Albrecht ED, Aberdeen GW, Pepe GJ. The role of estrogen in the maintenance of primate pregnancy. Am J Obstet Gynecol. 2000;182:432–8.
CAS
PubMed
Google Scholar
Olsen NJ, Kovacs WJ. Gonadal steroids and immunity. Endocr Rev. 1996;17:369–84.
CAS
PubMed
Google Scholar
Olsen NJ, Olson G, Viselli SM, Gu X, Kovacs WJ. Androgen receptors in thymic epithelium modulate thymus size and thymocyte development. Endocrinology. 2001;142:1278–83.
CAS
PubMed
Google Scholar
Kuhl H, Gross M, Schneider M, Weber W, Mehlis W, Stegmuller M, et al. The effect of sex steroids and hormonal contraceptives upon thymus and spleen on intact female rats. Contraception. 1983;28:587–601.
CAS
PubMed
Google Scholar
Zoller AL, Schnell FJ, Kersh GJ. Murine pregnancy leads to reduced proliferation of maternal thymocytes and decreased thymic emigration. Immunology. 2007;121:207–15.
CAS
PubMed Central
PubMed
Google Scholar
Hince M, Sakkal S, Vlahos K, Dudakov J, Boyd R, Chidgey A. The role of sex steroids and gonadectomy in the control of thymic involution. Cell Immunol. 2008;252:122–38.
CAS
PubMed
Google Scholar
Zaitsu M, Narita S, Lambert KC, Grady JJ, Estes DM, Curran EM, et al. Estradiol activates mast cells via a non- genomic estrogen receptor-α and calcium influx. Mol Immunol. 2007;44:1977–85.
CAS
PubMed Central
PubMed
Google Scholar
Metcalfe DD. Mast cells and mastocytosis. Blood. 2008;112:946–56.
CAS
PubMed Central
PubMed
Google Scholar
Maruyama S, Tsukahara A, Suzuki S, Tada T, Minagawa M, Watanabe H, et al. Quick recovery in the generation of self-reactive CD4low natural killer (NK) T cells by an alternative pathway when restored from acute thymic atrophy. Clin Exp Immunol. 1999;117:587–95.
CAS
PubMed Central
PubMed
Google Scholar
Chmeilewski V, Drupt F, Morfin R. Dexamethasone induced apoptosis of mouse thymocytes: prevention by native 7α-hydroxysteroids. Immunol Cell Biol. 2000;78:238–46.
Google Scholar
Yao G, Hou Y. Thymic atrophy via estrogen-induced apoptosis is related to Fas/FasL pathway. Int Immunopharmacol. 2004;4:213–21.
CAS
PubMed
Google Scholar
Okasha SA, Ryu S, Do Y, McKallip RJ, Nagarkatti M, Nagarkatti PS. Evidence for estradiol-induced apoptosis and dysregulated T cell maturation in the thymus. Toxicology. 2001;163:49–62.
CAS
PubMed
Google Scholar
Do Y, Ryu S, Nagarkatti M, Nagarkatti PS. Role of death receptor pathway in estradiol-induced T-cell apoptosis in vivo. Toxicol Sci. 2002;70:63–72.
CAS
PubMed
Google Scholar
Staples JE, Fiore NC, Frazier Jr DE, Gasiewicz TA, Silverstone AE. Overexpression of the anti-apoptotic oncogene, bcl-2, in the thymus does not prevent atrophy induced by estradiol or 2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicol Appl Pharmacol. 1998;151:200–10.
CAS
PubMed
Google Scholar
Zoller AL, Kersh GJ. Estrogen induces thymic atrophy by eliminating early thymic progenitors and inhibiting proliferation of β-selected thymocytes. J Immunol. 2006;176:7371–8.
CAS
PubMed
Google Scholar
Bebo Jr BF, Fyfe-Johnson A, Adlard K, Beam AG, Vandenbark AA, Offner H. Low-dose estrogen therapy ameliorates experimental autoimmune encephalomyelitis in two different inbred mouse strains. J Immunol. 2001;166:2080–9.
CAS
PubMed
Google Scholar
Rijhsinghani AG, Thompson K, Bhatia SK, Waldschmidt TJ. Estrogen blocks early T cell development in the thymus. Am J Reprod Immunol. 1996;36:269–77.
CAS
PubMed
Google Scholar
Martin A, Alonso LM, Gomez del Moral M, Zapata AG. Ultrastructural changes in the adult rat thymus after estradiol benzoate treatment. Tissue Cell. 1994;26:169–79.
CAS
PubMed
Google Scholar
Martin A, Alonso L, Gomez del Moral M, Zapata AG. Morphometrical changes in the rat thymic lymphoid cells after treatment with two different doses of estradiol benzoate. Histol Histopath. 1994;9:281–6.
CAS
Google Scholar
Kato S. Intralobular lymphatic vessels and their relationship to blood vessels in the mouse thymus. Light- and electron-microscopic study. Cell Tissue Res. 1988;253:181–7.
CAS
PubMed
Google Scholar
Kato S. Thymic microvascular system. Microsc Res Tech. 1997;38:287–99.
CAS
PubMed
Google Scholar
Weiss L. Electron microscopic, observations on the vascular barrier in the cortex of the thymus of the mouse. Anat Rec. 1963;145:413–37.
CAS
PubMed
Google Scholar
Pearse G. Normal structure, function and histology of the thymus. Toxicol Pathol. 2006;34:504–14.
PubMed
Google Scholar
Oner H, Ozan E. Effects of gonadal hormones on thymus gland after bilateral ovariectomy and orchidectomy in rats. Arch Androl. 2002;48:115–26.
CAS
PubMed
Google Scholar
Okuyama R, Abo T, Seki S, Ohteki T, Sugiura K, Kusumi A, et al. Estrogen administration activates extrathymic T cell differentiation in the liver. J Exp Med. 1992;175:661–9.
CAS
PubMed
Google Scholar
Kimura M, Hanawa H, Watanabe H, Ogawa M, Abo T. Synchronous expansion of intermediate TCR cells in the liver and uterus during pregnancy. Cell Immunol. 1995;162:16–25.
CAS
PubMed
Google Scholar
Pardoll DM, Fowlkes BJ, Lew AM, Maloy WL, Weston MA, Bluestone JA, et al. Thymus-dependent and thymus-independent developmental pathways for peripheral T cell receptor-γδ-bearing lymphocytes. J Immunol. 1988;140:4091–96.
CAS
PubMed
Google Scholar
Boyd RL, Tucek CL, Godfrey DI, Izon DJ, Wilson TJ, Davidson NJ, et al. The thymic microenvironment. Immunol Today. 1993;14:445–59.
CAS
PubMed
Google Scholar
Kendall MD. Functional anatomy of the thymic microenvironment. J Anat. 1991;177:1–29.
CAS
PubMed Central
PubMed
Google Scholar
Egerton M, Scollay R, Shortman K. Kinetics of mature T-cell development in the thymus. Proc Natl Acad Sci U S A. 1990;87:2579–82.
CAS
PubMed Central
PubMed
Google Scholar
Odaka C, Morisada T, Oike Y, Suda T. Distribution of lymphatic vessels in mouse thymus: immunofluorescence analysis. Cell Tissue Res. 2006;325:13–22.
PubMed
Google Scholar
Yong LC, Watkins SG, Boland JE. The mast cell: III. Distribution and maturation in various organs of the young rat. Pathology. 1979;11:427–45.
CAS
PubMed
Google Scholar
Raica M, Cimpean AM, Nico B, Guidolin D, Ribatti D. A comparative study of the spatial distribution of mast cells and microvessels in the foetal and adult thymus and thymoma. Int J Exp Pathol. 2010;91:17–23.
PubMed Central
PubMed
Google Scholar
Ruitenberg EJ, Buys J. Thymus atrophy during early pregnancy and its effect on a Trichinella spiralis infection in mice, including intestinal pathology and blood eosinophilia. Vet Immun Immunopath. 1980;1:199–214.
Google Scholar
Chatamra K, Daniel PM, Kendall MD, Lam DK. Atrophy of the thymus in rats rendered diabetic by strepozotocin. Horm Metab Res. 1985;17:630–2.
CAS
PubMed
Google Scholar
Majno G, Palade GE, Schoefl GI. Studies on inflammation. II. The site of action of histamine and serotonin along the vascular tree: a topographic study. J Biophys Biochem Cytol. 1961;11:607–26.
CAS
PubMed Central
PubMed
Google Scholar
Schoefl GI. The migration of lymphocytes across the vascular endothelium in lymphoid tissue. A reexamination. J Exper Med. 1972;136:568–88.
CAS
Google Scholar
Savagner P, Imhof BA, Yamada KM, Thiery J-P. Homing of hemopoietic precursor cells to the embryonic thymus: characterization of an invasive mechanism induced by chemotactic peptides. J Cell Biol. 1986;103:2715–27.
CAS
PubMed
Google Scholar
Dunon D, Imhof BA. Mechanisms of thymus homing. Blood. 1993;81:1–8.
CAS
PubMed
Google Scholar
Petri B, Bixel MG. Molecular events during leukocyte diapedesis. FEBS J. 2006;273:4399–407.
CAS
PubMed
Google Scholar
Farr AG, De Bruyn PP. The mode of lymphocyte migration through postcapillary venule endothelium in lymph node. Amer J Anat. 1975;143:59–92.
CAS
PubMed
Google Scholar
Williams RM, Chanana AD, Cronkite EP, Waksman BH. Antigenic markers on cells leaving calf thymus by way of the efferent lymph and venous blood. J Immunol. 1971;106:1143–46.
CAS
PubMed
Google Scholar
Chanana AD, Cronkite EP, Joel DD, Williams RM, Waksman BH. Migration of thymic lymphocytes: immunofluorescence and 3HTdR labeling studies. Adv Exp Med Biol. 1971;12:113–18.
Google Scholar
Kotani M, Seiki K, Yamashita A, Horii I. Lymphatic drainage of thymocytes to the circulation in the guinea pig. Blood. 1966;27:511–20.
CAS
PubMed
Google Scholar
Ushiki T. A scanning electron-microscopic study of the rat thymus with special reference to cell types and migration of lymphocytes into the general circulation. Cell Tissue Res. 1986;244:285–98.
CAS
PubMed
Google Scholar
Miyasaka M, Pabst R, Dudler L, Cooper M, Yamaguchi K. Characterization of lymphatic and venous emigrants from the thymus. Thymus. 1990;16:29–43.
CAS
PubMed
Google Scholar
Azzali G, Orlandini G, Gatti R. The migration of lymphocytes and polymorphonuclear leukocytes across the endothelial wall of the absorbing peripheral lymphatic vessel. J Submicrosc Cytol Pathol. 1990;22:543–49.
CAS
PubMed
Google Scholar
Baluk P, Fuxe J, Hashizume H, Romano T, Lashnits E, Butz S, et al. Functionally specialized junctions between endothelial cells of lymphatic vessels. J Exp Med. 2007;204:2349–62.
CAS
PubMed Central
PubMed
Google Scholar
Lind EF, Prockop SE, Porritt HE, Petrie HT. Mapping precursor movement through the postnatal thymus reveals specific microenvironments supporting defined stages of early lymphoid development. J Exp Med. 2001;194:127–34.
CAS
PubMed Central
PubMed
Google Scholar
Takahama Y. Journey through the thymus: stromal guides for T-cell development and selection. Nat Rev Immunol. 2006;6:127–35.
CAS
PubMed
Google Scholar
Wilson A, Capone M, MacDonald RM. Unexpectedly late expression of intracellular CD3ε and TCR γδ proteins during adult thymus development. Int Immunol. 1999;11:1641–50.
CAS
PubMed
Google Scholar
Watanabe H, Seki S, Sugiura K, Hirokawa K, Utsuyama M, Takahashi-Iwanaga H, et al. Ontogeny and development of extrathymic T cells in liver. Immunology. 1992;77:556–63.
PubMed Central
PubMed
Google Scholar
Abo T. Extrathymic pathways of T-cell differentiation and immunomodulation. Int Immunopharmacol. 2001;1:1261–73.
CAS
PubMed
Google Scholar
Narita S, Goldblum RM, Watson CS, Brooks EG, Estes DM, Curran EM, et al. Environmental estrogens induce mast cell degranulation and enhance IgE-mediated release of allergic mediators. Environ Health Perspect. 2007;115:48–52.
CAS
PubMed Central
PubMed
Google Scholar
Mobbs CV, Kannegieter LS, Finch CE. Delayed anovulatory syndrome induced by estradiol in female C57BL/6 J mice: age-like neuroendocrine, but not ovarian impairments. Biol Reprod. 1985;32:1010–17.
CAS
PubMed
Google Scholar
Webb SJ, Geoghegan TE, Prough RA, Michael Miller KK. The biological actions of dehydroepiandrosterone involves multiple receptors. Drug Metab Rev. 2006;38:89–116.
CAS
PubMed Central
PubMed
Google Scholar
Parker Jr CR, Conway-Meyers BA. The effects of dehydroepiandrosterone (DHEA) on the thymus, spleen, and adrenals of prepubertal and adult female rats. Endocr Res. 1998;24:113–26.
CAS
PubMed
Google Scholar
Wilhelm M, King B, Silverman AJ, Silver R. Gonadal steroids regulate the number and activational state of mast cells in the medial habenula. Endocrinology. 2000;141:1178–86.
CAS
PubMed
Google Scholar
Popova LA. Effect of ovarian hormones on mast cells in the denervated uterus of rats. Fiziol Zh. 1989;35:75–80.
CAS
PubMed
Google Scholar
Bartke A, Steele RE, Musto N, Caldwell BV. Fluctuations in plasma testosterone levels in adult male rats and mice. Endocrinology. 1973;92:1223–28.
CAS
PubMed
Google Scholar
Chapman JC, Min S, Kunaporn S, Tung K, Shah S, Michael SD. The administration of cortisone to female B6A mice during their immune adaptive period causes anovulation and the formation of ovarian cysts. Am J Reprod Immunol. 2002;48:184–9.
PubMed
Google Scholar
Mitak M, Gojmerac T, Mandic B, Cvetnic Z. Changes in serum concentrations of 17β-estradiol in female rats during estrous cycle after treatment with atrazine and zearalenone. Vet Med Czech. 2001;5:145–8.
Google Scholar
Lindberg MK, Weihua Z, Andersson N, Moverare S, Gao H, Vidal O, et al. Estrogen receptor specificity for the effects of estrogen in ovariectomized mice. J Endocrinol. 2002;174:167–78.
CAS
PubMed
Google Scholar
Staples JE, Gasiewicz TA, Fiore NC, Lubahn DB, Korach KS, Silverstone AE. Estrogen receptor α is necessary in thymic development and estradiol-induced thymic alterations. J Immunol. 1999;163:4168–74.
CAS
PubMed
Google Scholar
Anderson MS, Venanzi ES, Klein L, Chen Z, Berzins SP, Turley SJ, et al. Projection of an immunological self shadow within the thymus by the aire protein. Science. 2002;298:1385–401.
Google Scholar
Pesic V, Radojevic K, Kosec D, Plecas-Sloarovic B, Perisic M, Leposavic G. Peripubertal orchidectomy transitorily affects age-associated thymic involution in rats. Braz J Med Biol Res. 2007;40:1481–93.
CAS
PubMed
Google Scholar
Naquet P, Naspetti M, Boyd R. Development, organization and function of the thymic medulla in normal, immunodeficient or autoimmune mice. Semin Immunol. 1999;11:47–55.
CAS
PubMed
Google Scholar
Rotzschke O, Falk K, Deres K, Schild H, Norda M, Metzger J, et al. Isolation and analysis of naturally processed viral peptides as recognized by cytotoxic T cells. Nature. 1990;348:252–4.
CAS
PubMed
Google Scholar
Girardi M. Immunosurveillance and immunoregulation of γδ T cells. J Invest Dermatol. 2006;126:25–31.
CAS
PubMed
Google Scholar
Takihara Y, Reimann J, Michalopoulos E, Ciccone E, Moretta L, Mak TW. Diversity and structure of human T cell receptor delta chain genes in peripheral blood gamma/delta-bearing T lymphocytes. J Exp Med. 1989;169:393–405.
CAS
PubMed
Google Scholar
Barakonyi A, Miko E, Varga P, Szekeres-Bartho J. V-chain preference of gamma/delta T-cell receptors in peripheral blood during term labor. Am J Reprod Immunol. 2008;59:201–5.
PubMed
Google Scholar
Cameron MJ, Kelvin DJ. Cytokines and chemokines-their receptors and their genes: an overview. Adv Exp Med Biol. 2003;520:8–32.
CAS
PubMed
Google Scholar
Kabelitz D, Peters C, Wesch D, Oberg HH. Regulatory functions of γδ T cells. Int Immunopharmacol. 2013;16:382–7.
CAS
PubMed
Google Scholar
Ebert EC, Roberts AI, Brolin RE, Raska K. Examination of the low proliferative capacity of human jejunal intraepithelial lymphocytes. Clin Exp Immunol. 1986;65:148–57.
CAS
PubMed Central
PubMed
Google Scholar
Mincheva-Nilsson L, Hammarström S, Hammarström ML. Human decidual leukocytes from early pregnancy contain high numbers of gamma delta + cells and show selective down-regulation of alloreactivity. J Immunol. 1992;149:2203–11.
CAS
PubMed
Google Scholar
Nagaeva O, Jonsson L, Mincheva-Nilsson L. Dominant IL-10 and TGF-beta mRNA expression in gamma/delta T-cells of human early pregnancy decidua suggests immunoregulatory potential. Am J Reprod Immunol. 2002;48:9–17.
PubMed
Google Scholar
Heyborne KD, Cranfill RL, Carding SR, Born WK, O'Brien RL. Characterization of γδ T lymphocytes at the maternal-fetal interface. J Immunol. 1992;149:2872–8.
CAS
PubMed
Google Scholar
Fan D-X, Duan J, Li M-Q, Xu B, Li D-J, Jin L-P. The decidual gamma-delta T cells up-regulate the biological functions of trophoblasts via IL-10 secretion in early human pregnancy. Clin Immunol. 2011;141:284–92.
CAS
PubMed
Google Scholar
Groux H. An overview of regulatory T cells. Microbes Infect. 2001;3:883–9.
CAS
PubMed
Google Scholar
Ballas ZK, Rasmussen W. NK1.1+ thymocytes. Adult murine CD4-, CD8- thymocytes contain an NK1.1+, CD3+, CD5hi, CD44hi, TCR-V beta 8+ subset. J Immunol. 1990;145:1039–45.
CAS
PubMed
Google Scholar
Zlotnik A, Godfrey DI, Fischer M, Suda T. Cytokine production by mature and immature CD4-CD8- T cells. Alpha beta-T cell receptor + CD4-CD8- T cells produce IL-4. J Immunol. 1992;149:1211–15.
CAS
PubMed
Google Scholar
Cowley SC, Hamilton E, Frelinger JA, Su J, Forman J, Elkins KL. CD4-CD8- T cells control intracellular bacterial infections both in vitro and in vivo. J Exp Med. 2005;202:309–19.
CAS
PubMed Central
PubMed
Google Scholar
Geirsson A, Paliwal I, Lynch RJ, Bothwell AL, Hammond GL. Class II transactivator promoter activity is suppressed through regulation by a trophoblast noncoding RNA. Transplantation. 2003;76:387–94.
CAS
PubMed
Google Scholar
Barakonyi A, Kovacs KT, Miko E, Szereday L, Varga P, Szekeres-Bartho J. Recognition of nonclassical HLA class I antigens by gamma delta T cells during pregnancy. J Immunol. 2002;168:2683–8.
CAS
PubMed
Google Scholar
Park D-W, Yang K-M. Hormonal regulation of uterine chemokines and immune cells. Clin Exp Reprod Med. 2011;38:179–85.
PubMed Central
PubMed
Google Scholar
Wu X, Jin LP, Yuan MM, Zhu Y, Wang MY, Li DJ. Human first-trimester trophoblast cells recruit CD56brightCD16— NK cells into decidua by way of expressing and secreting of CXCL12/stromal cell-derived factor 1. J Immunol. 2005;175:61–8.
CAS
PubMed
Google Scholar
Hanna J, Wald O, Goldman-Wohl D, Prus D, Markel G, Gazit R, et al. CXCL12 expression by invasive trophoblasts induces the specific migration of CD16— human natural killer cells. Blood. 2003;102:1569–77.
CAS
PubMed
Google Scholar
Huang Y, Zhu XY, Du MR, Li DJ. Human trophoblasts recruited T lymphocytes and monocytes into deciduas by secretion of CXCL16 and interaction with CXCR6 in the first-trimester pregnancy. J Immunol. 2008;180:2367–75.
CAS
PubMed
Google Scholar
Dimova T, Nagaeva O, Stenqvist A-C, Hedlund M, Kjellberg L, Strand M, et al. Maternal foxp3 expressing CD4+ CD25+ and CD4+ CD25—regulatory T-cell populations are enriched in human early normal pregnancy decidua: a phenotypic study of paired decidual and peripheral blood samples. Am J Reprod Immunol. 2011;66 Suppl 1:44–56.
PubMed
Google Scholar
Blois SM, Kammerer U, Alba Soto C, Tometten MC, Shaikly V, Barrientos G, et al. Dendritic cells: key to fetal tolerance? Biol Reprod. 2007;77:590–8.
CAS
PubMed
Google Scholar
Maroni ES, de Sousa MA. The lymphoid organs during pregnancy in the mouse. A comparison between syngeneic and allogeneic mating. Clin Exp Immunol. 1973;13:107–24.
CAS
PubMed Central
PubMed
Google Scholar
Gray H. Anatomy of the human body. Philadelphia: Lea and Febiger; 1985.
Google Scholar
Koukourakis MI, Giatromanolaki A, Sivridis E, Simopoulos C, Gatter KC, Harris AL, et al. LYVE-1 immunohistochemical assessment of lymphangiogenesis in endometrial and lung cancer. J Clin Pathol. 2005;58:202–6.
CAS
PubMed Central
PubMed
Google Scholar
Red-Horse K. Lymphatic vessel dynamics in the uterine wall. Placenta. 2008;29(Suppl A):S55–9.
PubMed Central
PubMed
Google Scholar
Arck PC, Ferrick DA, Steele-Norwood D, Egan PJ, Croitoru K, Carding SR, et al. Murine T cell determination of pregnancy outcome. Cell Immunol. 1999;196:71–9.
CAS
PubMed
Google Scholar
Arck PC, Ferrick DA, Steele-Norwood D, Croitoru K, Clark DA. Murine T cell determination of pregnancy outcome: I. effects of strain, alpha/beta T cell receptor, gamma/delta T cell receptor, and gamma/delta T cell subsets. Am J Reprod Immunol. 1997;37:492–502.
CAS
PubMed
Google Scholar
Goncalves-Sousa N, Ribot JC, de Barros A, Correia DV, Caramalho I, Silva-Santos B. Inhibition of murine gammadelta lymphocyte expansion and effector function by regulatory alphabeta T cells is cell-contact-dependent and sensitive to GITR modulation. Eur J Immunol. 2010;40:61–70.
CAS
PubMed
Google Scholar
Mahan CS, Thomas JJ, Boom WH, Rojas RE. CD4+ CD25high Foxp3+ regulatory T cells downregulate human Vδ2+ T-lymphocyte function triggered by anti-CD3 or phosphoantigen. Immunology. 2009;127:398–407.
CAS
PubMed Central
PubMed
Google Scholar
Kallikourdis M, Betz AG. Periodic Accumulation of Regulatory T Cells in the Uterus: Preparation for the Implantation of a Semi-Allogeneic Fetus? PLoS One. 2007;2, e382.
PubMed Central
PubMed
Google Scholar
Aluvihare VR, Kallikourdis M, Betz AG. Regulatory T cells mediate maternal tolerance to the fetus. Nat Immunol. 2004;5:266–71.
CAS
PubMed
Google Scholar
Somerset DA, Zheng Y, Kilby MD, Sansom DM, Drayson MT. Normal human pregnancy is associated with an elevation in the immune suppressive CD25+ CD4+ regulatory T-cell subset. Immunology. 2004;112:38–43.
CAS
PubMed Central
PubMed
Google Scholar
Barakonyi A, Polgar B, Szekeres-Bartho J. The role of gamma/delta T-cell receptor-positive cells in pregnancy: part II. Am J Reprod Immunol. 1999;42:83–7.
CAS
PubMed
Google Scholar
Szekeres-Bartho J, Barakonyi A, Polgar B, Par G, Faust Z, Palkovics T, et al. The role of γδ T cells in progesterone-mediated immunomodulation during pregnancy: a review. Am J Reprod Immunol. 1999;42:44–8.
CAS
PubMed
Google Scholar
Hara T, Mizuno Y, Takaki K, Akeda H, Aoki T, Nagata M, et al. Predominant activation and expansion of Vγ9-bearing γδ T cells in vivo as well as in vitro in Salmonella infection. J Clin Invest. 1992;90:204–10.
CAS
PubMed Central
PubMed
Google Scholar
Munk ME, Gatrill AJ, Kaufmann SH. Target cell lysis and IL-2 secretion by γδ T lymphocytes after activation with bacteria. J Immunol. 1990;145:2434–9.
CAS
PubMed
Google Scholar
Du MR, Guo PF, Piao HL, Wang SC, Sun C, Jin LP, et al. Embryonic trophoblasts induce decidual regulatory T cell differentiation and maternal–fetal tolerance through thymic stromal lymphopoietin instructing dendritic cells. J Immunol. 2014;192:1502–11.
CAS
PubMed Central
PubMed
Google Scholar
Sasaki Y, Sakai M, Miyazaki S, Higuma S, Shiozaki A, Saito S. Decidual and peripheral blood CD4+ CD25+ regulatory T cells in early pregnancy subjects and spontaneous abortion cases. Mol Hum Reprod. 2004;10:347–53.
CAS
PubMed
Google Scholar
Winger EE, Reed JL. Low circulating CD4(+) CD25(+) Foxp3(+) T regulatory cell levels predict miscarriage risk in newly pregnant women with a history of failure. Am J Reprod Immunol. 2011;66:320–28.
CAS
PubMed
Google Scholar
Zygmunt M, Herr F, Münstedt K, Lang U, Liang OD. Angiogenesis and vasculogenesis in pregnancy. Eur J Obstet Gynecol Reprod Biol. 2003;110 Suppl 1:S10–8.
CAS
PubMed
Google Scholar
Olivares EG, Munoz R, Tejerizo G, Montes MJ, Gomez-Molina F, Abadia-Molina AC. Decidual lymphocytes of human spontaneous abortions induce apoptosis but not necrosis in JEG-3 extravillous trophoblast cells. Biol Reprod. 2002;67:1211–7.
CAS
PubMed
Google Scholar
King A, Jokhi PP, Burrows TD, Gardner L, Sharkey AM, Loke YW. Functions of human decidual NK cells. Am J Reprod Immunol. 1996;35:258–60.
CAS
PubMed
Google Scholar
Keskin DB, Allan DS, Rybalov B, Andzelm MM, Stern JN, Kopcow HD, et al. TGF beta promotes conversion of CD16+ peripheral blood NK cells into CD16— NK cells with similarities to decidual NK cells. Proc Natl Acad Sci U S A. 2007;104:3378–83.
CAS
PubMed Central
PubMed
Google Scholar
Kopcow HD, Allan DS, Chen X, Rybalov B, Andzelm MM, Ge B, et al. Human decidual NK cells form immature activating synapses and are not cytotoxic. Proc Natl Acad Sci U S A. 2005;102:15563–8.
CAS
PubMed Central
PubMed
Google Scholar
Sharkey DJ, Macpherson AM, Tremellen KP, Mottershead DG, Gilchrist RB, Robertson SA. TGF-β mediates proinflammatory seminal fluid signaling in human cervical epithelial cells. J Immunol. 2012;189:1024–35.
CAS
PubMed
Google Scholar
Nocera M, Chu TM. Characterization of latent transforming growth factor-beta from human seminal plasma. Am J Reprod Immunol. 1995;33:282–91.
CAS
PubMed
Google Scholar
Tremellen KP, Seamark RF, Robertson SA. Seminal Transforming Growth Factor 1, Stimulates Granulocyte-Macrophage Colony-Stimulating Factor Production and Inflammatory Cell Recruitment in the Murine Uterus. Biol Reprod. 1998;58:1217–25.
CAS
PubMed
Google Scholar
Shooner C, Caron PL, Fréchette-Frigon G, Leblanc V, Déry MC, Asselin E. TGF-beta expression during rat pregnancy and activity on decidual cell survival. Reprod Biol Endocrin. 2005;3:20–38.
Google Scholar
Aoki K, Kajiura S, Matsumoto Y, Oqasawara M, Okada S, Yaqami Y, et al. Preconceptional natural-killer-cell activity as a predictor of miscarriage. Lancet. 1995;345:1340–2.
CAS
PubMed
Google Scholar
Higuchi K, Aoki K, Kimbara T, Hosoi N, Yamamoto T, Okada H. Suppression of natural killer cell activity by monocytes following immunotherapy for recurrent spontaneous aborters. Am J Reprod Immunol. 1995;33:221–7.
CAS
PubMed
Google Scholar
Lachapelle MH, Miron P, Hemmings R, Roy DC. Endometrial T, B, and NK cells in patients with recurrent spontaneous abortion. Altered profile and pregnancy outcome. J Immunol. 1996;156:4027–34.
CAS
PubMed
Google Scholar
Clifford K, Flanagan AM, Regan L. Endometrial CD56+ natural killer cells in women with recurrent miscarriage: a histomorphometric study. Hum Reprod. 1999;14:2727–30.
CAS
PubMed
Google Scholar
Emmer PM, Nelen WL, Steegers EA, Hendriks JC, Veerhoek M, Joosten I. Peripheral natural killer cytotoxicity and CD56+ CD16+ cells increase during early pregnancy in women with a history of recurrent spontaneous abortion. Hum Reprod. 2000;15:1163–9.
CAS
PubMed
Google Scholar
Park DW, Lee HJ, Park CW, Hong SR, Kwak-Kim J, Yang KM. Peripheral blood NK cells reflect changes in decidual NK cells in women with recurrent miscarriages. Am J Reprod Immunol. 2010;63:173–80.
PubMed
Google Scholar
Junovich G, Azpiroz A, Incera E, Ferrer C, Pasqualini A, Gutierrez G. Endometrial CD16(+) and CD16(−) NK cell count in fertility and unexplained infertility. Am J Reprod Immunol. 2013;70:182–9.
CAS
PubMed
Google Scholar
Seshadri S, Sunkara SK. Natural killer cells in female infertility and recurrent miscarriage: a systematic review and meta-analysis. Hum Reprod Update. 2014;20:429–38.
PubMed
Google Scholar
Abbassi-Ghanavati M, Greer LG, Cunningham FG. Pregnancy and laboratory studies: a reference table for clinicians. Obstet Gynecol. 2009;114:1326–31.
CAS
PubMed
Google Scholar
Heyborne K, Fu YX, Nelson A, Farr A, O'Brien R, Born W. Recognition of trophoblasts by gamma delta T cells. J Immunol. 1994;153:2918–26.
CAS
PubMed
Google Scholar
Ashkar AA, Di Santo JP, Croy BA. Interferon gamma contributes to initiation of uterine vascular modification, decidual integrity, and uterine natural killer cell maturation during normal murine pregnancy. J Exp Med. 2000;192:259–70.
CAS
PubMed Central
PubMed
Google Scholar
Murphy SP, Tayade C, Ashkar AA, Hatta K, Zhang J, Croy BA. Interferon gamma in successful pregnancies. Biol Reprod. 2009;80:848–59.
CAS
PubMed Central
PubMed
Google Scholar
Folkman J, Klagsbrun M. Angiogenic factors. Science. 1987;235:442–47.
CAS
PubMed
Google Scholar
Seo N, Tokura Y, Takigawa M, Egawa K. Depletion of IL-10 and TGF-β-producing γδ T cells by administering a daunomycin-conjugated specific monoclonal antibody in early tumor lesions augments the activity of CTLs and NK cells. J Immunol. 1999;163:242–49.
CAS
PubMed
Google Scholar
Abo T, Sugawara S, Seki S, Fujii M, Rikiishi H, Takeda K, et al. Induction of human TCR gamma delta + and TCR gamma delta-CD2 + CD3- double negative lymphocytes by bacterial stimulation. Int Immunol. 1990;2:775–85.
CAS
PubMed
Google Scholar
Abo T, Kusumi A, Seki S, Ohteki T, Sugiura K, Masuda T, et al. Activation of extrathymic T cells in the liver and reciprocal inactivation of intrathymic T cells by bacterial stimulation. Cell Immunol. 1992;142:125–36.
CAS
PubMed
Google Scholar
Seki S, Abo T, Sugiura K, Ohteki T, Kobata T, Yagita H, et al. Reciprocal T cell responses in the liver and thymus of mice injected with syngeneic tumor cells. Cell Immunol. 1991;137:46–60.
CAS
PubMed
Google Scholar