Luyet BJ, Hodapp EL. Revival of Frog’s spermatozoa vitrified in liquid air. Exp Biol Med. 1938;39:433–4.
Article
Google Scholar
Polge C, Smith AU, Parkes AS. Revival of spermatozoa after vitrification and dehydration at low temperatures. Nature. 1949;164:666.
Article
PubMed
CAS
Google Scholar
Bunge RG, Sherman JK. Fertilizing capacity of frozen human spermatozoa. Nature. 1953;172:767–8.
Article
PubMed
CAS
Google Scholar
Perloff WH, Steinberger E, Sherman JK. Conception with human spermatozoa frozen by nitrogen vapor technic. Fertil Steril. 1964;15:501–4.
Article
PubMed
CAS
Google Scholar
Sherman JK. Improved methods of preservation of human spermatozoa by freezing and freeze-drying. Fertil Steril. 1963;14:49–64.
Article
PubMed
CAS
Google Scholar
Szell AZ, Bierbaum RC, Hazelrigg WB, Chetkowski RJ. Live births from frozen human semen stored for 40 years. J Assist Reprod Genet. 2013;30:743–4.
Article
PubMed
PubMed Central
Google Scholar
Kuznyetsov V, Moskovtsev SI, Crowe M, Lulat AG, Librach CL. Vitrification of a small number of spermatozoa in normozoospermic and severely oligozoospermic samples. Syst Biol Reprod Med. 2015;61:13–7.
Article
PubMed
Google Scholar
Isachenko V, Isachenko E, Petrunkina AM, Sanchez R. Human spermatozoa vitrified in the absence of permeable cryoprotectants: birth of two healthy babies. Reprod Fertil Dev. 2012;24:323–6.
Article
PubMed
Google Scholar
Sanchez R, Isachenko V, Petrunkina AM, Risopatron J, Schulz M, Isachenko E. Live birth after intrauterine insemination with spermatozoa from an oligoasthenozoospermic patient vitrified without permeable cryoprotectants. J Androl. 2012;33:559–62 49:1-3.
Article
PubMed
Google Scholar
Medrano L, Enciso M, Gomez-Torres MJ, Aizpurua J. First birth of a healthy infant following intra-cytoplasmic sperm injection using a new permeable cryoprotectant-free sperm vitrification protocol. Cryobiology. 2019;87:117–9.
Article
PubMed
CAS
Google Scholar
Jang TH, Park SC, Yang JH, Kim JY, Seok JH, Park US, Choi CW, Lee SR, Han J. Cryopreservation and its clinical applications. Integrative Med Res. 2017;6:12–8.
Article
Google Scholar
Hezavehei M, Sharafi M, Kouchesfahani HM, Henkel R, Agarwal A, Esmaeili V, Shahverdi A. Sperm cryopreservation: a review on current molecular cryobiology and advanced approaches. Reprod BioMed Online. 2018;37:327–39.
Article
PubMed
CAS
Google Scholar
Lv C, Wu G, Hong Q, Quan G. Spermatozoa cryopreservation: state of art and future in small ruminants. Biopreserv Biobank. 2019;17:171–82.
Article
PubMed
Google Scholar
Paoli D, Lombardo F, Lenzi A, Gandini L. Sperm cryopreservation: effects on chromatin structure. Adv Exp Med Biol. 2014;791:137–50.
Article
PubMed
CAS
Google Scholar
Isachenko V, Sanchez R, Rahimi G, Mallmann P, Isachenko E, Merzenich M. Cryoprotectant-free vitrification of spermatozoa: fish as a model of human. Andrologia. 2019;51:e13166.
Article
PubMed
CAS
Google Scholar
Xin M, Siddique MAM, Dzyuba B, Cuevas-Uribe R, Shaliutina-Kolesova A, Linhart O. Progress and challenges of fish sperm vitrification: a mini review. Theriogenology. 2017;98:16–22.
Article
PubMed
Google Scholar
Reed ML, Said AH, Thompson DJ, Caperton CL. Large-volume vitrification of human biopsied and non-biopsied blastocysts: a simple, robust technique for cryopreservation. J Assist Reprod Genet. 2015;32:207–14.
Article
PubMed
Google Scholar
Isachenko V, Maettner R, Petrunkina AM, Mallmann P, Rahimi G, Sterzik K, Sanchez R, Risopatron J, Damjanoski I, Isachenko E. Cryoprotectant-free vitrification of human spermatozoa in large (up to 0.5 mL) volume: a novel technology. Clin Lab. 2011a;57:643–50.
PubMed
CAS
Google Scholar
Isachenko E, Rahimi G, Mallmann P, Sanchez R, Isachenko V. Novel approaches to the cryopreservation of human spermatozoa: history and development of the spermatozoa Vitrification technology. J Reprod Stem Cell Biotechnol. 2011b;2:128–45.
Article
Google Scholar
Slabbert M, du Plessis SS, Huyser C. Large volume cryoprotectant-free vitrification: an alternative to conventional cryopreservation for human spermatozoa. Andrologia. 2015;47:594–9.
Article
PubMed
CAS
Google Scholar
Saritha KR, Bongso A. Comparative evaluation of fresh and washed human sperm cryopreserved in vapor and liquid phases of liquid nitrogen. J Androl. 2001;22:857–62.
PubMed
CAS
Google Scholar
Nawroth F, Isachenko V, Dessole S, Rahimi G, Farina M, Vargiu N, Mallmann P, Dattena M, Capobianco G, Peters D, Orth I, Isachenko E. Vitrification of human spermatozoa without cryoprotectants. Cryo Lett. 2002;23:93–102.
CAS
Google Scholar
Chang HJ, Lee JR, Chae SJ, Jee BC, Suh CS, Kim SH. Comparative study of two cryopreservation methods of human spermatozoa: vitrification versus slow freezing. Fertil Steril. 2008;90:S280.
Article
Google Scholar
Vutyavanich T, Piromlertamorn W, Nunta S. Rapid freezing versus slow programmable freezing of human spermatozoa. Fertil Steril. 2010;93:1921–8.
Article
PubMed
CAS
Google Scholar
Moskovtsev SI, Lulat GM, Librach CL. Cryopreservation of human spermatozoa by vitrification vs. slow freezing: Canadian experience. Curr Front Cryobiol. 2012:77–100.
Agha-Rahimi A, Khalili MA, Nabi A, Ashourzadeh S. Vitrification is not superior to rapid freezing of normozoospermic spermatozoa: effects on sperm parameters, DNA fragmentation and hyaluronan binding. Reprod BioMed Online. 2014;28:352–8.
Article
PubMed
CAS
Google Scholar
Zhu J, Jin RT, Wu LM, Johansson L, Guo TH, Liu YS, Tong XH. Cryoprotectant-free ultra-rapid freezing of human spermatozoa in cryogenic vials. Andrologia. 2014;46:642–9.
Article
PubMed
CAS
Google Scholar
Ali Mohamed MS. Slow cryopreservation is not superior to vitrification in human spermatozoa; an experimental controlled study. Iran J Reprod Med. 2015;13:633–44.
PubMed
PubMed Central
Google Scholar
Tongdee P, Sukprasert M, Satirapod C, Wongkularb A, Choktanasiri W. Comparison of cryopreserved human sperm between ultra rapid freezing and slow programmable freezing: effect on motility, morphology and DNA integrity. J Med Assoc Thailand. 2015;98:S33–42.
Google Scholar
Aizpurua J, Medrano L, Enciso M, Sarasa J, Romero A, Fernandez MA, Gomez-Torres MJ. New permeable cryoprotectant-free vitrification method for native human sperm. Hum Reprod. 2017;32:2007–15.
Article
PubMed
CAS
Google Scholar
Karthikeyan M, Arakkal D, Mangalaraj AM, Kamath MS. Comparison of conventional slow freeze versus permeable cryoprotectant-free vitrification of abnormal semen sample: a randomized controlled trial. J Human Reprod Sci. 2019;12:150–5.
Article
Google Scholar
Le MT, Nguyen TTT, Nguyen TT, Nguyen VT, Nguyen TTA, Nguyen VQH, Cao NT. Cryopreservation of human spermatozoa by vitrification versus conventional rapid freezing: effects on motility, viability, morphology and cellular defects. Eur J Obstet Gynecol Reprod Biol. 2019;234:14–20.
Article
PubMed
CAS
Google Scholar
Pabon D, Meseguer M, Sevillano G, Cobo A, Romero JL, Remohi J, de Los SMJ. A new system of sperm cryopreservation: evaluation of survival, motility, DNA oxidation, and mitochondrial activity. Andrology. 2019;7:293–301.
Article
PubMed
CAS
Google Scholar
Spis E, Bushkovskaia A, Isachenko E, Todorov P, Sanchez R, Skopets V, Isachenko V. Conventional freezing vs. cryoprotectant-free vitrification of epididymal (MESA) and testicular (TESE) spermatozoa: three live births. Cryobiology. 2019;90:100–2.
Article
PubMed
CAS
Google Scholar
Li YX, Zhou L, Lv MQ, Ge P, Liu YC, Zhou DX. Vitrification and conventional freezing methods in sperm cryopreservation: a systematic review and meta-analysis. Eur J Obstet Gynecol Reprod Biol. 2019;233:84–92.
Article
PubMed
CAS
Google Scholar
Oldenhof H, Gojowsky M, Wang S, Henke S, Yu C, Rohn K, Wolkers WF, Sieme H. Osmotic stress and membrane phase changes during freezing of stallion sperm: mode of action of cryoprotective agents. Biol Reprod. 2013;88:68.
Article
PubMed
CAS
Google Scholar
Schulz M, Risopatron J, Matus G, Pineda E, Rojas C, Isachenko V, Isachenko E, Sanchez R. Trehalose sustains a higher post-thaw sperm motility than sucrose in vitrified human sperm. Andrologia. 2017;49:1–3.
Article
CAS
Google Scholar
Merino O, Aguaguina WE, Esponda P, Risopatron J, Isachenko E, Isachenko V, Sanchez R. Protective effect of butylated hydroxytoluene on sperm function in human spermatozoa cryopreserved by vitrification technique. Andrologia. 2015;47:186–93.
Article
PubMed
CAS
Google Scholar
Cohen J, Garrisi GJ, Congedo-Ferrara TA, Kieck KA, Schimmel TW, Scott RT. Cryopreservation of single human spermatozoa. Hum Reprod. 1997;12:994–1001.
Article
PubMed
CAS
Google Scholar
Endo Y, Fujii Y, Shintani K, Seo M, Motoyama H, Funahashi H. Simple vitrification for small numbers of human spermatozoa. Reprod BioMed Online. 2012;24:301–7.
Article
PubMed
CAS
Google Scholar
Herrler A, Eisner S, Bach V, Weissenborn U, Beier HM. Cryopreservation of spermatozoa in alginic acid capsules. Fertil Steril. 2006;85:208–13.
Article
PubMed
CAS
Google Scholar
Stein A, Shufaro Y, Hadar S, Fisch B, Pinkas H. Successful use of the Cryolock device for cryopreservation of scarce human ejaculate and testicular spermatozoa. Andrology. 2015;3:220–4.
Article
PubMed
CAS
Google Scholar
Hu E, Childress W, Tiersch TR. 3-D printing provides a novel approach for standardization and reproducibility of freezing devices. Cryobiology. 2017;76:34–40.
Article
PubMed
PubMed Central
CAS
Google Scholar
Cobo A, Domingo J, Perez S, Crespo J, Remohi J, Pellicer A. Vitrification: an effective new approach to oocyte banking and preserving fertility in cancer patients. Clin Transl Oncol. 2008;10:268–73.
Article
PubMed
CAS
Google Scholar
Kuwayama M, Vajta G, Ieda S, Kato O. Comparison of open and closed methods for vitrification of human embryos and the elimination of potential contamination. Reprod BioMed Online. 2005;11:608–14.
Article
PubMed
Google Scholar
Hosseini A, Khalili MA, Talebi AR, Agha-Rahimi A, Ghasemi-Esmailabad S, Woodward B, Yari N. Cryopreservation of low number of human spermatozoa; which is better: vapor phase or direct submerging in liquid nitrogen? Hum Fertil. 2019;22:126–32.
Article
PubMed
CAS
Google Scholar
Liu F, Zou SS, Zhu Y, Sun C, Liu YF, Wang SS, Shi WB, Zhu JJ, Huang YH, Li Z. A novel micro-straw for cryopreservation of small number of human spermatozoon. Asian J Androl. 2017;19:326–9.
Article
PubMed
CAS
Google Scholar
Berkovitz A, Miller N, Silberman M, Belenky M, Itsykson P. A novel solution for freezing small numbers of spermatozoa using a sperm vitrification device. Hum Reprod. 2018;33:1975–83.
Article
PubMed
CAS
Google Scholar
Paffoni A, Palini S. There is another new method for cryopreserving small numbers of human sperm cells. Ann Transl Med. 2019;7(Suppl 1):1–4.
Google Scholar
Isachenko V, Rahimi G, Mallmann P, Sanchez R, Isachenko E. Technologies of cryoprotectant-free vitrification of human spermatozoa: asepticity as criterion of effectiveness. Andrology. 2017;5:1055–63.
Article
PubMed
CAS
Google Scholar
Isachenko V, Isachenko E, Katkov II, Montag M, Dessole S, Nawroth F, Van Der Ven H. Cryoprotectant-free cryopreservation of human spermatozoa by vitrification and freezing in vapor: effect on motility, DNA integrity, and fertilization ability. Biol Reprod. 2004;71:1167–73.
Article
PubMed
CAS
Google Scholar
Sanchez R, Fontecilla J, Isachenko E, Mora B, Isachenko V, Cabrillana ME. Temperatures in the devitrification process is essential for preserved morphological membrane integrity and sperm function in human spermatozoon. Fertil Steril. 2013;100:S183.
Article
Google Scholar
Mansilla MA, Merino O, Risopatron J, Isachenko V, Isachenko E, Sanchez R. High temperature is essential for preserved human sperm function during the devitrification process. Andrologia. 2016;48:111–3.
Article
PubMed
CAS
Google Scholar
Bielanski A. A review of the risk of contamination of semen and embryos during cryopreservation and measures to limit cross-contamination during banking to prevent disease transmission in ET practices. Theriogenology. 2012;77:467–82.
Article
PubMed
CAS
Google Scholar
Bielanski A. Biosafety in embryos and semen cryopreservation, storage, management and transport. Adv Exp Med Biol. 2014;753:429–65.
Article
PubMed
CAS
Google Scholar
Bielanski A, Nadin-Davis S, Sapp T, Lutze-Wallace C. Viral contamination of embryos cryopreserved in liquid nitrogen. Cryobiology. 2000;40:110–6.
Article
PubMed
CAS
Google Scholar
Morris GJ. The origin, ultrastructure, and microbiology of the sediment accumulating in liquid nitrogen storage vessels. Cryobiology. 2005;50:231–8.
Article
PubMed
CAS
Google Scholar
Joaquim DC, Borges ED, Viana IGR, Navarro PA, Vireque AA. Risk of contamination of gametes and embryos during cryopreservation and measures to prevent cross-contamination. Biomed Res Int. 2017;2017:1840417.
Article
PubMed
PubMed Central
CAS
Google Scholar
Harrison AP Jr. Survival of bacteria upon repeated freezing and thawing. J Bacteriol. 1955;70:711–7115.
Article
PubMed
PubMed Central
Google Scholar
Piasecka-Serafin M. The effect of the sediment accumulated in containers under experimental conditions on the infection of semen stored directly in liquid nitrogen (−196 degree C). Bull Acad Pol Sci Biol. 1972;20:263–7.
PubMed
CAS
Google Scholar
Schafer TW, Everett J, Silver GH, Came PE. Biohazard: virus-contaminated liquid nitrogen. Science. 1976;191:24–6.
Article
PubMed
CAS
Google Scholar
Tedder RS, Zuckerman MA, Goldstone AH, Hawkins AE, Fielding A, Briggs EM, Irwin D, Blair S, Gorman AM, Patterson KG, et al. Hepatitis B transmission from contaminated cryopreservation tank. Lancet. 1995;346:137–40.
Article
PubMed
CAS
Google Scholar
Cobo A, Bellver J, de los Santos MJ, Remohi J. Viral screening of spent culture media and liquid nitrogen samples of oocytes and embryos from hepatitis B, hepatitis C, and human immunodeficiency virus chronically infected women undergoing in vitro fertilization cycles. Fertil Steril. 2012;97:74–8.
Article
PubMed
Google Scholar
Molina I, Mari M, Martinez JV, Novella-Maestre E, Pellicer N, Peman J. Bacterial and fungal contamination risks in human oocyte and embryo cryopreservation: open versus closed vitrification systems. Fertil Steril. 2016;106:127–32.
Article
PubMed
Google Scholar
Mansuy JM, Dutertre M, Mengelle C, Fourcade C, Marchou B, Delobel P, Izopet J, Martin-Blondel G. Zika virus: high infectious viral load in semen, a new sexually transmitted pathogen? Lancet Infect Dis. 2016;16:405.
Article
PubMed
Google Scholar
Nicastri E, Castilletti C, Liuzzi G, Iannetta M, Capobianchi MR, Ippolito G. Persistent detection of Zika virus RNA in semen for six months after symptom onset in a traveller returning from Haiti to Italy, February 2016. Euro Surveill. 2016;21:30314.
Article
PubMed Central
Google Scholar
Schiewe MC, Freeman M, Whitney JB, VerMilyea MD, Jones A, Aguirre M, Leisinger C, Adaniya G, Synder N, Chilton R, Behnke EJ. Comprehensive assessment of cryogenic storage risk and quality management concerns: best practice guidelines for ART labs. J Assist Reprod Genet. 2019;36:5–14.
Article
PubMed
PubMed Central
Google Scholar
McBurnie LD, Bardo B. Validation of sterile filtration of liquid nitrogen. Pharm Technol. 2002:74–82.
Arav A, Natan Y, Levi-Setti PE, Menduni F, Patrizio P. New methods for cooling and storing oocytes and embryos in a clean environment of −196 degrees C. Reprod BioMed Online. 2016;33:71–8.
Article
PubMed
CAS
Google Scholar
Hu J, Zhao S, Xu C, Zhang L, Lu S, Cui L, Ma J, Chen ZJ. Liquid nitrogen vapor is comparable to liquid nitrogen for storage of cryopreserved human sperm: evidence from the characteristics of post-thaw human sperm. Fertil Steril. 2015;104(1253–1257):e1251–2.
Google Scholar
Diaz-Jimenez M, Dorado J, Pereira B, Ortiz I, Consuegra C, Bottrel M, Ortiz E, Hidalgo M. Vitrification in straws conserves motility features better than spheres in donkey sperm. Reprod Domest Anim. 2018;53(Suppl 2):56–8.
Article
PubMed
CAS
Google Scholar
Kuleshova LL, Shaw JM. A strategy for rapid cooling of mouse embryos within a double straw to eliminate the risk of contamination during storage in liquid nitrogen. Hum Reprod. 2000;15:2604–9.
Article
PubMed
CAS
Google Scholar
Perez O, Guerrero CA, Ferguson T, Douglas J, Rodriguez A, Hammitt D. Simplified closed double-straw system for oocyte, embryo and blastocyst vitrification. Fertil Steril. 2010;94:S105–6.
Article
Google Scholar
De Munck N, Santos-Ribeiro S, Stoop D, Van de Velde H, Verheyen G. Open versus closed oocyte vitrification in an oocyte donation programme: a prospective randomized sibling oocyte study. Hum Reprod. 2016;31:377–84.
Article
PubMed
Google Scholar
Parmegiani L, Accorsi A, Bernardi S, Arnone A, Cognigni GE, Filicori M. A reliable procedure for decontamination before thawing of human specimens cryostored in liquid nitrogen: three washes with sterile liquid nitrogen (SLN2). Fertil Steril. 2012;98:870–5.
Article
PubMed
CAS
Google Scholar
Vajta G, Rienzi L, Ubaldi FM. Open versus closed systems for vitrification of human oocytes and embryos. Reprod BioMed Online. 2015;30:325–33.
Article
PubMed
Google Scholar
Chen Y, Zheng X, Yan J, Qiao J, Liu P. Neonatal outcomes after the transfer of vitrified blastocysts: closed versus open vitrification system. Reprod Biol Endocrinol. 2013;11:107.
Article
PubMed
PubMed Central
Google Scholar
Parmegiani L, Cognigni GE, Filicori M. Ultra-violet sterilization of liquid nitrogen prior to vitrification. Hum Reprod. 2009;24:2969.
Article
PubMed
Google Scholar
Lahon A, Arya RP, Kneubehl AR, Vogt MB, Dailey Garnes NJ, Rico-Hesse R. Characterization of a Zika virus isolate from Colombia. PLoS Negl Trop Dis. 2016;10:e0005019.
Article
PubMed
PubMed Central
Google Scholar
Parmegiani L, Cognigni GE, Bernardi S, Cuomo S, Ciampaglia W, Infante FE, Tabarelli de Fatis C, Arnone A, Maccarini AChChang HJ,ang HJ,M, Filicori M. Efficiency of aseptic open vitrification and hermetical cryostorage of human oocytes. Reprod BioMed Online. 2011;23:505–12.
Rozati H, Handley T, Jayasena CN. Process and pitfalls of sperm cryopreservation. J Clin Med. 2017;6:1–13.
Heo YS, Nagrath S, Moore AL, Zeinali M, Irimia D, Stott SL, Toth TL, Toner M. “universal” vitrification of cells by ultra-fast cooling. Technology. 2015;3:64–71.
Article
PubMed
PubMed Central
Google Scholar