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Abstract 

Background:  According to current definitions of Polycystic Ovary Syndrome (PCOS), hyperandrogenism is consid-
ered as a key element in the pathogenesis of this common endocrinopathy. However, until now, studies about ovar-
ian androgen profile in women are very rare. Our aim was then to characterise the expression profile of the androgens 
in follicular fluid of 30 PCOS patients, and compare it to those of 47 Control women and 29 women with only polycys-
tic ovary morphology on ultrasounds (ECHO group).

Methods:  A retrospective, single-centre cohort study was performed. The intrafollicular concentrations of the key 
androgens were assessed and correlated with the intrafollicular levels of some adipokines of interest. Androgens 
were quantified by mass spectrophotometry combined with ultra-high-performance liquid chromatography, while 
adipokine concentrations were measured by ELISA assays.

Results:  In PCOS patients, the intrafollicular concentrations of the androgens synthesised by ovarian theca cells, i.e., 
17OH-pregnenolone, dehydroepiandrosterone, Δ4-androstenedione and testosterone, were significantly higher than 
those of the androgens of adrenal origin, and positively correlated with the main PCOS clinical and biological features, 
as well as with the adipokines mostly expressed in the follicular fluid of PCOS patients, i.e. resistin, omentin, chemerin 
and apelin. Conversely, Control women showed the highest levels of 17OH-progesterone, deoxycorticosterone and 
11-deoxycortisol. Confirming these results, apelin levels were negatively associated with pregnenolone and deoxycor-
ticosterone concentrations, while visfatin levels, which were higher in the Control group, negatively correlated with 
the Δ4-androstenedione and testosterone ones.

Conclusions:  PCOS is characterised by a selective increase in the intrafollicular levels of the androgens synthe-
sised by theca cells, strengthening the hypothesis that ovarian hyperandrogenism plays a central role in its patho-
genesis. Further, the significant correlation between the intrafollicular concentrations of the androgens and most 
of the adipokines of interest, including apelin, chemerin, resistin and omentin, confirms the existence of a close 
relationship between these two hormonal systems, which appear deeply involved in ovarian physiology and PCOS 
physiopathology.
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Background
Although according to current recommendations its 
presence is not mandatory for the diagnosis [1], hyper-
androgenism is considered as a key element in the 
pathogenesis of Polycystic Ovary Syndrome (PCOS). 
This position is especially supported by the Androgen 
Excess and PCOS Society, that has strongly opposed the 
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ESHRE/ASRM definition of PCOS since its introduction 
in 2003 [2], considering androgen excess as an essential 
diagnostic criterion [3]. Indeed, over the last decades, 
several authors highlighted in PCOS women the exist-
ence of a hyperandrogenic state mostly resulting from 
an intrinsic alteration of ovarian theca cells (TC) [4, 5]. 
These data have been further corroborated by the results 
obtained in vitro and in animal models, underlining the 
central role of ovarian hyperandrogenism in the develop-
ment of PCOS cardinal features [6–8].

As known, PCOS is associated with a significant 
metabolic impact [9, 10] partially linked to adipocyte 
dysfunction. Indeed, women with PCOS secrete unbal-
anced levels of plasma adipokines [11, 12], characterised 
by higher concentrations of leptin [13] and alterations 
in plasma and ovarian adiponectin, chemerin, resis-
tin, visfatin, apelin and omentin, that might be directly 
or indirectly involved in PCOS pathogenesis [11, 14]. 
Hyperandrogenism itself drives dysfunctional adipo-
cyte secretion of potentially harmful adipokines. Indeed, 
mice knocked down for adipocyte androgen receptor had 
alterations in adipokine levels, impaired insulin sensitiv-
ity and poor glucose tolerance not associated with obesity 
[15]. Even in non-obese PCOS patients, androgen hyper-
secretion and androgen receptor dysfunction seem to 
underlie the changes in adipokine levels [16] suggesting 
a tight interaction between these two hormonal systems.

Despite the central role of hyperandrogenism in PCOS, 
until now, to our knowledge, androgen profile in women 
has been studied almost exclusively in blood plasma, and 
data about ovarian androgen synthesis is yet very rare 
[17]. Thus, we characterised the expression profile of the 
key androgens in the follicular fluid (FF) of a cohort of 
PCOS patients, and decided to compare it to those of 
Control women and women presenting only polycys-
tic ovary morphology (PCOM) on ultrasounds. Indeed, 
this condition, that we named ECHO, is considered by 
several authors as a PCOS-like phenotype characterised 
by a mild dysfunction in ovarian steroidogenesis able to 
stimulate the early phases of folliculogenesis but not yet 
sufficient to affect the ovulatory process [5, 18]. Then, 
we correlated our results with the follicular concentra-
tions of some adipokines of interest, namely adiponectin, 
chemerin, resistin, visfatin, omentin, apelin and vaspin, 
and analysed the possible relationships existing between 
these two hormonal systems in order to better define 
their role in ovarian physiology and especially in PCOS 
pathogenesis.

Methods
Study population
The study was carried out in accordance with the Dec-
laration of Helsinki principles and free informed consent 

was obtained from all participants. Study protocol was 
previously approved by the Ethics Committee of the Uni-
versity Hospital of Tours as part of the “PREVADI” and 
“HAPOERTI” projects (authorisation number 2016_075).

The study population included all the women undergo-
ing an in vitro fertilisation (IVF) procedure at the Repro-
ductive Medicine and Biology Department of Tours 
University Hospital between 2011 and 2018 for whom we 
had all the samples and data of interest. Infertility causes 
included ovulatory insufficiency, diminished ovarian 
reserve, tubal diseases, endometriosis, male sterility or a 
combination of male and female causes. Women suffering 
from hyperprolactinemia and/or thyroid diseases were 
excluded. The ovarian stimulation and IVF protocols 
used [19] were the same for all included subjects. Clinical 
and biological information was retrospectively collected 
from the “INFO-FIV” and “Dossier Patient Partagé” 
databases of the University Hospital of Tours. Anthro-
pometric parameters and clinical signs of hyperandro-
genism, i.e. acne, alopecia and hirsutism, were recorded 
during the physical examination and a transvaginal pelvic 
ultrasound determining the antral follicle count was per-
formed by an experienced sonographer during the early 
follicular phase. Venous blood samples were obtained 
between days 3 and 5 of the cycle for AMH, FSH, LH, and 
oestradiol dosages, while plasma testosterone was mainly 
assessed in the presence of elements supporting PCOS 
diagnosis. Notwithstanding, the presence of clinical and/
or biological signs of hyperandrogenism was verified and 
excluded prior to inclusion for all the women included in 
the Control and ECHO groups.

A total of 106 subjects, aged between 21 and 42 years 
(31.6 ± 4.7) were allocated to 3 groups: PCOS group 
(n = 30), ECHO group, defined by the presence of PCOM 
without any other criteria necessary for PCOS diagno-
sis (n = 29), and Control group, including women with 
regular cycles and a follicle count < 12 per ovary (n = 47). 
According to the diagnostic criteria of the 2003 Rot-
terdam Consensus Conference [2], all PCOS patients 
presented with oligo-anovulation and PCOM, possibly 
associated with clinical and/or biological signs of hyper-
androgenism. Each group was composed almost equally 
by normal-weight (Body Mass Index, BMI 18–24,9 kg/m2) 
and overweight/obese (BMI ≥ 25 kg/m2) subjects.

Biological sampling
Blood analysis
Biological testing of venous blood samples was carried 
out in biomedical laboratories convenient to subjects’ 
home, and the data of interest, especially hormone dos-
age values, was retrospectively collected from medi-
cal records. However, as regards plasma testosterone, 
to make the data more homogeneous, we repeated the 
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analyses in the blood samples available to our laboratory 
using an Immulite® 2500 Immunoassay analyser (Sie-
mens, Munich, Germany).

Follicular fluid (FF)
FF was obtained during oocyte retrieval as part of the 
IVF procedure. Punction fluid was collected and centri-
fuged at 400 g for 10 minutes to separate the cellular rem-
nants from the supernatant FF, which was then frozen at 
− 80 °C for subsequent analysis.

Hormone assays
Androgen quantification
Androgens were quantified by mass spectrophotometry 
combined with ultra-high-performance liquid chroma-
tography as described by Meunier et  al. [20]. This is a 
newly developed technique that allows the simultane-
ous assay of several molecules with higher sensitivity and 
specificity than immunoassays, thus permitting the use of 
smaller sample volumes [21].

Adipokine assays
Adipokine concentration in FF was measured by ELISA 
assay. An R&D System kit (Abingdon, United Kingdom) 
was used for adiponectin, chemerin, resistin, visfatin, 
omentin and apelin (intra- and inter-assay coefficients 

of variation < 6% and ≤ 8%, respectively), whereas for the 
vaspin assay we employed a MyBioSource kit (San Diego, 
USA) with a sensitivity of 0.05 ng/L and intra- and inter-
assay coefficients of variation < 12 and < 8%, respectively.

Statistical analysis
Comparisons between groups were analysed by two-
way ANOVA followed by Bonferroni post-hoc tests. 
Given the finding of a statistically significant interac-
tion between weight and allocation group (Control, 
ECHO or PCOS), the analyses concerning BMI and fol-
licle count were carried out separately for normal-weight 
and overweight/obese subjects (Table  1). Simple linear 
regression was used as appropriate. Results, expressed as 
mean ± standard deviation, were not adjusted for age or 
any other factor. Statistical analysis was performed using 
GraphPad Prism software (version 9.1.0, San Diego, CA, 
USA) and p < 0.05 was considered the statistical threshold 
for declaring significance.

Results
Study population description
The anthropometric, clinical and biological features of 
study population, as well as IVF procedure outcomes, are 
reported in Table  1. According to the patient assignment 
criteria, PCOS group was characterised by 2.5 times longer 

Table 1  Clinical-biological features and in vitro fertilisation procedure outcomes of study women

Note: The values are expressed as mean ± standard deviation. ECHO women presenting ≥12 follicles per ovary without dysovulation and/or hyperandrogenism; PCOS 
Polycystic Ovary Syndrome; NW Normal-Weight; BMI Body Mass Index; AMH Anti-Müllerian Hormone; FSH Follicle-Stimulating Hormone; LH Luteinising Hormone
# p < 0.05 versus obese ECHO; °p < 0.0001 versus obese ECHO; ∞p < 0.0001 versus normal-weight Controls; •p < 0.0001 versus obese Controls; * p < 0.05, ** p < 0.01, *** 
p < 0.001 versus Controls; ^ p < 0.05, ^^ p < 0.01, ^^^ p < 0.001 versus ECHO

Controls ECHO PCOS BMI Effect Condition Effect

NW Obese NW Obese NW Obese

BMI (kg/m2) 21.2 ± 2.0
(n = 26)

31.5 ± 4.1#

(n = 21)
21.6 ± 1.89
(n = 15)

29.4 ± 3.0
(n = 14)

21.05 ± 1.8
(n = 13)

34.06 ± 2.3°

(n = 13)
p < 0.001 p < 0.05

Follicle Count (n) 16.3 ± 5.0
(n = 23)

11.1 ± 4.3
(n = 20)

35.1 ± 13.0∞

(n = 15)
33.9 ± 4.5•

(n = 14)
39.1 ± 14.7∞

(n = 17)
33.0 ± 8.4•

(n = 7)
p < 0.05 p < 0.0001

Cycles Duration (d) 28.3 ± 2.8
(n = 42)

30.5 ± 1.8
(n = 28)

79.1 ± 62.7***/^^^

(n = 25)
NS p < 0.0001

Testosterone 
(μg/L)

0.40 ± 0.20
(n = 23)

0.35 ± 0.12
(n = 18)

0.61 ± 0.48^

(n = 25)
NS p < 0.05

AMH (ng/mL) 2.68 ± 1.74
(n = 47)

6.06 ± 2.38
(n = 29)

11.10 ± 11.66***/^^

(n = 30)
NS p < 0.0001

FSH (UI/L) 6.44 ± 2.33
(n = 46)

6.13 ± 1.97
(n = 29)

5.75 ± 1.77
(n = 29)

NS NS

LH (UI/L) 4.38 ± 1.65
(n = 46)

5.53 ± 2.65
(n = 28)

6.12 ± 2.96**

(n = 29)
NS p < 0.01

Oestradiol (ng/L) 46.87 ± 28.35
(n = 46)

41.56 ± 30.32
(n = 28)

37.03 ± 9.92
(n = 29)

NS NS

Matures Oocytes 
(n)

6.5 ± 3.5
(n = 46)

10.3 ± 6.1**

(n = 29)
8.3 ± 4.8
(n = 29)

NS p < 0.01

Embryos (n) 3.9 ± 3.0
(n = 46)

7.1 ± 4.4***

(n = 29)
5.4 ± 3.3
(n = 29)

NS p < 0.01
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cycles duration, and follicle count was significantly higher 
for both PCOS and ECHO women. Similarly, in agreement 
with literature [22], PCOS patients had higher plasma tes-
tosterone, AMH and LH levels, while FSH and oestradiol 
blood concentrations did not differ among groups. Based 
on the oocytes and embryos counts, as we already pointed 
out in our previous studies [23, 24], the ECHO group 
seemed to be characterised by the best IVF success rates, 
although statistically significant differences were limited to 
comparisons with the Control group.

The ovary at the origin of the hyperandrogenism 
characterising PCOS
As reported in Figs.  1 and 2, in PCOS patients, follicular 
concentrations of the androgens synthesised by TC, i.e., 
17OH-pregnenolone, dehydroepiandrosterone (DHEA), 
Δ4-androstenedione and testosterone, were significantly 
higher than those of adrenal origin. The opposite situa-
tion was observed in the Control group. Indeed, Control 
women showed the highest levels of 17OH-progesterone, 
deoxycorticosterone (DOC) and 11-deoxycortisol, as 
well as the lowest levels of 17OH-pregnenolone, DHEA, 
Δ4-androstenedione and testosterone. Interestingly, 
in the ECHO group, follicular concentrations of most 
ovarian-derived androgens were intermediate between 
PCOS patients and Controls. No significant variation was 
observed in corticosterone and cortisol levels (Fig. 2).

Hyperandrogenism is tightly associated to the major 
clinical and biological features of PCOS
As illustrated in Figs.  3 and 4, follicular concentrations 
of 17OH-pregnenolone, DHEA, Δ4-androstenedione 
and testosterone significantly positively correlated 
with BMI and cycles duration. Additionally, DHEA, 
Δ4-androstenedione and testosterone levels were sig-
nificantly positively associated with plasma concentra-
tions of AMH and LH (for LH, however, a significant 
p-value was obtained only in associations with DHEA 
and Δ4-androstenedione). As regards testosterone con-
centration, we also found a significant positive correlation 
with ovarian follicle count, which, by contrast, was nega-
tively associated with the levels of the adrenal-originated 
androgens (Fig.  4). The latter, i.e., 17OH-progesterone, 
pregnenolone and DOC, also correlated negatively with 
plasma AMH concentration (Fig.  4) and positively with 
age (Fig. 3). No significant association was found regarding 
corticosterone and cortisol levels.

Relationships between androgens and adipokines in FF
The data about adipokine levels in FF largely reflected 
those described in our previous papers [23, 24]. Folli-
cular concentrations of all adipokines of interest were 
mainly and significantly influenced by BMI. Indeed, while 

normal-weight women had the highest levels of adiponec-
tin, the concentrations of visfatin, resistin, chemerin, 
omentin, apelin and vaspin were largely predominant in 
obese subjects (Figs. 5 and 6).

Concerning the pathological status, however, the results 
were less unified. PCOS patients had higher concentra-
tions of chemerin, omentin, apelin and resistin (Fig.  5). 
The ECHO group also showed significantly higher levels of 
apelin and, although limited to normal-weight subgroup, of 
resistin, adiponectin and vaspin (Figs. 5 and 6). In turn, fol-
licular concentration of visfatin was lower in obese ECHO 
and PCOS subjects than in BMI-matched Controls (Fig. 6).

Interestingly, the concentrations of the most expressed 
androgens and adipokines in FF of PCOS patients (17OH-
pregnenolone, DHEA, Δ4-androstenedione and tes-
tosterone, and resistin, omentin, chemerin and apelin, 
respectively) positively correlated each other (Fig.  7 and 
Table  2). In addition, apelin levels were negatively asso-
ciated with pregnenolone and DOC concentrations, 
significantly greater in Control women (Fig.  7). Simi-
larly, visfatin follicular concentration, which was higher 
in Control group, correlated negatively with that of 
Δ4-androstenedione and testosterone, which, by contrast, 
were predominant in PCOS group (Fig. 7). No significant 
correlation was found with respect to adiponectin and 
vaspin levels.

Discussion
In our study, we demonstrated that PCOS is associated 
with an intraovarian hyperandrogenic state characterised 
by a selective increase in androgens synthesised by TC, 
accompanied by a parallel decrease in androgens originat-
ing from the adrenals. To our knowledge, it is one of the 
first studies characterising the androgen profile in FF of 
PCOS women, and our results further strengthen the 
hypothesis that hyperandrogenism plays a key role in the 
pathogenesis of this complex endocrinopathy.

The presence of clinical and/or biological signs of hyper-
androgenism is one of the major criteria required to estab-
lish PCOS diagnosis [1] and, despite some conflicting advice 
[25], for several years now androgen excess has been recog-
nised as an essential factor in the development of most of the 
reproductive and metabolic alterations characterising this 
syndrome [7]. Although an adrenal origin can be identified 
in 10 to 30% of PCOS patients [5, 26], hyperandrogenism 
seems to result primarily from an intrinsic abnormality of 
ovarian TC, consisting of a dysregulation of the expression 
and/or activity of key steroidogenic enzymes [5, 27]. Gilling-
Smith et  al. first identified a hypersecretion of androsten-
edione, 17OHP and progesterone in culture medium of TC 
derived from polycystic ovaries, suggesting the possibility 
of a global overregulation of ovarian steroidogenesis mainly 
involving an increase in the 17-hydroxylase/17,20-lyase 
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Fig. 1  Ovary-synthetised androgens in follicular fluid of study women. Follicular concentrations of 17OH-pregnenolone (A), 
dehydroepiandrosterone (DHEA) (B), ∆4-androstenedione (C) and testosterone (D) quantified by mass spectrophotometry combined with 
ultra-high performance liquid chromatography (LC-MS/MS). ***p < 0.001, **p < 0.01, *p < 0.05 (two-way ANOVA followed by Bonferroni post-hoc tests)
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Fig. 2  Adrenal-originated androgens in follicular fluid of study women. Follicular concentrations of pregnenolone (A), 17OH-progesterone (B), 
deoxycorticosterone (DOC) (C), 11-deoxycortisol (D), corticosterone (E) and cortisol (F) quantified by mass spectrophotometry combined with 
ultra-high performance liquid chromatography (LC-MS/MS). ****p < 0.0001, *** p < 0.001, ** p < 0.01, *p < 0.05 (two-way ANOVA followed by Bonferroni 
post-hoc tests)
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activity of cytochrome CYP17 [28]. These results were fur-
ther confirmed in TC cultures from size-matched follicles 
of PCOS women and Controls, in which the authors also 
demonstrated a significant increase in the transcriptional 

expression of CYP17 and CYP11a, as well as in CYP17, 
3βHSD and cytochrome P450 activity [6, 29]. Interestingly, 
the hypothesis of an intrinsic, possibly genetically deter-
mined, abnormality of TC at the origin of PCOS is further 

Fig. 3  Correlations between androgen concentrations in follicular fluid and anthropometric features of study women. Correlations of androgen 
levels in follicular fluid (FF) with BMI (A) and age (B) (simple linear regression). *p ≤ 0.05 and **p < 0.01
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supported by genetic association studies. Indeed, the genes 
most frequently and significantly associated with this syn-
drome include several molecules involved in androgen 
metabolism, such as CYP11A, CYP21 [30] and, particularly, 
DENND1Av.2, a gene coding for a clathrin-binding protein 
that seems to play a key role in PCOS-associated hyperan-
drogenism by increasing CYP17A1 and CYP11A1 genes 
transcription [5, 31].

In our study, PCOS patients had significantly higher 
intrafollicular concentrations of 17OH-pregnenolone, 
DHEA, Δ4-androstenedione and testosterone than 

Controls and ECHO women. Particularly, at intrafol-
licular level, we showed a significant increase in 17OH-
pregnenolone, that, according to Nelson et al. [29], could 
be explained by the predominant activity of CYP17A1 
on 3βHSD. Interestingly, these findings corresponded 
to a significant decrease in pregnenolone, 17OHP, DOC 
and 11-deoxycortisol levels, raising the possibility that 
in PCOS, steroidogenesis is globally diverted from adre-
nal to ovarian metabolic pathways (Fig. 8). In agreement 
with several studies, the biochemical alteration typically 
characterising PCOS women consists of an exaggerated 

Fig. 4  Correlations between androgen follicular concentrations and clinical-biological parameters of study women. Correlations of androgen 
levels in follicular fluid (FF) with cycles duration (A), follicles count (B), plasma AMH (C) and plasma LH (D) concentrations (simple linear regression). 
*p ≤ 0.05, **p < 0.01, ***p < 0.001 and ****p < 0.0001
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response of plasma 17OHP to treatment by hCG [4] or 
GnRH-agonists [32]. The fact that we found significantly 
lower levels of 17OHP in the FF of PCOS patients does 
not exclude the possibility that its plasma concentration 
was increased. Indeed, 17OHP is a central molecule in 
the adrenal synthesis of mineralocorticoids and glucocor-
ticoids, which could be promoted in response to ovarian 
androgen overproduction.

The increase in plasma AMH and LH is one of the bio-
logical features typically, though variably, found in PCOS 
women [22]. Indeed, both hormones have been demon-
strated to be tightly involved in the pathogenesis of the 
ovarian disorders characterising this endocrinopathy 
[33]. In agreement with this data, in our cohort, plasma 
AMH and LH concentrations were significantly higher 

in PCOS than in the other two groups and, interest-
ingly, positively correlated with intrafollicular levels of 
17OH-pregnenolone, DHEA, Δ4-androstenedione and 
testosterone.

AMH is nowadays recognised as the main hormonal 
regulator of ovarian follicular development by concur-
rently stimulating preantral follicles growth and inhib-
iting antral follicles maturation [22]. Its plasma levels 
are therefore considered to reflect the extent of ovar-
ian reserve, as well as intrafollicular androgenic state 
as androgens promote the early stages of folliculogen-
esis [5]. According to this hypothesis, in a PCOS cohort, 
Rosenfield and Ehrmann found that plasma AMH con-
centration was independently associated with the pres-
ence of PCOM and intraovarian hyperandrogenism [5]. 

Fig. 5  Adipokines in follicular fluid of study women. Omentin (A), chemerin (B), resistin (C) and apelin (D) concentrations measured by ELISA 
assay in follicular fluid. Data are shown as individual values with means as horizontal bars. Groups were compared by two-way ANOVA followed 
by Bonferroni post-hoc tests. As interactions between BMI and pathological condition were statistically significant (p < 0.001), normal-weight and 
obese groups were analysed separately. ****/####p < 0.0001, **p < 0.01, *p < 0.05
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The positive correlations found in our study between 
plasma AMH and TC-derived androgens, as well as 
between follicle count and testosteronemia, strengthen 
the association between PCOS and intrafollicular hyper-
androgenism and, at the same time, corroborate litera-
ture data supporting the pathogenic role of androgen 
excess in the development of PCOM [34]. Indeed, in 
women, any condition of hyperandrogenism, whether 
of endogenous (e.g., congenital adrenal hyperplasia) or 
exogenous (e.g., female-to-male transsexualism) origin, 
induces in the ovaries the anatomical and histopatho-
logical features characteristic of PCOS women [34]. Simi-
larly, in rhesus monkey and sheep models, adult females 
exposed in utero to high doses of testosterone show large 
ovaries containing many small follicles, increased LH lev-
els and dysovulation [35].

LH hypersecretion resulting from dysregulation of 
the hypothalamic-pituitary axis, as besides being at the 

origin of the oligo-anovulation characteristic of PCOS, 
contributes in a variable way depending on the patient, 
to the development of hyperandrogenism by stimulating 
TC steroidogenesis [5]. Androgen excess, in turn, appears 
to disrupt the negative feedback of oestradiol and proges-
terone on pituitary, resulting in an increase in frequency 
and amplitude of LH secretory pulses [36]. Interestingly, 
in our cohort, intrafollicular levels of 17OH-pregne-
nolone, DHEA, Δ4-androstenedione and testosterone 
positively correlated with plasma LH concentration and 
cycles duration, a result that further supports the exist-
ence of a close association between intraovarian hyperan-
drogenism and LH, possibly critical in the development 
of ovulatory disorders typical of PCOS.

The demonstration of a significant association between 
androgens and most of the adipocytokines of interest 
suggests the existence of a tight relationship between 
these two hormonal systems and further confirms the 

Fig. 6  Adipokines in follicular fluid of study women. Adiponectin (A), visfatin (B) and vaspin (C) concentrations measured by ELISA assay in follicular 
fluid. Data are shown as individual values with means as horizontal bars. Groups were compared by two-way ANOVA followed by Bonferroni 
post-hoc tests. As interactions between BMI and pathological condition were statistically significant (p < 0.001), normal-weight and obese groups 
were analysed separately. ****/####p < 0.0001, ###p < 0.001, **p < 0.01
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Fig. 7  Correlations between androgen and adipocytokine concentrations in follicular fluid of study women. Correlations between androgen levels 
in follicular fluid and resistin (A), omentin (B), chemerin (C), visfatin (D) and apelin (E) follicular concentrations (simple linear regression). *p ≤ 0.05, 
**p < 0.01, ***p < 0.001 and ****p < 0.0001. DHEA = dehydroepiandrosterone; DOC = deoxycorticosterone
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possible involvement of adipocytokines in ovarian physi-
opathology. In a previous study [23], we already analysed 
adipokines expression in the FF of PCOS patients and 
found high levels of apelin, omentin, chemerin and resis-
tin. Conversely, visfatin concentration was significantly 
lower in the obese PCOS subgroup. These findings are 
confirmed by the results of the present study obtained in 
a larger cohort of patients and are further strengthened 
by the associations found with the intrafollicular lev-
els of the androgens predominant in PCOS women, i.e. 
positive correlation with apelin, omentin, chemerin and 
resistin concentrations, and negative correlation with vis-
fatin. On the other hand, according to our previous find-
ing [24], vaspin does not seem to be directly implicated 
in PCOS pathogenesis, particularly as regards intraovar-
ian hyperandrogenism. Indeed, although an increase in 
vaspin protein expression and secretion was reported in 
TC-granulosa cells (GC) cocultures after testosterone 
stimulation [37], literature generally rules out any signifi-
cant association between this adipokine and androgens 
in PCOS women [38].

Evidence concerning androgens-adipokines relation-
ships, particularly at ovarian level, is currently scarce 
and often inconclusive. Nevertheless, chemerin plasma 
concentration has been reported to be higher in hyper-
androgenic PCOS patients than in the normo-androgenic 
ones and to correlate positively with testosterone levels 
[39]. Additionally, CMKLR1 gene deletion protected 
DHT-treated rats from the negative effects of androgen 
treatment on progesterone secretion, cycles regular-
ity and ovulation [39]. Considering these results and the 
fact that, in vitro, testosterone stimulation of human GC 
resulted in an overexpression of both chemerin and its 
receptors [40], Lima et  al. suggested that hyperandro-
genism might induce an increase in chemerin ovarian 
levels, which, in turn, might act as a chemoattractant for 
circulating CMKLR1+ monocytes [41]. Supporting this 
hypothesis, in DHT-treated rats, hyperchemerinemia 
was associated with increased apoptosis of GC [42], and 
the number of the oocytes and embryos obtained from 
women with high intrafollicular chemerin concentra-
tions was significantly reduced [40]. According to this 

data, chemerin could therefore be one of the possible 
mediators through which hyperandrogenism induces the 
perturbations in folliculogenesis and the alterations in 
oocyte maturation at the origin of PCOS [42].

Similarly, adipocyte expression of resistin has been 
shown to be higher in PCOS women with hyperandro-
genism [43], and its plasma concentration positively cor-
related with testosteronemia in PCOS patients but not 
in Controls, evoking the possibility that polycystic ovary 
TC are more sensitive to the action of resistin, which, by 
interacting with insulin, could contribute to androgen 
hyperproduction [44].

An analogous mechanism has been proposed for 
omentin. Indeed, in human GC, omentin has been dem-
onstrated to facilitate IGF-1 signalling by increasing cell 
sensitivity to insulin [45]. Since IGF-1, acting in synergy 
with LH, stimulates androgen production by TC [45], 
omentin could be involved in the development of hyper-
androgenism, particularly in obese subjects. However, it 
is noteworthy that, according to several studies, in PCOS 
patients, adipocyte synthesis of omentin is decreased in 
conditions of hyperandrogenism and its plasma concen-
tration negatively correlates with free testosterone levels 
[46, 47]. These results, although somewhat controversial 
[48], contrast with our observations, suggesting that the 
relationships between omentin and androgens are much 
more complex and deserve further investigation.

Likewise, literature on visfatin does not agree with our 
results. Indeed, visfatin has been proposed to stimulate 
androgen synthesis by TC through its insulin-like action 
[49]. Furthermore, in two different cohorts of PCOS 
patients, hyperandrogenic women [49] and hirsute ado-
lescents [50] had significantly higher visfatin plasma lev-
els than normo-androgenic and non-hirsute subjects, 
and a positive correlation between circulating visfatin 
and several markers of hyperandrogenism was repeatedly 
found [49–51]. Considering that these results refer to vis-
fatin plasma expression, the discrepancy with our find-
ings might indicate that this adipocytokine is differently 
regulated at systemic and ovarian level. However, consist-
ent with our previous data [23], its implication in PCOS 
pathogenesis seems to be limited.

As regards apelin, the relationship between this adipo-
cytokine and PCOS hyperandrogenism has been widely 
studied and appears mostly indirect. Indeed, apelin has 
been reported to be involved in hormonal regulation of 
ovarian function, particularly in folliculogenesis, via its 
action on the arcuate, supraoptic and paraventricular 
hypothalamic nuclei resulting in suppression of FSH, LH 
and prolactin secretion [52]. In agreement with this data, 
a negative correlation between plasma concentrations 
of apelin and LH was repeatedly described [53]. Our 
results could therefore suggest that apelin contributes to 

Table 2  Simple linear regression analysis between androgens 
and adipokines concentrations in follicular fluid of study women

Data are expressed as r2 (simple linear regression). Note: DHEA 
dehydroepiandrosterone; DOC deoxycorticosterone

Resistin Omentin Chemerin Apelin

17OH-Pregnenolone 0.038 0.053 0.054 0.042

DHEA 0.069 0.112 0.112 0.149

 Δ4-androstenedione 0.048 0.066 0.094 0.142

Testosterone 0.037 0.088 0.073 0.101
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steering steroidogenesis towards preferential androgen 
synthesis through the perturbations induced at HPG axis 
level, which, moreover, would play a key role in arresting 
follicular development at the origin of PCOM [23].

In our study, we characterised for the first time 
the expression profile of androgens in FF, revealing 

intraovarian hyperandrogenism in PCOS patients. 
Although this result is very significant by itself consid-
ering that most of the women had no signs of systemic 
hyperandrogenism, it would have been even more rele-
vant if we could have had the testosteronemia data for all 
included subjects, particularly those obtained at the time 

Fig. 8  Overview of androgen synthesis pathways in women. Metabolic pathways of androgen synthesis in the adrenal glands and ovarian theca 
and granulosa cells. In PCOS (pink arrow), steroidogenesis seems to be diverted from adrenal to ovarian metabolic pathways due to CYP11A1, 
CYP17 and 3𝛽HSD hyperactivity in theca cells, resulting in increased intrafollicular levels of 17OH-pregnenolone, DHEA, ∆4-androstenedione and 
testosterone. PCOS = Polycystic Ovary Syndrome; DHEA = dehydroepiandrosterone; DOC = deoxycorticosterone
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of FF collection. Indeed, this would have made it possible 
to compare androgen levels in plasma and FF, and to ana-
lyse their relationships with adipocytokines and features 
of interest. A new study already underway in our labora-
tory will enable us to obtain a blood sample on the same 
day as the oocyte punction, thus overcoming this limita-
tion and possibly highlighting other significant aspects 
of ovarian physiopathology. In analogy to what has been 
done previously in human GC [24, 45, 54, 55], it would 
be noteworthy also to evaluate the expression of the main 
steroidogenic enzymes in TC from PCOS, ECHO and 
Control women stimulated with different adipocytokines. 
This could allow us to validate or refute our hypotheses 
about AMH and LH involvement in ovarian steroidogen-
esis and, above all, about the interactions between andro-
gens and adipocytokines in PCOS pathogenesis.

Conclusions
In conclusion, we demonstrated for the first time that 
PCOS is characterised by a selective increase in intrafolli-
cular levels of the androgens synthesised by TC, strength-
ening the hypothesis that ovarian hyperandrogenism 
plays a central role in the pathogenesis of this complex 
syndrome. Moreover, the demonstration of a significant 
association between follicular androgens and most of 
the adipokines of interest, including apelin, chemerin, 
resistin and omentin, confirms the existence of a close 
relationship between these two hormonal systems, that 
appear deeply involved in ovarian physiology and, more 
so, in PCOS physiopathology.
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