Prausnitz S, Susskind C. Effects of chronic microwave irradiation on mice. Ire Trans Biomed Electron. 1962;9:104–8.
Article
PubMed
Google Scholar
Bullock J, Boyle J, Wang MB, Ajello RR. Physiology. Pennsylvania: Harwal Publishing Company; 1984.
Google Scholar
Baverstock K. Radiation-induced genomic instability: a paradigm-breaking phenomenon and its relevance to environmentally induced cancer. Mutat Res. 2000;454:89–109.
Article
CAS
PubMed
Google Scholar
Martin RH, Hildebrand K, Yamamoto J, Rademaker A, Barnes M, Douglas G, Arthur K, Ringrose T, Brown IS. An increased frequency of human sperm chromosomal abnormalities after radiotherapy. Mutat Res. 1986;174:219–25.
Article
CAS
PubMed
Google Scholar
Fischbein A, Zabludovsky N, Eltes F, Grischenko V, Bartoov B. Ultramorphological sperm characteristics in the risk assessment of health effects after radiation exposure among salvage workers in Chernobyl. Environ Health Perspect. 1997;105:1445–9.
PubMed
PubMed Central
Google Scholar
Xu G, Intano GW, McCarrey JR, Walter RB, McMahan CA, Walter CA. Recovery of a low mutant frequency after ionizing radiation-induced mutagenesis during spermatogenesis. Mutat Res. 2008;654:150–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yousif L, Blettner M, Hammer GP, Zeeb H. Testicular cancer risk associated with occupational radiation exposure: a systematic literature review. J Radiol Prot. 2010;30:389–406.
Article
PubMed
Google Scholar
Avendano C, Mata A, Sarmiento CS, Doncel G. Use of laptop computers connected to internet through Wi-fi decreases human sperm motility and increases sperm DNA fragmentation. Fertil Steril. 2012;97:39–45.
Article
PubMed
Google Scholar
Kesari K, Kumar S, Behari J. Mobile phone usage and male infertility in Wistar rats. Ind J Exp Biol. 2010;48:987–92.
CAS
Google Scholar
Kesari KK, Kumar S, Nirala J, Siddiqui MH, Behari J. Biophysical evaluation of radiofrequency electromagnetic field effects on male reproductive pattern. Cell Biochem Biophys. 2013;65:85–96.
Article
CAS
PubMed
Google Scholar
McGill JJ, Agarwal A. The impact of cell phone, laptop computer, and microwave oven usage on male fertility. In: du Plessis SS, et al., editors. Male infertility: a complete guide to lifestyle and environmental factors; 2014. p. 161–77. https://doi.org/10.1007/978-1-4939-1040-3_11. © Springer Science+Business Media New York 2014.
Chapter
Google Scholar
Behari J: Biological correlates of low-level electromagnetic-field exposure, general, Applied and systems toxicology. Wiley, Book chapter 2009, 109. https://doi.org/10.1002/9780470744307.gat171.
Baan R, Grosse Y, Lauby-Secretan B, El Ghissassi F, Bouvard V, Benbrahim-Tallaa L, Guha N, Islami F, Galichet L, Straif K. Carcinogenicity of radiofrequency electromagnetic fields. Lancet Oncol. 2011;12:624–6.
Article
PubMed
Google Scholar
IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, Volume 102. Non-Ionizing radiation, Part II: Radiofrequency electromagnetic fields [includes mobile telephones]. Lyon: IARC; 2013. http://monographs.iarc.fr/ENG/Monographs/vol102/mono102.pdf
International Commission on Non-Ionizing Radiation Protection. Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz). Health Phys. 1998;74:494–522.
Google Scholar
Agarwal A, Singh A, Hamada A, Kesari KK. Cell phones and male infertility: a review of recent innovations in technology and consequences. Int Braz J Urol. 2011;37:432–54.
Article
PubMed
Google Scholar
Agarwal A, Deepinder F, Sharma RK, Ranga G, Li J. Effect of cell phone usage on semen analysis in men attending infertility clinic: an observational study. Fertil Steril. 2007;89:124–8.
Article
PubMed
Google Scholar
Desai N, Sharma R, Makker K, Sabanegh E, Agarwal A. Physiologic and pathologic levels of reactive oxygen species in neat semen of infertile men. Fertil Steril. 2009;92:1626–31.
Article
PubMed
Google Scholar
Mailankot M, Kunnath AP, Jayalekshmi H, Koduru B, Valsalan R. Radio frequency electromagnetic radiation (RF-EMR) from GSM (0.9/1.8 GHz)mobile phones induces oxidative stress and reduces sperm motility in rats. Clinics (Sao Paulo). 2009;64:5615.
Article
Google Scholar
Agarwal A, Deepinder F, Sharma RK, Ranga G, Li J. Effect of cell phone usage on semen analysis in men attending infertility clinic: an observational study. Fertil Steril. 2008;89:124–8.
Article
PubMed
Google Scholar
Pandey N, Giri S, Das S, Upadhaya P. Radiofrequency radiation (900 MHz)-induced DNA damage and cell cycle arrest in testicular germ cells in swiss albino mice. Toxicol Ind Health. 2017;33:373–84.
Article
CAS
PubMed
Google Scholar
Odacı E, Özyılmaz C. Exposure to a 900 MHz electromagnetic field for 1 hour a day over 30 days does change the histopathology and biochemistry of the rat testis. Int J Radiat Biol. 2016;91:547–54.
Article
CAS
Google Scholar
Zalata A, El-Samanoudy AZ, Shaalan D, El-Baiomy Y, Mostafa T. In vitro effect of cell phone radiation on motility, DNA fragmentation and clusterin gene expression in human sperm. Int J Fertil Steril. 2015;9:129–36.
CAS
PubMed
PubMed Central
Google Scholar
Gorpinchenko I, Nikitin O, Banyra O, Shulyak A. The influence of direct mobile phone radiation on sperm quality. Cent European J Urol. 2014;67:65–71.
PubMed
PubMed Central
Google Scholar
Meena R, Kumari K, Kumar J, Rajamani P, Verma HN, Kesari KK. Therapeutic approaches of melatonin in microwave radiations-induced oxidative stress-mediated toxicity on male fertility pattern of Wistar rats. Electromagn Biol Med. 2014;33:81–91.
Article
CAS
PubMed
Google Scholar
Kumar S, Nirala JP, Behari J, Paulraj R. Effect of electromagnetic irradiation produced by 3G mobile phone on male rat reproductive system in a simulated scenario. Indian J Exp Biol. 2014;52:890–7.
PubMed
Google Scholar
Kesari KK, Kumar S, Behari J. 900-MHz microwave radiation promotes oxidation in rat brain. Electromagn Biol Med. 2011;30:219–34.
Article
CAS
PubMed
Google Scholar
Kesari KK, Behari J. Evidence for mobile phone radiation exposure effects on reproductive pattern of male rats: role of ROS. Electromagn Biol Med. 2012;31:213–22.
Article
CAS
PubMed
Google Scholar
Kumar S, Kesari KK, Behari J. The therapeutic effect of a pulsed electromagnetic field on the reproductive patterns of male Wistar rats exposed to a 2.45-GHz microwave field. Clin (Sao Paulo). 2011;66:1237–45.
Article
Google Scholar
Kumar S, Kesari KK, Behari J. Influence of microwave exposure on fertility of male rats. Fertil Steril. 2011;15:1500–2.
Article
CAS
Google Scholar
Kesari KK, Behari J. Effects of microwave at 2.45 GHz radiations on reproductive system of male rats. Toxicol Environ Chem. 2010;92:1135–47.
Article
CAS
Google Scholar
Kesari KK, Behari J. Microwave exposure affecting reproductive system in male rats. Appl Biochem Biotechnol. 2010;162:416–28.
Article
CAS
PubMed
Google Scholar
Meo SA, Al-Drees AM, Husain S, Khan MM, Imran MB. Effects of mobile phone radiation on serum testosterone in Wistar albino rats. Saudi Med J. 2010;31:869–73.
PubMed
Google Scholar
Agarwal A, Desai NR, Makker K, Varghese A, Mouradi R, Sabanegh E, Sharma R. Effects of radiofrequency electromagnetic waves (RF-EMW) from cellular phones on human ejaculated semen: an in vitro pilot study. Fertil Steril. 2009;92:1318–25.
Article
PubMed
Google Scholar
Mailankot M, Kunnath AP, Jayalekshmi H, Koduru B, Valsalan R. Radio frequency electromagnetic radiation (RF-EMR) from GSM (0.9/1.8GHz) mobile phones induces oxidative stress and reduces sperm motility in rats. Clinics. 2009;64:561–5.
Article
PubMed
PubMed Central
Google Scholar
De Iuliis GN, King BV, Aitken RJ. Electromagnetic radiation and oxidative stress in the male germ line. In: Agarwal A, Aitken RJ, Alvarez JG, editors. Studies on Men’s health and fertility. New York: Humana Press; 2012. p. 119–30.
Google Scholar
Yan JG, Agresti M, Bruce T, Yan YH, Granlund A, Matloub HS. Effects of cellular phone emissions on sperm motility in rats. Fertil Steril. 2007;88:957–64.
Article
CAS
PubMed
Google Scholar
Kesari KK, Kumar S, Behari J. Effects of radiofrequency electromagnetic wave exposure from cellular phones on the reproductive pattern in male Wistar rats. Appl Biochem Biotechnol. 2011;164:546–59.
Article
CAS
PubMed
Google Scholar
Sharma A, Kesari KK, Verma HN, Sisodia R. Neurophysiological and behavioral dysfunctions after electromagnetic field exposure: a dose response relationship. In: Kesari K, editor. Perspectives in environmental toxicology. Basel, Switzerland: Springer International Publishing; 2017. p. 01–30. https://doi.org/10.1007/978-3-319-46248-6_1.
Google Scholar
Lai H, Singh NP. Magnetic-field-induced DNA strand breaks in brain cells of the rat. Environ Health Perspect. 2004;112:687–94.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lai H, Singh NP. Melatonin and N-tert-butyl-alpha-phenylnitrone block 60-Hz magnetic field-induced DNA single and double strand breaks in rat brain cells. J Pineal Res. 1997;22:152–62.
Article
CAS
PubMed
Google Scholar
Simko M. Cell type specific redox status is responsible for diverse electromagnetic field effects. Curr Med Chem. 2007;14:1141–52.
Article
CAS
PubMed
Google Scholar
Bhat MA. Effects of Electromagnetic Waves Emitted by Mobile Phones on Male Fertilit. Computer Engineering and Intelligent Systems. 2013;4(3):51–64
How cell-phone radiation works. HowStuffWorks, a division of InfoSpace Holdings LLC, a System1 Company. 2001; Available at: https://electronics.howstuffworks.com/cell-phone-radiation1.htm.
Sharma A, Kesari KK, Saxena VK, Sisodia R. The influence of prenatal 10 GHz microwave radiation exposure on a developing mice brain. Gen Physiol Biophys. 2017;36:41–51.
Article
PubMed
Google Scholar
Barnett J, Timotijevic L, Shepherd R, Senior V. Public responses to precautionary information from the Department of Health (UK) about possible health risks from mobile phones. Health Policy. 2007;82:240–50.
Article
PubMed
Google Scholar
Kang XK, Li LW, Leong MS, Kooi PS. A method of moments study of SAR inside spheroidal human head and current distribution among handset wireless antennas. J Electromag Waves Appl. 2001;15:61.
Article
Google Scholar
Dimbylow PJ, Mann SM. SAR calculations in an anatomically realistic model of the head for mobile communication transceivers at 900 MHz and 1.8 GHz. Phy Med Biol. 1994;39:1537–44.
Article
CAS
Google Scholar
Rothman KJ, Chou CK, Morgan R, Balzano Q, Guy AW, Funch DP. Assessment of cellular telephone and other radio frequency exposure for epidemiologic research. Epidemiology. 1996;7:291–8.
Article
CAS
PubMed
Google Scholar
Seyhan N, Guler G. Review of in vivo static and ELF electric fields studies performed at Gazi biophysics department. Electromag Biol Med. 2006;25:307–23.
Article
CAS
Google Scholar
Odacı E, Bas O, Kaplan S. Effects of prenatal exposure to a 900 MHz electromagnetic field on the dentate gyrus of rats: a stereological and histopathological study. Brain Res. 2008;1238:224–9.
Article
PubMed
CAS
Google Scholar
Lee HJ, Pack HJ, Kim TH, Kim N, Choi SY, Lee JS, Kim SH, Lee YS. The lack of histological changes of CDMA cellular phone-based radiofrequency on rat testis. Bioelectromagnetics. 2010;31:528–34.
Article
CAS
PubMed
Google Scholar
Ulubay M, Yahyazadeh A, Deniz ÖG, Kıvrak EG, Altunkaynak BZ, Erdem G, Kaplan S. Effects of prenatal 900 MHz electromagnetic field exposures on the histology of rat kidney. Int J Radiat Biol. 2015;9:35–41.
Article
CAS
Google Scholar
Türedi S, Hancı H, Topal Z, Ünal D, Mercantepe T, Bozkurt I, Kaya H, Odacı E. The effects of prenatal exposure to a 900-MHz electromagnetic field on the 21-day-old male rat heart. Electromag Biol Med. 2015;34(4):390.
Article
CAS
Google Scholar
Chandra A, Martinez GM, Mosher WD, Abma JC, Jones J. Fertility, family planning, and reproductive health of U.S. women: data from the 2002 national survey of family growth. Vital Health Stat. 2005;25:1–160.
Google Scholar
Homan GF, Davies M, Norman R. The impact of lifestyle factors on reproductive performance in the general population and those undergoing infertility treatment: a review. Hum Reprod Update. 2007;13:209–23.
Article
CAS
PubMed
Google Scholar
Al-Akhras MA, Elbetieha A, Hasan MK, Al-Omari I, Darmani H, Albiss B. Effects of extremely low frequency magnetic field on fertility of adult male and female rats. Bioelectromagnetics. 2001;22:340–4.
Article
CAS
PubMed
Google Scholar
Lee JS, Ahn SS, Jung KC, Kim YW, Lee SK. Effects of 60 Hz electromagnetic field exposure on testicular germ cell apoptosis in mice. Asian J Androl. 2004;6:29–34.
PubMed
Google Scholar
Kim YW, Kim SH, Lee JS, Kim YJ, Lee SK, Seo JN Jung KC, Kim N, Gimm Y. Effects of 60 Hz 14 μ T magnetic fi eld on the apoptosis of testicular cell in mice. Bioelectromagnetics. 2009;30:66–72.
Article
PubMed
Google Scholar
Li DK, Yan B, Li Z, Gao E, Miiao M, Gong D, Weng X, Ferber JR, Yuan W. Exposure to magnetic fields and the risk of poor sperm quality. Reproduct Toxicol. 2010;29:86–92.
Article
CAS
Google Scholar
Fejes I, Z á vaczki Z, Szöllosi J, Koloszár S, Daru J, Kovács L, P ál A. Is there a relationship between cell phone use and semen quality? Arch Androl. 2005;51:385–93.
Article
CAS
PubMed
Google Scholar
Heynick LN, Merritt JH. Radiofrequency fields and teratogenesis. Bioelectromagnetics. 2003;(S6):S1-174–86. https://doi.org/10.1002/bem.10127.
Article
Google Scholar
Kumar S, Behari J, Sisodia R. Influence of electromagnetic fields on reproductive system of male rats. Int J Rad Biol. 2013;89(3):147.
Article
CAS
PubMed
Google Scholar
Mortazavi SMJ, Tavassoli AR, Ranjbari F, Moammaiee P. Effects of laptop computers’ electromagnetic field on sperm quality. J Reprod Infertil. 2010;11:251–8.
Google Scholar
Gorpinchenko I, Nikitin O, Banyra O, Shulyak A. The in uence of direct mobile phone radiation on sperm quality. Central Europ J Urol. 2014;67:65–71.
Google Scholar
Jonwal C, Sisodia R, Saxena VK, Kesari KK. Effect of 2.45 GHz microwave radiation on the fertility pattern in male mice. Gen Physiol Biophys. 2018;37(4):453-460. https://doi.org/10.4149/gpb_2017059.
Article
PubMed
Google Scholar
De Iuliis GN, Newey RJ, King BV, Aitken RJ. Mobile phone radiation induces reactive oxygen species production and DNA damage in human spermatozoa in vitro. PLoS One. 2009;4:e6446.
Article
PubMed
PubMed Central
CAS
Google Scholar
Al-Damegh MA. Rat testicular impairment induced by electromagnetic radiation from a conventional cellular telephone and the protective effects of the antioxidants vitamins C and E. Clinics. 2012;67:785–92.
Article
PubMed
PubMed Central
Google Scholar
Ghanbari M, Mortazavi SB, Khavanin A, Khazaei M. The effects of cell phone waves (900 MHz-GSM band) on sperm parameters and total antioxidant capacity in rats. Int J Fertility Steril. 2013;7:21–8.
Google Scholar
Kilgallon SJ, Simmons LW. Image content influences men’s semen quality. Biol Lett. 2005;1:252–5.
Article
Google Scholar
Al-Bayyari N. The effect of cell phone usage on semen quality and fertility among Jordanian males. Middle East Fertil Society J. 2017;22:178–82.
Article
Google Scholar
Erogul O, Oztas E, Yildirim I, Kir T, Aydur E, Komesli G, Irkilata HC, Irmak MK, Peker AF. Effects of electromagnetic radiation from a cellular phone on human sperm motility: an in vitro study. Arch Med Res. 2006;37:840–3.
Article
PubMed
Google Scholar
La Vignera S, Condorelli RA, Vicari E, D’Agata R, Calogero AE. Effects of the exposure to Mobile phones on male reproduction: a review of the literature. J Androl. 2012;33:350–6.
Article
PubMed
Google Scholar
Luo Y, Wang X, Chen Y, Xu S, Ding G, Shi C. Effects of electromagnetic radiation on morphology and TGF-β3 expression in mouse testicular tissue. Toxicology. 2013;310:8–14.
Article
CAS
PubMed
Google Scholar
Berensztein EB, Sciara MI, Rivarola MA, Belgorosky A. Apoptosis and proliferation of human testicular somatic and germ cells during prepuberty: high rate of testicular growth in newborns mediated by decreased apoptosis. J Clin Endocrinol Metab. 2002;87:5113–8.
Article
CAS
PubMed
Google Scholar
Blanco-Rodriguez J. A matter of death and life: the significance of germ cell death during spermatogenesis. Int J Androl. 1998;21:236–48.
Article
CAS
PubMed
Google Scholar
Gochfeld M. Chemical hazards. In: Levy BS, Wegman DH, Baron SL, Sokas RK, editors. Section III (hazards exposure) chapter 13; 2006. p. 269–310.
Google Scholar
Dunphy WG, Brizuela L, Beach D. The Xenopus cdc2 protein is a component of MPF, acytoplasmic regulator of mitosis. Cell. 1988;54:423–31.
Article
CAS
PubMed
Google Scholar
Gautier J, Norbury C, Lohka M, Nuese P, Mailer J. Purified maturation-promoting factor contains the product of a Xenopus homolog of the fission yeast cell cycle control gene cdc2. Cell. 1988;54:433–9.
Article
CAS
PubMed
Google Scholar
Naor Z, Breitbart H. Protein kinase C and mammalian spermatozoa acrosome reaction. TEM. 1997;8:337–42.
CAS
PubMed
Google Scholar
White D, de Lamirande E, Gagnon C. Protein kinase C is an important signaling mediator associated with motility of intact sea urchin spermatozoa. J Exp Biol. 2007;210:4053–64.
Article
CAS
PubMed
Google Scholar
Ohkusu K, Isobe K, Hidaka H, Nakashima I. Elucidation of the protein kinase C-dependent apoptosis pathway in distinct of T lymphocytes in MRL-lpr/lpr mice. Eur J Immunol. 1986;25:3180–6.
Article
Google Scholar
Wallimann T, Moser H, Zurbriggen B, Wegmann G, Eppenberger HM. Creatine kinase isozymes in spermatozoa. J Muscle Res Cell Motil. 1986;7:25–34.
Article
CAS
PubMed
Google Scholar
Vigue C, Vigue L, Huszar G. Adenosine triphosphate (ATP) concentrations and ATP/adenosine diphosphate ratios in human sperm of normospermic, oligospermic, and asthenospermic specimens and in their swim-up fractions: lack of correlation between ATP parameters and sperm creatine kinase concentrations. J Androl. 1992;13:305–11.
CAS
PubMed
Google Scholar
Dohle GR. Male infertility in cancer patients: review of the literature. Int J Urol. 2010;17:327–31.
Article
PubMed
Google Scholar
Wang SM, Wang DW, Peng RY, Gao YB, Yang Y, Hu WH, et al. Effect of electromagnetic pulse irradiation on structure and function of Leydig cells in mice. Zhonghua Nan Ke Xue. 2003;9:327–30.
PubMed
Google Scholar
Sharpe R. Regulation of spermatogenesis. In: Knobil ENJ, editor. The physiology of reproduction. New York: Raven Press; 1994. p. 1363–434.
Google Scholar
Steinberger E. Hormonal control of mammalian spermatogenesis. Physiol Rev. 1971;51:1–22.
Article
CAS
PubMed
Google Scholar
Burch JB, Reif JS, Noonan CW, Ichinose T, Bachand AM, Koleber TL, et al. Melatonin metabolite secretion among cellular telephone users. Int J Radiat Biol. 2002;78:1029–36.
Article
CAS
PubMed
Google Scholar
Jarupat S, Kawabata A, Tokura H, Borkiewicz A. Effects of the 1900 MHz electromagnetic field emitted from cellular phone on nocturnal melatonin secretion. J Physiol Anthropol. 2003;22:61–3.
Article
Google Scholar
Jackson FL, Heindel JJ, Preslock JP, Berkowitz AS. Alterations in hypothalamic content of luteinizing hormone-releasing hormone associated with pineal mediated testicular regression in the golden hamster. Biol Reprod. 1984;31:436–45.
Article
CAS
PubMed
Google Scholar
Bittman EL, Kaynard AH, Olster DH, Robinson JE, Yellow SM, Karsch FJ. Pineal melatonin mediates photoperiodic control of pulsatile luteinizing hormone secretion in the ewe. Neuroendocrinology. 1985;40:409–18.
Article
CAS
PubMed
Google Scholar
Vanecek J. Melatonin inhibits release of luteinizing hormone (LH) via decrease of [Ca2+]i, and cyclic AMP. Physiol Res. 1998;47:329–35.
CAS
PubMed
Google Scholar
Diem E, Schwarz C, Adlkofer F, Jahn O, Rüdiger H. Non-thermal DNA breakage by mobile-phone radiation (1800 MHz) in human fibroblasts and in transformed GFSH-R17 rat granulosa cells in vitro. Mutat Res. 2005;583:178–83.
Article
CAS
PubMed
Google Scholar
Schwarz C, Kratochvil E, Pilger A, Kuster N, Adlkofer F, Rüdiger HW. Radiofrequency electromagnetic fields (UMTS, 1,950 MHz) induce genotoxic effects in vitro in human fibroblasts but not in lymphocytes. Int Arch Occup Environ Health. 2008;81:755–67.
Article
CAS
PubMed
Google Scholar
Kesari KK, Meena R, Nirala J, Kumar J, Verma HN. Effect of 3G cell phone exposure with computer controlled 2-D stepper motor on non-thermal activation of the hsp27/p38MAPK stress pathway in rat brain. Cell Biochem Biophys. 2014;68:347–58.
Article
CAS
PubMed
Google Scholar
Kumar S, Behari J, Sisodia R. Impact of microwave at X-band in the aetiology of male infertility. Electromagn Biol Med. 2012;31:223–32.
Article
CAS
PubMed
Google Scholar
Schulte RT, Ohl DA, Sigman M, Smith GD. Sperm DNA damage in male infertility: etiologies, assays, and outcomes. J Assist Reprod Genet. 2010;27:3–12.
Article
PubMed
Google Scholar
Zini A, Bielecki R, Phang D, Zenzes MT. Correlations between two markers of sperm DNA integrity, DNA denaturation and DNA fragmentation, in fertile and infertile men. Fertil Steril. 2001a;75:674–7.
Article
CAS
PubMed
Google Scholar
Zini A, Kamal K, Phang D, Willis J, Jarvi K. Biologic variability of sperm DNA denaturation in infertile men. Urology. 2001b;58:258–61.
Article
CAS
PubMed
Google Scholar
Naziroglu M, Gumral N. Modulator effects of L-carnitine and selenium on wireless devices (2.45 GHz)-induced oxidative stress and electroencephalography records in brain of rat. Int J Radiat Biol. 2009;85:680–9.
Article
CAS
PubMed
Google Scholar
Oni OM, Amuda DB, Gilbert CE. Effects of radiofrequency radiation from WiFi devices on human ejaculated semen. Int J Res Rev Appl Sci. 2011;9:292–4.
CAS
Google Scholar
Nikolova T, Czyz J, Rolletschek A, Blyszczuk P, Fuchs J, Jovtchev G, et al. Electromagnetic fields affect transcript levels of apoptosis-related genes in embryonic stem cell-derived neural progenitor cells. FASEB J. 2005;19:1686–8.
Article
CAS
PubMed
Google Scholar
Luzhna L, Kathiria P, Kovalchuk O. Micronuclei in genotoxicity assessment: from genetics to epigenetics and beyond. Front Genet. 2013;4:131.
Article
CAS
PubMed
PubMed Central
Google Scholar
Adiga SK, Upadhya D, Kalthur G, Bola SSR, Kumar P. Transgenerational changes in somatic and germ line genetic integrity of first-generation offspring derived from the DNA damaged sperm. Fertil Steril. 2010;93:2486–90.
Article
CAS
PubMed
Google Scholar
Fenech M, Morley AA. Measurement of micronuclei in lymphocytes. Mutat Res. 1985;147:29–36.
Article
CAS
PubMed
Google Scholar
Zotti-Martelli L, Peccatori M, Scarpato R, Migliore L. Induction of micronuclei in human lymphocytes exposed in vitro to microwave radiation. Mutat Res. 2000;472:51–8.
Article
CAS
PubMed
Google Scholar
Kesari KK, Luukkonen J, Juutilainen J, Naarala J. Genomic instability induced by 50Hz magnetic fields is a dynamically evolving process not blocked by antioxidant treatment. Mutat Res Genet Toxicol Environ Mutagen. 2015;794:46–51.
Article
CAS
PubMed
Google Scholar
Luukkonen J, Liimatainen A, Juutilainen J, Naarala J. Induction of genomic instability, oxidative processes, and mitochondrial activity by 50Hz magnetic fields in human SH-SY5Y neuroblastoma cells. Mutat Res. 2014;760:33–41.
Article
CAS
PubMed
Google Scholar
Lehti MS, Sironen A. Formation and function of the manchette and flagellum during spermatogenesis. Reproduction. 2016;151:R43–54.
Article
CAS
PubMed
Google Scholar
Chemes HE, Sedo CA. Tales of the tail and sperm head aches: changing concepts on the prognostic significance of sperm pathologies affecting the head, neck and tail. Asian J Androl. 2012;14:14–23.
Article
PubMed
Google Scholar
Sha YW, Ding L, Li P. Management of primary ciliary dyskinesia/Kartagener's syndrome in infertile male patients and current progress in defining the underlying genetic mechanism. Asian J Androl. 2014;16:101–6.
Article
PubMed
Google Scholar
O'Donnell L, O'Bryan MK. Microtubules and spermatogenesis. Semin Cell Dev Biol. 2014;30:45–54.
Article
CAS
PubMed
Google Scholar
Zalata AA, Ahmed AH, Allamaneni SS, Comhaire FH, Agarwal A. Relationship between acrosin activity of human spermatozoa and oxidative stress. Asian J Androl. 2004;6:313–8.
CAS
PubMed
Google Scholar
Taha EA, Ez-Aldin AM, Sayed SK, Ghandour NM, Mostafa T. Effect of smoking on sperm vitality, DNA integrity, seminal oxidative stress, zinc in fertile men. Urology. 2012;80:822–5.
Article
PubMed
Google Scholar
Elsaved NM. Antioxidant mobilization in response to oxidative stress: a dynamic environmental nutritional interaction. Nutr. 2001;17:828–34.
Article
Google Scholar
Awanti SM, Ingin JB, Jeevangi SR, Patil GA, Awanti BS. The effect of radiofrequency radiation emitted from mobile phones on plasma oxidants and antioxidants in mobile phone users. J Clini Diag Res. 2010;4:2758–61.
CAS
Google Scholar
Fraga CG, Motchnik PA, Shigenaga MK, Helbock HJ, Jacob RA, Ames BN. Ascorbic acid protects against endogenous oxidative DNA damage in human sperm. Proc Nat Acad Sci. 1991;88:11003–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sheikh N, Amiri I, Farimani M, Najafi R, Hadeie J. Correlation between sperm parameters and sperm DNA fragmentation in fertile and infertile men. Iran J Reprod Med. 2008;6:13–8.
CAS
Google Scholar
Garrido N, Meseguer M, Alvarez J, Simon C, Pellicer A, Remohi J. Relationship among standard semen parameters, glutathione peroxidase/glutathione reductase activity, and mRNA expression and reduced glutathione content in ejaculated spermatozoa from fertile and infertile men. Fertil Steril. 2004;82:1059–66.
Article
CAS
PubMed
Google Scholar
Kumar S, Kesari KK, Behari J. Evaluation of genotoxic effects in male Wistar rats following microwave exposure. Indian J Exp Biol. 2010;48:586–92.
PubMed
Google Scholar
Alvarez JG, Touchstone JC, Blasco L, Storey BT. Spontaneous lipid peroxidation and production of hydrogen peroxide and superoxide in human spermatozoa. J Androl. 1987;8:338–48.
Article
CAS
PubMed
Google Scholar
Plante M, de Lamirande E, Gagnon C. Reactive oxygen species released by activated neutrophils, but not by deficient spermatozoa, are sufficient to affect normal sperm motility. Fertil Steril. 1994;62:387–93.
Article
CAS
PubMed
Google Scholar
Aitken RJ, Curry BJ. Redox regulation of human sperm function: from the physiological control of sperm capacitation to the etiology of infertility and DNA damage in the germ line. Antioxid Redox Signal. 2011;14:367–81.
Article
CAS
PubMed
Google Scholar
Shi T-Y, Chen G, Huang X, Yuan Y, Wu X, Wu B, et al. Effects of reactive oxygen species from activated leucocytes on human sperm motility, viability and morphology. Andrologia. 2011;44:696–703.
Article
PubMed
CAS
Google Scholar
Mundy AJ, Ryder TA, Edmonds DK. Asthenozoospermia and the human sperm mid-piece. Hum Reprod. 1995;10:116–9.
Article
CAS
PubMed
Google Scholar
Pelliccione F, Micillo A, Cordeschi G, D'Angeli A, Necozione S, Gandini L, Lenzi A, Francavilla F, Francavilla S. Altered ultrastructure of mitochondrial membranes is strongly associated with unexplained asthenozoospermia. Fertil Steril. 2011;95:641–6.
Article
CAS
PubMed
Google Scholar
Agarwal A, Virk G, Ong C, du Plessis SS. Effect of oxidative stress on male reproduction. World J Mens Health. 2014;32:1–17.
Article
PubMed
PubMed Central
Google Scholar
Aitken RJ, Jones KT, Robertson SA. Reactive oxygen species and review sperm function—in sickness and in health. J Androl. 2012;33:1096–106.
Article
CAS
PubMed
Google Scholar
Koppers AJ, Mitchell LA, Wang P, Lin M, Aitken RJ. Phosphoinositide 3-kinase signalling pathway involvement in a truncated apoptotic cascade associated with motility loss and oxidative DNA damage in human spermatozoa. Biochem J. 2011;436:687–98.
Article
CAS
PubMed
Google Scholar
Aitken RJ, Baker MA. Oxidative stress, sperm survival and fertility control. Mol Cell Endocrinol. 2006;250:66–9.
Article
CAS
PubMed
Google Scholar
Athayde KS, Cocuzza M, Agarwal A, Krajcir N, Lucon AM, Srough M, et al. Development of normal reference values for seminal reactive oxygen species and their correlation with leukocytes and semen parameters in a fertile population. J Androl. 2007;28:613–20.
Article
CAS
PubMed
Google Scholar
Moein MR, Dehghani VO, Tabibnejad N, Vahidi S. Reactive oxygen species (ROS) level in seminal plasma of infertile men and healthy donors. Iran J Reprod Med. 2007;5:51–5.
Google Scholar
Guz J, Gackowski D, Foksinski M, Rozalski R, Zarakowska E, Siomek A, et al. Comparison of oxidative stress/DNA damage in semen and blood of fertile and infertile men. PLoS One. 2013;8:e68490.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kullisaar T, Türk S, Kilk K, Ausmees K, Punab M, Mändar R. Increased levels of hydrogen peroxide and nitric oxide in male partners of infertile couples. Andrology. 2013;1:850–8.
Article
CAS
PubMed
Google Scholar
Bortkiewicz A. A study on the biological effects of exposure mobile-phone frequency EMF. Med Pr. 2001;52:101–6.
CAS
PubMed
Google Scholar
Sofikitis N, Giotitsas N, Tsounapi P, Baltogiannis D, Giannakis D, Pardalidis N. Hormonal regulation of spermatogenesis and spermiogenesis. J Steroid Biochem Mol Biol. 2008;109:323–30.
Article
CAS
PubMed
Google Scholar
Kesari KK, Kumar S, Behari J. Pathophysiology of microwave radiation: effect on rat brain. Appl Biochem Biotechnol. 2012;166:379–88.
Article
CAS
PubMed
Google Scholar
Oktem F, Ozguner F, Mollaoglu H, Koyu A, Uz E. Oxidative damage in the kidney induced by 900-MHz emitted mobile phone: protection by melatonin. Arch Med Res. 2005;36:350–5.
Article
CAS
PubMed
Google Scholar
Lincoln GA, Maeda KI. Reproductive effects of placing micro-implants of melatonin in the mediobasal hypothalamus and preoptic area in rams. J Endocrinol. 1992;132:201–15.
Article
CAS
PubMed
Google Scholar
Malpaux B, Daveau A, Maurice F, Gayrard V, Thiery JC. Short-day effects of melatonin on luteinizing hormone secretion in the ewe: evidence for central sites of action in the mediobasal hypothalamus. Biol Reprod. 1993;48:752–60.
Article
CAS
PubMed
Google Scholar
Vakalopoulos I, Dimou P, Anagnostou I, Zeginiadou T. Impact of cancer and cancer treatment on male fertility. Hormones (Athens). 2015;14:579–89.
Google Scholar
Huyghe E, Matsuda T, Daudin M, Chevreau C, Bachaud JM, Plante P, Bujan L, Thonneau P. Fertility after testicular cancer treatments: results of a large multicenter study. Cancer. 2004;100:732–7.
Article
PubMed
Google Scholar
Brydøy M, Fosså SD, Klepp O, Bremnes RM, Wist EA, Wentzel-Larsen T, Dahl O. Paternity following treatment for testicular cancer. J Natl Cancer Inst. 2005;97:1580–8.
Article
PubMed
Google Scholar
Huddart RA, Norman A, Moynihan C, Horwich A, Parker C, Nicholls E, Dearnaley DP. Fertility, gonadal and sexual function in survivors of testicular cancer. Br J Cancer. 2005;93:200–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pasqualotto FF, Agarwal A: Impact of cancers and treatment on male fertility: radiation effects on spermatogenesis. Fertility preservation in male Cancer patients, ed. John P. Mulhall, Linda D. Applegarth, Robert D. Oates and Peter N. Schlegel. Cambridge University Press. Cambridge University Press 2013. Chapter 12, Section 3, pp 104–109.
Arnon J, Meirow D, Lewis-Roness H, Ornoy A. Genetic and teratogenic effects of cancer treatments on gametes and embryos. Hum Reprod Update. 2001;7:394–403.
Article
CAS
PubMed
Google Scholar
Ogilvy-Stuart A, Shalet S. Effect of radiation on the human reproductive system. Environ Health Perspect. 1993;101:109–16.
PubMed
PubMed Central
Google Scholar
Biedka M, Kuźba-Kryszak T, Nowikiewicz T, Żyromska A. Fertility impairment in radiotherapy. Contemp Oncol (Pozn). 2016;20:199–204.
CAS
Google Scholar
Ståhl O, Eberhard J, Jepson K, Spano M, Cwikiel M, Cavallin-Ståhl E, Giwercman A. Sperm DNA integrity in testicular cancer patients. Hum Reprod. 2006;21:3199–205.
Article
PubMed
Google Scholar
Galarneau GJ, Nagler HM. Cost-effective infertility therapies in the ‘90s: to treat or to cure? Contemp Urol. 1999;11:32–45.
Google Scholar
Shalet SM, Tsatsoulis A, Whitehead E, Read G. Vulnerability of the human Leydig cell to radiation damage is dependent upon age. J Endocrinol. 1989;120:161–5.
Article
CAS
PubMed
Google Scholar
Rowley MJ, Leach DR, Warner GA, Heller CG. Effect of graded doses of ionizing radiation on the human testis. Radiat Res. 1974;59:665–78.
Article
CAS
PubMed
Google Scholar
Abuelhija M, Weng CC, Shetty G, Meistrich ML. Rat models of post-irradiation recovery of spermatogenesis: interstrain differences. Andrology. 2013;1:206–15.
Article
CAS
PubMed
Google Scholar
Mazur-Roszak M, Tomczak P, Litwiniuk M, Markowska J. Oncology and infertility: selected issues. Part I. what causes fertility disorders? Contemp Oncol. 2005;9:26–9.
Google Scholar
Meistrich ML. The effects of chemotherapy and radiotherapy on spermatogenesis in humans. Fertil Steril. 2013;100:1180–6.
Article
CAS
PubMed
Google Scholar
Martin RH, Hildebrand K, Yamamoto J. An increased frequency of human sperm chromosomal abnormalities after radiotherapy. Mutat Res. 1986;174:219–25.
Article
CAS
PubMed
Google Scholar
Wo J, Viswanathan A. Impact of radiotherapy on fertility, pregnancy, and neonatal outcomes in female cancer patients. Int J Radiat Oncol Biol Phys. 2009;73:1304–12.
Article
PubMed
PubMed Central
Google Scholar
Hahn E, Feingold S, Nisce L. Aspermia and recovery of spermatogenesis in cancer patients following incidental gonadal irradiation during treatment: a progress report. Radiology. 1976;119:223–5.
Article
CAS
PubMed
Google Scholar
Ianas O, Olnescu R, Badescu I. Melatonin involvement in oxidative stress. Rom J Endocrinol. 1991;29:147–53.
CAS
Google Scholar
Reiter RJ, Melchiorri D, Sewerynek E, et al. A review of the evidence supporting melatonin's role as an antioxidant. J Pineal Res. 1995;18:1–11.
Article
CAS
PubMed
Google Scholar
Reiter RJ, Tan DX, Cabrera J, et al. Melatonin and tryptophan derivatives as free radical scavengers and antioxidants. Adv Exp Med Biol. 1999;467:379–87.
Article
CAS
PubMed
Google Scholar
Reiter RJ, Tan DX, Acuna-Castroviejo D, et al. Melatonin: mechanisms and actions as an antioxidant. Curr Top Biophys. 2000;24:171–83.
CAS
Google Scholar
Reiter R, Tang L, Garcia JJ, Munoz-Hoyos A. Pharmacological actions of melatonin in oxygen radical pathophysiology. Life Sci. 1997;60:2255–71.
Article
CAS
PubMed
Google Scholar
Ozguner F, Bardak Y, Comlekci S. Protective effects of melatonin and caffeic acid phenethyl ester against retinal oxidative stress in long-term use of mobile phone: a comparative study. Mol Cell Biochem. 2006;282:83–8.
Article
CAS
PubMed
Google Scholar
Rodriguez C, Mayo JC, Sainz RM, Antolin I, Herrera F, Martin V, Reiter RJ. Regulation of antioxidant enzymes: a significant role for melatonin. J Pineal Res. 2004;36:1–9.
Article
CAS
PubMed
Google Scholar
Martin M, Macias M, Escames G, Leon J, Acuna-Castroviejo D. Melatonin but not vitamins C and E maintains glutathione homeostasis in tert-butyl hydroperoxide induced mitochondrial oxidative stress. FASEB J. 2000;14:1677–9.
Article
CAS
PubMed
Google Scholar
Winiarska K, Fraczyk T, Melinska D, Drozak J, Bryla J. Melatonin attenuates diabetes-induced oxidative stress in rabbits. J Pineal Res. 2006;40:168–76.
Article
CAS
PubMed
Google Scholar
Li MJ, Yin YC, Wang J, Jiang YF. Green tea compounds in breast cancer prevention and treatment. World J Clin Oncol. 2014a;5:520–8.
Article
PubMed
PubMed Central
Google Scholar
Rahmani AH, Al Shabrmi FM, Allemailem KS, Aly SM, Khan MA: Implications of green tea and its constituents in the prevention of cancer via the modulation of cell signalling pathway. Biomed Res Int. 2015;1–12. https://doi.org/10.1155/2015/925640.
Google Scholar
Schramm L. Going green: the role of the green tea component EGCG in chemoprevention. J Carcinog Mutagen. 2013;4:1000142.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yang CS, Lambert JD, Sang S. Anti-oxidative and anticarcinogenic activities of tea polyphenols. Arch Toxicol. 2009;83:11–21.
Article
CAS
PubMed
Google Scholar
Roychoudhury S, Agarwal A, Virk G, Cho CL. Potential role of green tea catechins in the management of oxidative stress-associated infertility. Reprod BioMed Online. 2017. https://doi.org/10.1016/j.rbmo.2017.02.006.
Article
CAS
PubMed
Google Scholar
Basu A, Lucas EA. Mechanisms and effects of green tea on cardiovascular health. Nutr Rev. 2007;65:361–75.
Article
PubMed
Google Scholar
Hara Y. Physiological functions of tea polyphenols: part 2. Am Biotechnol Lab. 1994;12:18.
CAS
PubMed
Google Scholar
Galleano M, Verstraeten SV, Oteiza PI, Fraga CG. Antioxidant actions of flavonoids: thermodynamic and kinetic analysis. Arch Biochem Biophys. 2010;501:23–30.
Article
CAS
PubMed
Google Scholar
Perron NR, Brumaghim JL. A review of the antioxidant mechanisms of polyphenol compounds related to iron binding. Cell Biochem Biophys. 2009;53:75–100.
Article
CAS
PubMed
Google Scholar
Kim MJ, Rhee SJ. Green tea catechins protect rats from microwave-induced oxidative damage to heart tissue. J Med Food. 2004;7:299–304.
Article
CAS
PubMed
Google Scholar
Zahedifar Z, Baharara J. Effect of green tea extract in reducing genotoxic injuries of cell phone microwaves on bone marrow. Zahedan J Res Med Sci. 2013;15:39–44.
CAS
Google Scholar