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Abstract 

Early pregnancy is marked by placentation and embryogenesis, which take place under physiological low oxygen 
concentrations. This oxygen condition is crucial for many aspects of placentation, trophoblast function, vasculariza-
tion and immune function. Recently, a new family of innate lymphoid cells has been found to be expressed at the 
fetomaternal interface. Among these, type 3 innate lymphoid cells (ILC3) are important antigen presenting cells in the 
context of MHC-II. The expression of MHC-II on ILC3s during pregnancy is reduced. We tested the hypothesis that low 
oxygen concentrations reduce the potential of ILC3s to present antigens promoting fetal tolerance.

Using an in vitro approach, NCR+ ILC3s generated from cord blood stem cell precursors were incubated under differ-
ent O2 concentrations in the presence or absence of the pregnancy-related hormones hCG and TGF-β1. The expres-
sion of MHC-II, accessory molecules and an activation marker were assessed by flow cytometry. We observed that 1% 
O2 reduced the expression of the MHC-II molecule HLA-DR as compared to 21% O2 and modulated the relative effects 
of hCG and TGF-β1.

Our data indicate that low oxygen concentrations reduce the antigen presentation potential of NCR+ ILC3s and sug-
gest that it may promote fetal tolerance during the first trimester of pregnancy.
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Introduction
After implantation, several changes take place in the 
decidualized endometrium to assure the anchoring of 
the fetus and the later establishment of a fetomaternal 
circulation. Trophoblast cells invade into the maternal 
decidua, reach spiral arteries and block them tempo-
rarily. During this time, the zone between decidua and 
placenta remains in low oxygen conditions, which is 
estimated to be around 10–30 mmHg (corresponding to 
1–4% O2) [1, 2]. Once the plugs are released, the intervil-
lous spaces are filled with maternal blood. Thereafter, the 

oxygen partial pressure reaches 50–60 mmHg (7–8% O2) 
[2]. The reduced oxygen availability promotes placenta-
tion by inducing cell growth and vascular remodeling [3]. 
Moreover, higher O2 concentrations are suspected to be 
detrimental to early pregnancy and have been recorded 
in missed abortions [2, 4].

The adaptations are supported by local factors as TGF-
β1 and hCG [5–8]. The changes in the O2 concentrations 
also influence the function of several cell types, including 
leukocytes that are present at the fetomaternal interface 
[9]. As it occurs with trophoblasts and endothelial cells, 
also decidual leukocytes (including macrophages and 
innate lymphoid cells (ILCs) as NK cells) take part in vas-
cular remodeling are influenced by low oxygen concen-
trations [10].
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The role of lymphocytes in vascular remodeling is not 
completely understood. Recently, new lymphocyte popu-
lations with angiogenic potential have been described. 
In particular, the helper subsets of the ILCs, which are 
known to be involved in tissue remodeling [11]. ILCs 
secrete diverse cytokines (e.g. IL-8, IL-17, IL-22, IFNγ, 
GM-CSF) and influence the function of other cells, 
including T cells. As excessive cytokine secretion may 
disturb placentation, dysregulated secretory capacity of 
immune cells and their interactions at the fetomaternal 
interface are of great importance.

The interaction between ILCs and T cells is greatly 
dependent on cell-to-cell contacts. ILCs express PD-1, 
OX40L, BAFF, DLL1, CD80 and CD86, which play an 
important role in the activation and modulation of adap-
tive immune cells [12–14]. Therefore, ILCs represent an 
important link between adaptive and innate immune 
responses. Particularly, the antigen presentation capac-
ity of ILCs has been found to be fundamental in immune 
homeostasis, as for instance in the gut [12, 15, 16]. The 
expression of antigen-presentation markers and acces-
sory molecules on ILCs at the fetomaternal interface has 
not yet been fully characterized [17]. In a recent work, 
we have observed that the antigen presentation potential 
of ILCs is reduced during pregnancy [18]. Furthermore, 
the antigen presentation potential of ILCs was restricted 
at the fetomaternal interface, and there were differences 
between decidua basalis and decidua parietalis concern-
ing the expression of HLA-DR. This phenomenon may 
represent an adaptive mechanism involved in the toler-
ance against fetal antigens or an excessive inflammatory 
response against viral or bacterial derived molecules. In 
this sense, ILCs at the fetomaternal interface are charac-
terized by a cytokine secreting phenotype with restricted 
antigen presentation capacity.

The mechanisms for tolerance against fetal antigens 
include the absence of classical MHC-I and MHC-II 
expression by trophoblast cells [19–21]. CD4+ T cells, 
however, recognize fetal antigens indirectly, in a process 
mediated by antigen presenting cells (APC). APC at the 
fetomaternal interface include macrophages, dendritic 
cells, B cells and ILCs [22].

Physiological oxygen restriction is known to affect 
immune cells and lead, as in the case of the placenta, 
to tolerance-mediating effects [23]. Similar to first tri-
mester placenta, a low oxygen concentration is char-
acteristic of the tumor environment. The low oxygen 
availability of the tumor environment dampers the anti-
tumoral responses of several immune cells [10]. The 
effects include a reduction of the expression of MHC-II 
molecules [24, 25]. Here, we postulate that the low oxy-
gen conditions that prevail at the beginning of pregnancy 
promote a tolerogenic phenotype in ILCs.

Methods
Human samples
Umbilical cord blood of term cesarean sections was 
obtained after patient’s informed consent. Mononuclear 
cells were isolated as previously described [18]. Briefly, 
blood samples were centrifuged, serum discarded and 
cells were isolated by density centrifugation with Lym-
phoprep™ (STEMCELL Technologies Inc., Vancouver, 
Canada), following manufacturer’s instructions.

Cell culture
Umbilical cord blood cells were used as source of stem 
cells, which were isolated applying CD34 MicroBead Kit 
UltraPure, human (Miltenyi, Bergisch Gladbach, Ger-
many). According to manufacturer’s handbook, CD34+ 
stem cells were isolated by magnetic separation. There-
fore, cells were incubated with Fc Block and microbead-
coupled anti-CD34 antibody for 15 min at 4 °C. After 
washing, CD34+ cells were isolated using magnetic MS 
column. Bound cells were flushed after removing from 
the magnet.

Stem cells were then cultured in ILC3 differentiation 
medium (10% FBS, 1% Penicillin-Streptomycin (PAN-
Biotech GmbH, Aidenbach, Germany), 20 ng/mL SCF, 
20 ng/mL IL-7, 20 ng/mL IL-15 and 10 ng/mL Flt-3 ligand 
(Miltenyi, Bergisch Gladbach, Germany) in RPMI 1640 
(PAN-Biotech GmbH, Aidenbach, Germany)) as previ-
ously reported [18, 26, 27]. After 30 days of culture, an 
ILC3-enriched culture was obtained. These cells were 
used for further experiments.

Treatment was performed in the presence of TGF-
β1 (2 ng/mL (R&D, Minneapolis, MN, USA)) or hCG 
(100 IU/mL (Ovitrelle®, Merck, Darmstadt, Germany)). 
Both concentrations were chosen for being in physiologi-
cal range in serum and to better compare data with own 
and others previous studies [18, 28–34]. Treatment under 
different oxygen concentrations (1 or 8% O2, mimick-
ing first and second trimester oxygen availability at the 
fetomaternal interface, respectively) was performed in a 
multigas incubator (Sanyo, Moriguchi, Osaka prefecture, 
Japan) supplied with 5% CO2 and N2 as complementary 
gas. In parallel, cells were cultured in an identical mul-
tigas incubator under standard culture conditions (21% 
O2, 5% CO2 and N2 as complementary gas) as controls. 
CO2 and O2 concentrations were measured constantly. 
Cells were activated with human recombinant IL-1β and 
IL-23 (20 ng/mL (BioLegend, San Diego, CA, USA)) for 
the last 18 h of the stimulation. An increased signal of 
intranuclear HIF-1α under 1% O2 was observed by flow 
cytometry after nuclei isolation and further staining with 
anti-HIF-1α antibody (BD Biosciences, Franklin Lakes, 
NJ, USA; clone 54/HIF-1α; data not shown).
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Flow cytometry
Cell suspensions were preincubated with Fixable Viabil-
ity Dye (Thermo Fisher Scientific Inc., Waltham, MA, 
USA) for 30 min at 4 °C to exclude non-viable cells. For 
subsequent washing steps FACS buffer (1% BSA (Sigma-
Aldrich, St. Louis, MO, USA), 0.1% NaN3 (Carl Roth, 
Karlsruhe, Germany) in DPBS (PAN-Biotech GmbH, 
Aidenbach, Germany)) was used. Extracellular staining 
was performed for 30 min at 4 °C. For intracellular stain-
ing cells were permeabilized with Foxp3 staining buffer 
set (Thermo Fisher Scientific Inc., Waltham, MA, USA) 
according to manufacturer’s instructions. Intracellular 
staining was applied for 30 min at 4 °C as well.

Antibody clones used for flow cytometry staining from 
BD Biosciences (Franklin Lakes, NJ, USA): Lin3 (CD3, 
MφP9; CD14, SK7; CD19, SJ25C1; CD20, L27), CD94 
(HP-3D9), NKp44 (p44–8), CD80 (L307.4), CD40 (5C3), 
CD69 (FN50) and from Miltenyi (Bergisch Gladbach, 
Germany): NKp44 (Clone 2.29), HLA-DR (AC122).

Measurement was performed with FACSCanto (BD 
Biosciences, Franklin Lakes, NJ, USA). Immediately 
before measurement, counting beads (BD Biosciences, 
Franklin Lakes, NJ, USA) for quantification were added. 
FMO (fluorescence minus one) controls were included. 
Data was analyzed with FlowJo10.4 software (FlowJo, 
LLC, Ashland, TN, USA).

NCR+ ILC3s were gated as live CD3−CD14− 

CD19−CD20−CD94−NKp44+ cells. Cell count was deter-
mined by addition of counting beads, which were gated 
separately. The sum of NCR+ ILC3s was calculated by the 
measured cell number times the added beads divided by the 
measured beads. The identity of the cells was confirmed as 
in our previous study [18]. As shown, after sorting and sub-
sequent stimulation, these cells express CD69, HLA-DR, 
IL-8 and IL-22. The presence of RORγt, HLA-DR, CD80, 
CD40, CD69, IL-8 and IL-22 mRNA was also detected by 
qPCR and flow cytometry [18]. Additionally, IL-8, IL-17 
and IL-22 were detected in the supernatants of sorted cells 
(Bio-Plex Pro™ Human Th17 Cytokine Assay (Bio-Rad, 
Hercules, California, USA). As the data presented in this 
manuscript was obtained by flow cytometry from enriched 
ILC3s, qPCR and Multiplex data is not shown. The gating 
strategy for the sorting, the purity assessment and the char-
acterization of sorted NCR+ ILC3s by flow cytometry is 
shown in the Supplementary figure.

Statistical analysis
Data are presented as relative changes to correspond-
ing untreated controls. Values were normalized to 
the mean of the untreated controls to set them 1 and 
keep the variances of both, treated and untreated 
cells. Paired Student’s t-test was used to analyze data. 

Graphs show mean ± SEM. For statistical analysis 
Microsoft Excel 2010 (Microsoft, Redmond, WA, 
USA) and Prism 5.01 (GraphPad Software, San Diego, 
CA, USA) were used. P-value ≤0.01 was considered 
statistically significant.

Results
Oxygen restriction reduces ILC3 antigen presentation 
potential
Recently, we showed that antigen presentation capacity 
by ILC3s is reduced in uterine and decidual compared to 
peripheral samples [18]. Since conditions present at the 
fetomaternal interface as soluble factors and low oxygen 
concentration can shape lymphocytes into a decidual 
like phenotype [35], we started by evaluating the role of 
low oxygen concentrations on ILC3 antigen presentation 
potential.

To test the effect of oxygen-restricted conditions on 
ILC3s, in vitro-generated NCR+ ILC3s were incubated in 
the presence of atmospheric oxygen concentration (21% 
O2), and parallelly either under 8% O2 or 1% O2 (Fig. 1).

Compared to 21% O2, the incubation in 1% O2 signifi-
cantly reduced the percentage of HLA-DR+ ILC3s (by 
41%) and their antigen presentation capacity (MFI; by 
35%). Costimulatory molecules CD40 and CD80 were 
contrary affected by reduced O2 concentration. Under 8% 
O2, the proportion of CD80+ ILC3s and the CD80 MFI 
were significantly decreased (by 11 and 9%, respectively) 
compared to 21% O2. In contrast, the percentage of 
CD40+ ILC3s was significantly increased (by 17%) under 
1% O2 compared to 21% O2.

The activation marker CD69 was not significantly 
affected by oxygen restriction.

Oxygen modulates hCG‑mediated effects on ILC3s
Pregnancy-related hormones hCG and TGF-β1 reduce 
ILC3 antigen presentation potential [18]. Since lower 
oxygen concentration reduced antigen presentation 
capacity, a synergistic effect of hCG was assessed (Fig. 2).

HCG significantly reduced the percentage of HLA-
DR+ ILC3s and HLA-DR expression (MFI) under 21% O2 
(by 26 and 12%, respectively) and 8% O2 (by 24 and 19%, 
respectively). The effect under 1% O2 was not statistically 
significant.

Oxygen also modulated hCG-mediated effects 
on CD80 expression, leading to a decrease in CD80 
expression after treatment with hCG under 1% O2 (by 
5%). However, CD40 expression was not additionally 
affected by hCG treatment. The expression of CD69 
was significantly reduced by hCG under 21% O2, but 
only by 1%.
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ILC3s under 1% O2 are more sensitive to TGF‑β1‑mediated 
reduction of CD40 and CD69
Next, additive effects of O2 restriction and TGF-β1 
were investigated, by comparing TGF-β1-treated and 
untreated cells (Fig. 3).

TGF-β1 reduced the proportion of HLA-DR-express-
ing ILC3s under 21% (by 27%) and under 8% O2 (by 46%), 
but not significantly under 1% O2. HLA-DR expression 
(MFI) of ILC3s was significantly reduced through TGF-
β1 only under 8% O2 (by 29%).

Fig. 1  Oxygen restriction reduces ILC3 antigen presentation potential. In vitro-generated ILC3s were incubated under indicated oxic conditions for 
72 h. Cells were activated with 20 ng/mL IL-1β and IL-23 for 18 h prior flow cytometry staining. A Representative gating strategies for identification 
of NCR+ ILC3s are shown. The overlapping histograms depict the expression of extracellular markers on NCR+ ILC3s under 21% O2 (stripped line) or 
reduced oxygen concentration (filled line). FMO controls are displayed as a filled curve. B Graphs show percentage of marker-expressing ILC3s (left) 
and the mean fluorescence intensity (MFI; right) of HLA-DR, CD80, CD40 and CD69. Data of 8 or 1% O2 (grey) was normalized to 21% O2 (outlined 
bar). Data is shown as mean ± SEM and was analyzed by paired Student’s t-test. *p < 0.05. Experiment was performed for each condition 5 times in 
duplicates 
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CD80 expression and proportion of CD80+ ILC3s was sig-
nificantly decreased by TGF-β1 under all oxygen conditions 
(percentage: by 12% each; MFI: by 22, 26, 20%, respectively).

Although oxygen restriction to 1% O2 increased the 
proportion of CD40+ ILC3s, stimulation with TGF-
β1 significantly reduced CD40 expression and the 

Fig. 2  hCG addition complements antigen presentation potential reduction in ILC3s. Additionally to oxic conditions, in vitro-generated ILC3s were 
stimulated with 100 IU/mL hCG for 72 h. 18 h before flow cytometry staining cells were activated with 20 ng/mL IL-1β and IL-23. A Representative 
gating strategies for identification of NCR+ ILC3s are shown. The overlapping histograms depict the expression of extracellular markers on NCR+ 
ILC3s under 21% O2 (stripped line) or reduced oxygen concentration (filled line). FMO controls are displayed as a filled curve. B The proportion 
of marker-expressing ILC3s (left) and the MFI of HLA-DR, CD80, CD40 and CD69 were analyzed (right). Effects of hCG (grey bars) were normalized 
to untreated cells (outlined bars) under the same oxic conditions. Bars show mean ± SEM. Data was analyzed by paired Student’s t-test. *p < 0.05, 
**p < 0.01. The experiment was repeated 5 (8 and 1% O2) or 10 times (21% O2) in duplicates
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proportion of CD40-expressing ILC3s under 21% (by 
18%; 12%) and 1% O2 (by 22, 18%).

CD69 expression became more sensitive to 
TGF-β1-mediated regulation with decreasing O2 

concentrations. TGF-β1 did not significantly change 
CD69 expression under 21 or 8% O2, but signifi-
cantly reduced CD69 expression by ILC3s under 1% 
O2 (by 14%).

Fig. 3  Reduced oxygen availability enhances TGF-β1-mediated reduction in ILC3 accessory molecules. Defined oxic conditions were combined 
with the addition of 2 ng/mL TGF-β1 to treat in vitro-generated ILC3s for 72 h. Cells were activated by 20 ng/mL IL-1β and IL-23 18 h before flow 
cytometry staining. A Representative gating strategies for identification of NCR+ ILC3s are shown. The overlapping histograms depict the expression 
of extracellular markers on NCR+ ILC3s under 21% O2 (stripped line) or reduced oxygen concentration (filled line). FMO controls are displayed as a 
filled curve. B The proportion of ILC3s expressing the indicated marker (left) and its MFI (right) were analyzed. Effect of TGF-β1 (grey bars) is shown 
relative to controls with the same oxic condition (outlined bars). Bars show mean ± SEM. Data was analyzed by paired Student’s t-test. *p < 0.05, 
**p < 0.01, ***p < 0.001. The experiment was repeated 5 (8 and 1% O2) or 10 times (21% O2) in duplicates
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Discussion
The role of oxygen on ILC biology has not been studied 
extensively [36]. In several tissues, oxygen modulates 
diverse biological processes, especially angiogenic events 
[10]. During placentation, the trophoblastic plug in the 
spiral arteries leads to a temporary state of low oxygen 
availability in the placenta and the contact zone of the 
decidua [1]. At this time, important modifications of the 
vasculature and the extracellular matrix take place [37] 
and the interplay between trophoblast cells and several 
immune cell subsets is crucial [38].

The fact that fetal cells (expressing paternal antigens) 
are tolerated by maternal immune system represents a 
significant challenge to our understanding of immune 
response mechanisms. Nevertheless, it is well-accepted 
that immune cells adapt during pregnancy to avoid 
fetal rejection [39, 40]. The tolerance to fetal antigens 
comprises both, active and passive mechanisms. Active 
mechanisms of fetal tolerance include cellular and 
humoral components which are triggered after paternal 
antigen recognition. In 1–5% of pregnancies, nonethe-
less, early spontaneous recurrent pregnancy loss can be 
observed. In the absence of miscarriage inducing fac-
tors, idiopathic recurrent pregnancy losses are believed 
to be caused mainly by immune factors; particularly, the 
impaired recognition of paternal antigens and the sub-
sequent loss of control over the inflammatory response 
[41].

Trophoblasts are invasive fetal cells that establish 
close contact with maternal immune cells [38]. In order 
to avoid immune rejection, trophoblasts do not express 
most polymorphic classical MHC-I and MHC-II mol-
ecules. MHC-II molecules, however, can be found in 
intracellular deposits of trophoblast cells [42]. During 
placentation, trophoblasts undergo cycles of growth and 
apoptosis [43]. Antigen presenting cells clean up the 
debris and can in this context present fetal antigens to 
CD4+ T cells [44]. In order to induce tolerance, instead of 
fetal rejection, the antigen presentation should occur in 
a manner that induces T cell tolerance instead of a pro-
inflammatory phenotype.

ILC3s are central components of immune homeo-
stasis in mucosal barriers, where they collaborate with 
the tolerance against commensal bacteria [16, 45, 46]. 
ILC3s can intake and process antigens, to later pre-
sent them in the context of MHC-II to CD4+ T cells 
[47, 48]. This interaction plays a fundamental role in 
the induction of intestinal commensal bacteria toler-
ance [49]. Although altered ILCs numbers have been 
described in disturbed pregnancies, the role of ILCs 
in fetal tolerance has not been studied extensively yet 

[50–55]. Our group has previously observed that ILCs 
reduce their antigen presentation potential during 
pregnancy, and that uterine ILCs retain a low pres-
entation potential [18]. Additionally, local soluble 
factors can modulate antigen presentation potential. 
Here we observed that low oxygen concentrations, as 
measured in the contact zone between decidua and 
placenta, induce a reduction of the MHC-II expres-
sion. This can be interpreted as induction of toler-
ance, which may facilitate the invasion of fetal cells 
into the maternal decidua.

Furthermore, we observed that the effects of factors 
that regulate ILC3 function, such as hCG or TGF-β1, 
are also dependent on the oxygen availability. The dras-
tic reduction of MHC-II expression in the culture at 1% 
O2 seemed to mask the relative effects of hCG and TGF-
β1. These, on the other hand, may play an important role 
later on in pregnancy, when the blood flow into the fetal 
circulation has been established and the oxygen concen-
tration increases.

The modulatory role of oxygen could be appreciated in 
the expression of co-stimulatory molecules as well. The 
culture under 1% O2 had an additive effect on the hCG 
modulation of the expression of CD80 and improved the 
regulatory effect of TGF-β1 on CD40 and CD69.

Our results support the idea that local factors at the 
fetomaternal interface can shape ILC3 function into a 
tolerogenic phenotype in terms of antigen presentation. 
These results encourage further research to elucidate 
how ILC3s shape their decidual phenotype and deter-
mine a cytokine producing, low antigen presentation 
potential. The influence of further soluble factors, cell-to-
cell contact and a possible distinct local in situ develop-
ment should be considered in future research.

The maintenance of fetal tolerance is fundamental for 
pregnancy success. The loss of fetal tolerance can induce 
pathological conditions as in villitis of unknown etiol-
ogy and secondary recurrent miscarriage [56]. It has 
been observed that alterations of the oxygenation at the 
beginning of pregnancy impact negatively on pregnancy 
outcome. Premature or excessive entry of maternal 
blood into the intervillous spaces is observed in miscar-
riage [4, 57]. The deleterious effects on fetal cell function 
of the resulting over oxygenation are partially mediated 
by free oxygen radicals, which impair early pregnancy 
events [58, 59]. It is likely that the downregulation of 
the antigen presentation potential of ILC3s by low oxy-
gen contributes to early tolerance against fetal-derived 
antigens. Alternatively, a regulated antigen presentation 
could be fundamental to avoid excessive inflammatory 
responses towards microbiota derived antigens. This 
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mechanism might represent a physiological adaptation 
in the context of the presence of non-infective bacteria 
as suggested by microbiome research in the upper repro-
ductive tract [60].

During the first trimester of pregnancy, which is char-
acterized by physiological low oxygen concentrations in 
the placenta, trophoblasts possess an invasive pheno-
type. There is, as a consequence, an increased cell repli-
cation which is balanced by a high apoptotic rate [61]. It 
has been proposed that antigen presenting cells clean up 
apoptotic trophoblasts [62]. For this reason, it is tempt-
ing to speculate that a reduced fetal antigen presenta-
tion would positively influence the balanced immune 
responses at the fetomaternal interface, by prevent-
ing excessive immune reactions. On the contrary, as 
observed in hyperoxic placentas, pregnancy problems 
may arise.
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