 371-378. 10.1046/j.1469-7580.2000.19630371.x.
Article
CAS
Google Scholar
Bebington C, Doherty FJ, Fleming SD: Ubiquitin cross-reactive protein gene expression is increased in decidualized endometrial stromal cells at the initiation of pregnancy. Mol Hum Reprod. 1999, 5 (10): 966-972. 10.1093/molehr/5.10.966.
Article
CAS
PubMed
Google Scholar
Der SD, Zhou A, Williams BR, Silverman RH: Identification of genes differentially regulated by interferon alpha, beta, or gamma using oligonucleotide arrays. Proc Natl Acad Sci U S A. 1998, 95 (26): 15623-15628. 10.1073/pnas.95.26.15623.
Article
PubMed Central
CAS
PubMed
Google Scholar
Austin KJ, Carr AL, Pru JK, Hearne CE, George EL, Belden EL, Hansen TR: Localization of ISG15 and conjugated proteins in bovine endometrium using immunohistochemistry and electron microscopy. Endocrinology. 2004, 145 (2): 967-975. 10.1210/en.2003-1087.
Article
CAS
PubMed
Google Scholar
Kang D, Jiang H, Wu Q, Pestka S, Fisher PB: Cloning and characterization of human ubiquitin-processing protease-43 from terminally differentiated human melanoma cells using a rapid subtraction hybridization protocol RaSH. Gene. 2001, 267 (2): 233-242. 10.1016/S0378-1119(01)00384-5.
Article
CAS
PubMed
Google Scholar
Lokmic Z, Darby IA, Thompson EW, Mitchell GM: Time course analysis of hypoxia, granulation tissue and blood vessel growth, and remodeling in healing rat cutaneous incisional primary intention wounds. Wound Repair Regen. 2006, 14 (3): 277-288. 10.1111/j.1743-6109.2006.00122.x.
Article
PubMed
Google Scholar
Neeman M, Abramovitch R, Schiffenbauer YS, Tempel C: Regulation of angiogenesis by hypoxic stress: from solid tumours to the ovarian follicle. Int J Exp Pathol. 1997, 78 (2): 57-70. 10.1046/j.1365-2613.1997.d01-247.x.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wei P, Yu FQ, Chen XL, Tao SX, Han CS, Liu YX: VEGF, bFGF and their receptors at the fetal-maternal interface of the rhesus monkey. Placenta. 2004, 25 (2-3): 184-196. 10.1016/j.placenta.2003.08.017.
Article
CAS
PubMed
Google Scholar
Chakraborty I, Das SK, Dey SK: Differential expression of vascular endothelial growth factor and its receptor mRNAs in the mouse uterus around the time of implantation. J Endocrinol. 1995, 147 (2): 339-352.
Article
CAS
PubMed
Google Scholar
Dunk C, Ahmed A: Expression of VEGF-C and activation of its receptors VEGFR-2 and VEGFR-3 in trophoblast. Histol Histopathol. 2001, 16 (2): 359-375.
CAS
PubMed
Google Scholar
Ferrara N, Davis-Smyth T: The biology of vascular endothelial growth factor. Endocr Rev. 1997, 18 (1): 4-25. 10.1210/er.18.1.4.
Article
CAS
PubMed
Google Scholar
Leung DW, Cachianes G, Kuang WJ, Goeddel DV, Ferrara N: Vascular endothelial growth factor is a secreted angiogenic mitogen. Science. 1989, 246 (4935): 1306-1309. 10.1126/science.2479986.
Article
CAS
PubMed
Google Scholar
Fitzpatrick TE, Lash GE, Yanaihara A, Charnock-Jones DS, Macdonald-Goodfellow SK, Graham CH: Inhibition of breast carcinoma and trophoblast cell invasiveness by vascular endothelial growth factor. Exp Cell Res. 2003, 283 (2): 247-255. 10.1016/S0014-4827(02)00044-7.
Article
CAS
PubMed
Google Scholar
De Maeyer-Guignard J, Dandoy F, Bailey DW, De Maeyer E: Interferon structural genes do not participate in quantitative regulation of interferon production by If loci as shown in C57BL/6 mice that are congenic with BALB/c mice at the alpha interferon gene cluster. J Virol. 1986, 58 (3): 743-747.
PubMed Central
CAS
PubMed
Google Scholar
Lenschow DJ, Lai C, Frias-Staheli N, Giannakopoulos NV, Lutz A, Wolff T, Osiak A, Levine B, Schmidt RE, Garcia-Sastre A, Leib DA, Pekosz A, Knobeloch KP, Horak I, Virgin HW: IFN-stimulated gene 15 functions as a critical antiviral molecule against influenza, herpes, and Sindbis viruses. Proc Natl Acad Sci U S A. 2007, 104 (4): 1371-1376. 10.1073/pnas.0607038104.
Article
PubMed Central
CAS
PubMed
Google Scholar