- Research
- Open Access
- Published:
Association of ADAMTS proteoglycanases downregulation with IVF-ET outcomes in patients with polycystic ovary syndrome: a systematic review and meta-analysis
Reproductive Biology and Endocrinology volume 20, Article number: 169 (2022)
Abstract
Background
A disintegrin and metalloproteinase with thrombospondin-like motifs (ADAMTS) is involved in inflammation and fertility in women with polycystic ovary syndrome (PCOS). This study aims to assess the role of ADAMTS level in the outcomes of in vitro fertilization and embryo transfer (IVF-ET) in women with PCOS, using a meta-analytic approach.
Methods
We systematically searched Web of Science, PubMed, EmBase, and the Cochrane library to identify potentially eligible studies from inception until December 2021. Study assess the role of ADAMTS levels in patients with PCOS was eligible in this study. The pooled effect estimates for the association between ADAMTS level and IVF-ET outcomes were calculated using the random-effects model.
Results
Five studies involving a total of 181 patients, were selected for final analysis. We noted that ADAMTS-1 levels were positively correlated to oocyte maturity (r = 0.67; P = 0.004), oocyte recovery (r = 0.74; P = 0.006), and fertilization (r = 0.46; P = 0.041) rates. Moreover, ADAMTS-4 levels were positively correlated to oocyte recovery (r = 0.91; P = 0.001), and fertilization (r = 0.85; P = 0.017) rates. Furthermore, downregulation of ADAMTS-1, ADAMTS-4, ADAMTS-5, and ADAMTS-9 was associated with elevated follicle puncture (ADAMTS-1: weighted mean difference [WMD], 7.24, P < 0.001; ADAMTS-4: WMD, 7.20, P < 0.001; ADAMTS-5: WMD, 7.20, P < 0.001; ADAMTS-9: WMD, 6.38, P < 0.001), oocytes retrieval (ADAMTS-1: WMD, 1.61, P < 0.001; ADAMTS-4: WMD, 3.63, P = 0.004; ADAMTS-5: WMD, 3.63, P = 0.004; ADAMTS-9: WMD, 3.20, P = 0.006), and Germinal vesicle oocytes levels (ADAMTS-1: WMD, 2.89, P < 0.001; ADAMTS-4: WMD, 2.19, P < 0.001; ADAMTS-5: WMD, 2.19, P < 0.001; ADAMTS-9: WMD, 2.89, P < 0.001). Finally, the oocytes recovery rate, oocyte maturity rate, fertilization rate, cleavage rate, good-quality embryos rate, blastocyst formation rate, and clinical pregnancy rate were not affected by the downregulation of ADAMTS-1, ADAMTS-4, ADAMTS-5, and ADAMTS-9 (P > 0.05).
Conclusions
This study found that the outcomes of IVF-EF in patients with PCOS could be affected by ADAMTS-1 and ADAMTS-4; further large-scale prospective studies should be performed to verify these results.
Background
Polycystic ovary syndrome (PCOS), the most common endocrine disorder among women of reproductive age, is characterized by hyperandrogenemia, hirsutism, acne, oligo-or anovulation, and polycystic ovaries [1]. The prevalence of PCOS in women of reproductive age ranges from 10 to 16% [2, 3], and it is significantly associated with infertility, obesity, insulin resistance, type 2 diabetes, dyslipidemia, cardiovascular disease, hepatic steatosis, and endometrial cancer [4,5,6]. The hyperresponsiveness to stimulation by luteinizing hormone and failed downregulation of thecal androgen production associated with functional ovarian hyperandrogenism, might play an important role in the pathophysiology of PCOS [7, 8]. Moreover, the insulin resistance-induced hyperinsulinemia augments the luteinizing hormone-induced homologous desensitization, thereby aggravating hyperandrogenism [9, 10]. Furthermore, follicle maturation arrest and anovulation could be caused by hyperinsulinemia, which synergizes with androgen to prematurely luteinize granulosa cells [11].
Several studies have already addressed the prognosis of PCOS [12,13,14]. A systematic review and found PCOS were associated with an increased risk of pregnancy-induced hypertension, pre-eclampsia, gestational diabetes and premature delivery [12]. Moreover, they point out the alteration of oocyte competence contributed an important role on subfertility for patients with PCOS [13]. Furthermore, PCOS could affect endometrium, chronic low-grade inflammation, immune dysfunction, altered uterine vascularity, abnormal endometrial gene expression and cellular abnormalities [14]. Therefore, additional potential markers for the prognosis of PCOS should be explored for the purpose of improving the prognosis of PCOS.
Several members of the a disintegrin and metalloproteinase with thrombospondin-like motifs (ADAMTS) family have been identified in growing follicles during ovulation and in the corpora lutea of several mammalian species [15,16,17,18,19,20,21,22,23]. These findings indicate that the members at the proteoglycanase arm of the ADAMTS family were the most expressed. However, the expression of all members of the ADAMTS family during folliculogenesis, was not systematically explored. No systematic review or meta-analysis have been conducted to assess the role of ADAMTS levels in the outcome of IVF-ET in patients with PCOS. Therefore, this study was performed to assess the potential role of members of the ADAMTS family in IVF-ET outcomes in women with PCOS.
Methods
Data sources, search strategy, and selection criteria
The protocol of this systematic review and meta-analysis was registered at INPLASY (ID: INPLASY202260115). The revised Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) Statement was applied to conduct and report this systematic review and meta-analysis [24]. Published articles assessing the role of ADAMTS levels in patients with PCOS, were considered eligible for this study, and all eligible articles, regardless of the language used for publication and the publication status, were included. Three databases (Web of Science, PubMed, and EmBase) and the Cochrane library, were systematically searched from their year of inception until December 2021, using the following search terms: “Polycystic ovary syndrome” [Mesh] or “polycystic ovary syndrome” or “PCOS” and “ADAMTS Protein” [Mesh] or “ADAMTS” or “Aggrecanase-1” or “A Disintegrin And Metalloproteinase With Thrombospondin Motifs”. We also reviewed the reference lists of retrieved studies to identify any new eligible study.
The process of literature search and study selection was independently performed by 2 reviewers, and conflicts between these reviewers were settled by group discussion. The inclusion criteria were as follows: (1) Patients: all patients diagnosed with PCOS; (2) Exposure: members of the ADAMTS family, including ADAMTS-1, ADAMTS-4, ADAMTS-5, ADAMTS-9, ADAMTS-19; (3) Comparison: ADAMTS level; (4) Outcomes: implantation, follicles punctured, oocytes retrieved, metaphase II oocytes, germinal vesicle oocytes, and oocyte recovery, oocyte maturity, fertilization, cleavage, good-quality embryo, blastocyst formation, and clinical pregnancy rates; and (5) Study design: no restrictions were placed on study design.
Data collection and quality assessment
Two reviewers independently performed data abstraction and quality assessment, and disagreement between these reviewers was resolved by a third reviewer, after referring to the full text of the original article. The following information were collected from included studies: first author’s name, publication year, study design, country, sample size, mean age, body mass index (BMI), reported ADAMTS family members, and reported outcomes. The quality of observational studies was assessed using the Newcastle–Ottawa Scale (NOS), and the staring system for each study ranged from 0–9 [25].
Statistical analysis
The associations of ADAMTS proteoglycanases level with IVF-ET outcomes in PCOS were assigned Spearman coefficients, and the pooled effect estimates were calculated using the random-effects model, which considered the underlying differences across included studies [26, 27]. The heterogeneity among included studies was assessed using I2 and Q statistics, and I2 > 50.0% or P < 0.10 was considered significant heterogeneity [28, 29]. The robustness of pooled conclusions was assessed using a sensitivity analysis through sequential removal of individual studies [30]. All reported P values for pooled results are 2-sided, and P < 0.05 was considered statistically significant. All statistical analysis in our study was performed using STATA software (version 10.0; Stata Corporation, College Station, TX, USA).
Results
Literature search
A total of 186 articles were identified from initial electronic searches, and 113 were retained after duplicate articles were removed. Then 84 studies were removed for having irrelevant titles or abstracts. The remaining 29 studies were selected for full-text evaluations and 24 were excluded because of Review (n = 3), insufficient data (n = 17), and other diseases (n = 4). The details of the literature search and study selection are shown in Fig. 1, and a total of 5 studies were included in the final quantitative analysis [31,32,33,34,35].
Study characteristics
The baseline characteristics of the included studies and recruited patients are shown in Table 1. Of the 5 studies included, 3 were prospective and 2 were retrospective. One study was conducted in Turkey, 2 were conducted in Iran, and 2 were conducted in China. The mean age of included patients ranged from 28.6 to 30.5 years, while the mean BMI across included studies ranged from 22.7 to 27.9 kg/m2. Four studies reported on the role of ADAMTS-1, 1 reported on the role of ADAMTS-4, 1 reported on the role of ADAMTS-5, and 1 reported on the role of ADAMTS-9.
Quality of included studies
Table 2 summarizes the methodological quality of the included studies, and all 5 studies were of high quality (7 or more stars); 3 studies had 8 stars and 2 had 7 stars.
Qualitative analysis
A study performed by Xiao et al., found that ADAMTS-1 level was positively correlated with the rates of oocyte maturity, oocyte recovery, and fertilization (r = 0.8313; P = 0.0403); the relationship between ADAMTS-1 levels and the rates of cleavage and good quality embryo, was not statistically significant [31]. Tola et al., found no significant association between ADAMTS-1 levels and metaphase II oocytes; however, ADAMTS-1 levels were positively correlated to implantation (data not shown) [32]. GohariTaban et al., found that ADAMTS-1 levels were positively correlated to oocyte recovery, oocyte maturation, and fertilization rates. Moreover, they pointed out that ADAMTS-9 levels were significantly correlated to oocyte recovery and oocyte maturation rates, while the relationship between ADAMTS-9 level and fertilization rate was not statistically significant [33]. GohariTaban et al., also found that ADAMTS-4 levels were positively correlated to oocyte recovery, oocyte maturation, and fertilization rates. Furthermore, there were significant associations between ADAMTS-5 level and oocyte recovery, oocyte maturation, and fertilization rates [34]. Yang et al., found that ADAMTS-1 levels were positively correlated to oocyte maturation and good-quality embryo rates; ADAMTS-1 levels were not associated with fertilization, cleavage, and blastocyst formation rates [35].
Pooled Spearman coefficients
We noted that ADAMTS-1 levels were positively correlated to oocyte maturity rate (r = 0.67; P = 0.004; without evidence of heterogeneity), while ADAMTS-4 (r = 0.60; P = 0.221), ADAMTS-5 (r = 0.66; P = 0.164), and ADAMTS-9 (r = 0.32; P = 0.493) levels were not (Fig. 2). Moreover, our results indicate that ADAMTS-1 (r = 0.74; P = 0.006) and ADAMTS-4 (r = 0.91; P = 0.001) levels were positively correlated to oocyte recovery rate, while ADAMTS-5 (r = 0.54; P = 0.279) and ADAMTS-9 (r = 0.78; P = 0.060) levels were not (Fig. 3). Similarly, ADAMTS-1 (r = 0.46; P = 0.041) and ADAMTS-4 (r = 0.85; P = 0.017) levels were significantly correlated to fertilization rate, while ADAMTS-5 (r = 0.52; P = 0.298) and ADAMTS-9 (r = 0.38; P = 0.434) levels were not (Fig. 4). Finally, the level of ADAMTS-1 was not associated with cleavage (r = 0.35; P = 0.308), good quality embryo (r = 0.36; P = 0.290), and blastocyst formation (r = 0.07; P = 0.788) rates (Fig. 5).
Downregulation of ADAMTS family members and IVF-ET outcomes
A summary of the effects of downregulation of ADAMTS family members on IVF-ET outcomes is shown in Table 3. We noted that downregulation of ADAMTS-1, ADAMTS-4, ADAMTS-5, and ADAMTS-9 was associated with a large number of punctured follicles, retrieved, and Germinal vesicle oocytes, but did not affect Metaphase II oocytes and oocytes recovery, oocyte maturity, and fertilization rates. Moreover, ADAMTS-1 downregulation was not associated with cleavage, good-quality embryo, clinical pregnancy, and blastocyst formation rates.
Discussion
This study is the first to assess the role of ADAMTS family members in the outcomes of IVF-ET for patients with PCOS, using the meta-analytic approach. A total of 181 patients with PCOS from 5 studies were included, along with a wide range of patient characteristics. This study found that the oocyte maturity, oocyte recovery, and fertilization rates, were affected by ADAMTS-1 levels. Moreover, ADAMTS-4 levels were positively correlated to oocyte recovery and fertilization rates. Finally, the downregulation of ADAMTS-1, ADAMTS-4, ADAMTS-5, and ADAMTS-9 was associated with elevated follicle puncture, oocytes retrieval, and Germinal vesicle oocytes levels.
The methodology of included studies was systematically assessed, and all included studies were of high quality. The cutoff value of the ADAMTS family members in patients with PCOS varied across the included studies, while could affect the net effect estimates for the role of ADAMTS family members. Moreover, 2 of the included studies absent the representativeness of the cohort, and several members of the ADAMTS family were obtained from only a few of the included studies; therefore, the results are not reliable. Therefore, the results of this study should be cautiously applied as they require verification by further large-scale prospective studies.
We noted that ADAMTS-1 levels were positively correlated to oocyte maturity, oocyte recovery, and fertilization rates and that downregulation of ADAMTS-1 was significantly correlated to elevated follicle puncture, oocytes retrieval, and Germinal vesicle oocytes levels. A possible reason for this could be the ADAMTS-1 mainly expressed in the granulosa cells of mammalian preovulatory follicles, which could induced by LH through transactivation of the PG receptor, and suggested ADAMTS-1 play an important role in ovulation and folliculogenesis [17, 19, 36]. Moreover, ADAMTS-1 modulates cell signaling and could affect the sequestration of signaling factors within the cumulus/oocyte microenvironment by physical or oxidative stress through versican cleavage; this could be useful in predicting oocyte capacity and subsequent pregnancy [37,38,39].
This study found the oocyte recovery and fertilization rates to be significantly correlated to ADAMTS-4 levels, and ADAMTS-4 downregulation to be significantly correlated to elevated follicle puncture, oocytes retrieval, and Germinal vesicle oocytes levels. Moreover, the follicle puncture, oocytes retrieval, and Germinal vesicle oocytes levels were affected by ADAMTS-5, and ADAMTS-9 downregulation. ADAMTS-1, ADAMTS-4, and ADAMTS-5 have overlapping effects on aggrecan, versican, and brevican degradation [40]. Altered levels of ADAMTS-1, ADAMTS-4, and ADAMTS-5 could affect the main component of the cumulus-oocyte complex, and the cumulus cells gene expression was regarded as a most promising oocyte quality marker [32, 41, 42]. Moreover, ADAMTS-9 is involved in extracellular matrix binding and expression during embryogenesis, and ADAMTS-9 downregulation in the cumulus cells is significantly correlated to oocytes maturation arrest [43, 44].
Although ADAMTS-1 levels were positively correlated to oocyte maturity, oocyte recovery, and fertilization rates, ADAMTS-4 levels were only positively correlated to oocyte recovery and fertilization rates. The downregulation of ADAMTS-1 and ADAMTS-4 was not associated with the oocyte recovery, oocyte maturity, fertilization, cleavage, good-quality embryo, clinical pregnancy, and blastocyst formation rates. The possible reason for this could be the small number of studies that reported these outcomes, and the power might not be enough to detect the potential role of ADAMTS family members in IVF-ET outcomes.
Owing to the PCOS could affect oocyte competence and endometrial function, and causing series pregnancy complications [12,13,14], the prognostic factor for IVF-ET outcomes in patients with PCOS should be explored. This study found IVF-EF outcomes could be affected by ADAMTS-1 and ADAMTS-4 in patients with PCOS. Therefore, the ADAMTS for PCOS patients should be screened for patients at high risk, then the intervention should be performed to improve further IVF-ET outcomes.
This study has several limitations: (1) the analysis included both prospective and retrospective studies, and there could be selection and recall biases; (2) the background therapies for PCOS varied across the included studies; this could affect the role of ADAMTS family members; (3) the role of ADAMTS-4, ADAMTS-5, and ADAMTS-9 in IVF-ET outcomes was discussed in just a few studies, and several other outcomes were not investigated, such as implantation, abortion, miscarriage, and repeat implantation failure; (4) the relationship between ADAMTS family members and IVF-ET outcomes based on univariate regression, and the characteristics of patients, were not adjusted; (5) subgroup analysis were not performed owing to smaller number of included studies; and (6) inherent limitations of meta-analysis in the published articles, including restricted detailed analyses and inevitable publication bias.
Conclusions
Our study found that ADAMTS-1 levels were positively correlated to oocyte maturity, oocyte recovery, and fertilization rates, while ADAMTS-4 levels were positively correlated to oocyte maturity, oocyte recovery, and fertilization rates. Moreover, the downregulation of ADAMTS-1, ADAMTS-4, ADAMTS-5, and ADAMTS-9 was significantly correlated to elevated follicle puncture, oocytes retrieval, and Germinal vesicle oocytes levels. Further large-scale prospective studies should be conducted to verify the results of this study and compare the role of ADAMTS downregulation on implantation, abortion, miscarriage, repeat implantation failure.
Availability of data and materials
The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.
Abbreviations
- ADAMTS:
-
A disintegrin and metalloproteinase with thrombospondin- like motifs
- BMI:
-
Body mass index
- IVF-ET:
-
In vitro fertilization and embryo transfer
- NOS:
-
Newcastle–Ottawa Scale
- PCOS:
-
Polycystic ovary syndrome
- PRISMA:
-
Preferred reporting items for systematic reviews and meta-analysis
References
Cai X, Qiu S, Li L, et al. Circulating irisin in patients with polycystic ovary syndrome: a meta-analysis. Reprod Biomed Online. 2018;36:172–80.
McCartney CR, Marshall JC. Polycystic ovary syndrome. N Engl J Med. 2016;375:54–64.
Lauritsen MP, Bentzen JG, Pinborg A, et al. The prevalence of polycystic ovary syndrome in a normal population according to the Rotterdam criteria versus revised criteria including anti-Mullerian hormone. Hum Reprod. 2014;29:791–801.
Martini AE, Healy MW. Polycystic Ovarian Syndrome: Impact on Adult and Fetal Health. Clin Obstet Gynecol. 2021;64:26–32.
Su NJ, Huang CY, Liu J, et al. Association between baseline LH/FSH and live-birth rate after fresh-embryo transfer in polycystic ovary syndrome women. Sci Rep. 2021;11:20490.
Diamanti-Kandarakis E, Piperi C, Argyrakopoulou G, et al. Polycystic ovary syndrome: the influence of environmental and genetic factors. Hormones (Athens). 2006;5:17–34.
Huang J, Chen P, Xiang Y, et al. Gut microbiota dysbiosis-derived macrophage pyroptosis causes polycystic ovary syndrome via steroidogenesis disturbance and apoptosis of granulosa cells. Int Immunopharmacol. 2022;107: 108717.
Huang-Doran I, Kinzer AB, Jimenez-Linan M, et al. Ovarian Hyperandrogenism and Response to Gonadotropin-releasing Hormone Analogues in Primary Severe Insulin Resistance. J Clin Endocrinol Metab. 2021;106:2367–83.
Gleicher N, Darmon SK, Molinari E, et al. Importance of IGF-I levels in IVF: potential relevance for growth hormone (GH) supplementation. J Assist Reprod Genet. 2022;39:409–16.
Zhang Y, Ouyang X, You S, et al. Effect of human amniotic epithelial cells on ovarian function, fertility and ovarian reserve in primary ovarian insufficiency rats and analysis of underlying mechanisms by mRNA sequencing. Am J Transl Res. 2020;12:3234–54.
Rosenfield RL, Ehrmann DA. The Pathogenesis of Polycystic Ovary Syndrome (PCOS): The hypothesis of PCOS as functional ovarian hyperandrogenism revisited. Endocr Rev. 2016;37:467–520.
Palomba S, de Wilde MA, Falbo A, et al. Pregnancy complications in women with polycystic ovary syndrome. Hum Reprod Update. 2015;21:575–92.
Palomba S, Daolio J, La Sala GB. Oocyte competence in women with polycystic ovary syndrome. Trends Endocrinol Metab. 2017;28:186–98.
Palomba S, Piltonen TT, Giudice LC. Endometrial function in women with polycystic ovary syndrome: a comprehensive review. Hum Reprod Update. 2021;27:584–618.
Rosewell KL, Al-Alem L, Zakerkish F, McCord L, Akin JW, Chaffin CL, Brännström M, Curry TE Jr. Induction of proteinases in the human preovulatory follicle of the menstrual cycle by human chorionic gonadotropin. Fertil Steril. 2015;103:826–33.
Robker RL, Russell DL, Espey LL, et al. Progesterone-regulated genes in the ovulation process: ADAMTS-1 and cathepsin L proteases. Proc Natl Acad Sci U S A. 2000;97:4689–94.
Doyle KM, Russell DL, Sriraman V, et al. Coordinate transcription of the ADAMTS-1 gene by luteinizing hormone and progesterone receptor. Mol Endocrinol. 2004;18:2463–78.
Madan P, Bridges PJ, Komar CM, et al. Expression of messenger RNA for ADAMTS subtypes changes in the periovulatory follicle after the gonadotropin surge and during luteal development and regression in cattle. Biol Reprod. 2003;69:1506–14.
Boerboom D, Russell DL, Richards JS, et al. Regulation of transcripts encoding ADAMTS-1 (a disintegrin and metalloproteinase with thrombospondin-like motifs-1) and progesterone receptor by human chorionic gonadotropin in equine preovulatory follicles. J Mol Endocrinol. 2003;31:473–85.
Shimada M, Nishibori M, Yamashita Y, et al. Down-regulated expression of A disintegrin and metalloproteinase with thrombospondin-like repeats-1 by progesterone receptor antagonist is associated with impaired expansion of porcine cumulus-oocyte complexes. Endocrinology. 2004;145:4603–14.
Peluffo MC, Murphy MJ, Baughman ST, et al. Systematic analysis of protease gene expression in the rhesus macaque ovulatory follicle: metalloproteinase involvement in follicle rupture. Endocrinology. 2011;152:3963–74.
Freimann S, Ben-Ami I, Dantes A, et al. Differential expression of genes coding for EGF-like factors and ADAMTS1 following gonadotropin stimulation in normal and transformed human granulosa cells. Biochem Biophys Res Commun. 2005;333:935–43.
Richards JS, Hernandez-Gonzalez I, Gonzalez-Robayna I, et al. Regulated expression of ADAMTS family members in follicles and cumulus oocyte complexes: evidence for specific and redundant patterns during ovulation. Biol Reprod. 2005;72:1241–55.
Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372: n71.
Wells G, Shea B, O’Connell D. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. Ottawa (ON): Ottawa Hospital Research Institute 2009. Available: http://www.ohri.ca/programs/clinical_epidemiology/oxford.htm.
DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7:177–88.
Ades AE, Lu G, Higgins JP. The interpretation of random-effects metaanalysis in decision models. Med Decis Making. 2005;25:646–54.
Deeks JJ, Higgins JPT, Altman DG. Analyzing data and undertaking meta-analyses. In: Higgins J, Green S, editors. Cochrane Handbook for Systematic Reviews of Interventions 5.0.1. Oxford, UK: The Cochrane Collaboration; 2008.
Higgins JPT, Thompson SG, Deeks JJ, et al. Measuring inconsistency in meta-analyses. BMJ. 2003;327:557–60.
Tobias A. Assessing the influence of a single study in meta-analysis. Stata Tech Bull. 1999;47:15–7.
Xiao S, Li Y, Li T, et al. Evidence for decreased expression of ADAMTS-1 associated with impaired oocyte quality in PCOS patients. J Clin Endocrinol Metab. 2014;99:E1015–21.
Tola EN, Karatopuk DU, Koroglu N, et al. Follicular ADAMTS-1 and aggrecan levels in polycystic ovary syndrome. J Assist Reprod Genet. 2017;34:811–6.
GohariTaban S, Amiri I, Soleimani Asl S, et al. Abnormal expressions of ADAMTS-1, ADAMTS-9 and progesterone receptors are associated with lower oocyte maturation in women with polycystic ovary syndrome. Arch Gynecol Obstet. 2019;299:277–86.
Gohari Taban S, Amiri I, Saidijam M, et al. ADAMTS proteoglycanases downregulation with impaired oocyte quality in PCOS. Arch Endocrinol Metab. 2021;2359:3997000000321.
Yang G, Yao G, Xu Z, et al. Expression Level of ADAMTS1 in Granulosa Cells of PCOS Patients Is Related to Granulosa Cell Function, Oocyte Quality, and Embryo Development. Front Cell Dev Biol. 2021;9: 647522.
Brown HM, Dunning KR, Robker RL, et al. Requirement for ADAMTS-1 in extracellular matrix remodeling during ovarian folliculogenesis and lymphangiogenesis. Dev Biol. 2006;300:699–709.
Wu Y, Wu J, Lee DY, et al. Versican protects cells from oxidative stress-induced apoptosis. Matrix Biol. 2005;24:3–13.
Wathlet S, Adriaenssens T, Segers I, et al. Cumulus cell gene expression predicts better cleavage-stage embryo or blastocyst development and pregnancy for ICSI patients. Hum Reprod. 2011;26:1035–51.
Adriaenssens T, Wathlet S, Segers I, et al. Cumulus cell gene expression is associated with oocyte developmental quality and influenced by patient and treatment characteristics. Hum Reprod. 2010;25:1259–70.
Demircan K, Topcu V, Takigawa T, et al. ADAMTS4 and ADAMTS5 knockout mice are protected from versican but not aggrecan or brevican proteolysis during spinal cord injury. Biomed Res Int. 2014;2014: 693746.
Wathlet S, Adriaenssens T, Segers I, et al. New candidate genes to predict pregnancy outcome in single embryo transfer cycles when using cumulus cell gene expression. Fertil Steril. 2012;98:432–9.
Gebhardt KM, Feil DK, Dunning KR, et al. Human cumulus cell gene expression as a biomarker of pregnancy outcome after single embryo transfer. Fertil Steril. 2011;96:47–52.
Tang H, Liu Y, Li J, et al. Gene knockout of nuclear progesterone receptor provides insights into the regulation of ovulation by LH signaling in zebrafish. Sci Rep. 2016;6:28545.
Guzman L, Adriaenssens T, Ortega-Hrepich C, et al. Human antral follicles <6 mm: a comparison between in vivo maturation and in vitro maturation in non-hCG primed cycles using cumulus cell gene expression. Mol Hum Reprod. 2013;19:7–16.
Acknowledgements
There was no acknowledgement.
Funding
No specific financial or non-financial support was received for the review.
Author information
Authors and Affiliations
Contributions
SYB: study design, data collection and analysis, writing and revision of the manuscript; SY: data collection and analysis; HGY: data collection and analysis; WG: data collection and analysis; LHB: revision of the manuscript; SXG: revision of the manuscript. The author(s) read and approved the final manuscript.
Corresponding authors
Ethics declarations
Ethics approval and consent to participate
Not applicable.
Consent for publication
Not applicable.
Competing interests
All authors declare no competing interest.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
About this article
Cite this article
Shi, Y., Shi, Y., He, G. et al. Association of ADAMTS proteoglycanases downregulation with IVF-ET outcomes in patients with polycystic ovary syndrome: a systematic review and meta-analysis. Reprod Biol Endocrinol 20, 169 (2022). https://doi.org/10.1186/s12958-022-01035-9
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s12958-022-01035-9