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Abstract 

As a common endocrinopathy of reproductive-aged women, polycystic ovary syndrome (PCOS) is characterized by 
hyperandrogenism, oligo-anovulation and polycystic ovarian morphology. It is linked with insulin resistance through 
preferential abdominal fat accumulation that is worsened by obesity. Over the past two millennia, menstrual irregu-
larity, male-type habitus and sub-infertility have been described in women and confirm that these clinical features 
of PCOS were common in antiquity. Recent findings in normal-weight hyperandrogenic PCOS women show that 
exaggerated lipid accumulation by subcutaneous (SC) abdominal stem cells during development to adipocytes 
in vitro occurs in combination with reduced insulin sensitivity and preferential accumulation of highly-lipolytic intra-
abdominal fat in vivo. This PCOS phenotype may be an evolutionary metabolic adaptation to balance energy storage 
with glucose availability and fatty acid oxidation for optimal energy use during reproduction. This review integrates 
fundamental endocrine-metabolic changes in healthy, normal-weight PCOS women with similar PCOS-like traits 
present in animal models in which tissue differentiation is completed during fetal life as in humans to support the 
evolutionary concept that PCOS has common ancestral and developmental origins.
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Background
Polycystic ovary syndrome (PCOS) is characterized by 
ovarian hyperandrogenism from altered hypothalamic-
pituitary-ovarian function in combination with hyper-
insulinemia from insulin resistance. With a prevalence 
of 6–20% in the general population, depending upon 
the definition of PCOS [1], its clinical manifestations 
of hirsutism, oligo-anovulation and polycystic ovarian 
morphology (PCOM) accompany glucose intolerance, 
dyslipidemia and preferential abdominal fat accumula-
tion worsened by obesity [2]. These clinical manifesta-
tions of PCOS determine risks of subfertility, diabetes, 
metabolic syndrome and/or cardiovascular disease. 

Almost one-half of women with PCOS in the United 
States have metabolic syndrome, which is higher in prev-
alence than that of age-matched normal women in this 
country [1, 3] and of women with PCOS in other coun-
tries where obesity is less prevalent [4].

As a heritable syndrome with a polygenic origin, large 
genome-wide association studies (GWAS) have identified 
several PCOS susceptible loci in candidate genes involv-
ing insulin action, androgen biosynthesis and gonadal 
function [1]. These PCOS susceptible loci alone, however, 
have yet to explain the majority of PCOS phenotypic 
expression [5]. Rather, heritability of PCOS may involve 
one or more PCOS candidate genes interacting with 
environmental factors to modify target tissue phenotype 
through epigenetic events [6, 7], beginning before birth 
when an altered maternal endocrine-metabolic environ-
ment modifies fetal genetic susceptibility to PCOS, and 
continuing after birth into adulthood [4].
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This review examines how the endocrine-metabolic 
characteristics of women with PCOS originally favored 
survival of humans in ancient times of food depriva-
tion, but now predispose to endocrine-reproductive 
dysfunction in today’s obesogenic environment. It inte-
grates clinical characteristics of PCOS women with 
similar PCOS-like traits present in prenatally testoster-
one-treated monkeys and sheep to provide evidence of 
developmental programming in PCOS, given that tissue 
differentiation in these species, as in humans, occurs dur-
ing fetal life.

Clinical variables
Several variables affect the endocrine-metabolic char-
acteristics of women with PCOS. As one such variable, 
different PCOS phenotypes by Rotterdam criteria vary in 
their degree of reproductive and metabolic dysfunction 
[8]. Women with National Institutes of Health (NIH)-
defined PCOS (i.e., hyperandrogenism with oligo-ano-
vulation with or without PCOM) are at greatest risk of 
developing menstrual irregularity, anovulatory infertil-
ity, type 2 diabetes mellitus and metabolic syndrome, as 
defined by increased abdominal (android) obesity, hyper-
glycemia, dyslipidemia and hypertension. Ovulatory 
women with PCOS (i.e., hyperandrogenism and PCOM) 
have a lower body mass index (BMI) and milder hyperin-
sulinemia and hyperandrogenism, which lower the risks 
of developing reproductive and metabolic abnormalities, 
while women with non-androgenic PCOS (oligo-anovu-
lation and PCOM) have the least metabolic risk [1].

In addition, obesity coexists with abnormal insulin 
action in most women with PCOS [9–11]. Although not 
an intrinsic defect of PCOS, obesity can interact with 
hyperandrogenism to worsen PCOS phenotypes [1–3, 
12–14] and impair insulin sensitivity [2, 15, 16]. In this 
regard, women with PCOS within a referral popula-
tion have a more severe phenotype, including greater 
hyperandrogenism, higher BMI and increased risk 
for metabolic dysfunction, than PCOS women within 
an unselected background population [17, 18]. Age is 
another positive predictor of insulin resistance in adipose 
tissue [19]. These variables that adversely affect endo-
crine-metabolic function in PCOS were avoided in our 
studies by investigating healthy, normal-weight PCOS 
women by NIH criteria who were recruited from the gen-
eral population to study a mild PCOS phenotype [17, 20] 
and who also were age- and BMI-balanced to controls to 
eliminate the effects of age and obesity on metabolic out-
comes, including insulin sensitivity [15, 16, 19, 21].

In the context of metabolic function, women with 
NIH-defined PCOS have two distinct PCOS subtypes 
with different genetic heterogeneity. A reproductive 
endocrine subtype (23% of cases) is characterized by 

higher luteinizing hormone (LH) and sex hormone bind-
ing globulin (SHBG) levels with relatively low BMI and 
insulin levels, while a metabolic subtype (37% of cases) 
is characterized by higher BMI, glucose and insulin lev-
els, with lower SHBG and LH levels. These PCOS sub-
types may differ in their developmental origins [22], with 
their heritability variably interacting with risk-increasing 
environmental factors, including maternal obesity and 
gestational diabetes, to fully explain its prevalence. Such 
genetic-environmental interactions likely begin before 
birth, when an altered maternal-placental-fetal environ-
ment generates epigenetic modifications in fetal genetic 
susceptibility to PCOS that continue after birth into 
adulthood, with metabolic adaptations that enhance fat 
storage but predispose to lipotoxicity [23].

Insulin resistance
Most women with PCOS have some degree of insulin 
resistance due to perturbed insulin receptor/post recep-
tor signaling, altered adipokine secretion and abnormal 
steroid metabolism [2] in combination with increased 
abdominal fat over a wide BMI range [1, 24, 25]. Clini-
cally, insulin sensitivity (Si) and insulin resistance can 
be quantified by frequently sampled intravenous glu-
cose tolerance testing (FSIVGTT) and/or Homeostatic 
Model Assessment for Insulin Resistance (HOMA-IR), 
respectively. Healthy, normal-weight PCOS women by 
NIH criteria have Si and HOMA-IR values within low-
normal and high-normal and ranges, respectively [26]. 
By total body dual-energy x-ray absorptiometry, they also 
exhibit preferential accumulation of abdominal fat, called 
android fat, which positively correlates with circulating 
androgen and fasting insulin levels, and remains related 
to serum androgen levels adjusting for serum insulin lev-
els [24].

Intra‑abdominal adipose
In women with NIH-defined PCOS, preferential abdomi-
nal fat accumulation [2, 27] promotes insulin resistance 
through increased intra-abdominal (visceral) fat mass, 
and worsens with weight gain as a risk factor for meta-
bolic disease [28–30]. Such preferential abdominal fat 
accumulation in hyperandrogenic PCOS women under-
lies insulin resistance over a wide BMI range [25], and 
also occurs in healthy normal-weight PCOS women by 
NIH criteria in combination with adipose insulin resist-
ance (adipose-IR), defined by the product of fasting cir-
culating free fatty acid (FFA) and insulin levels [19, 24, 
26]. In these normal-weight PCOS women, moreover, an 
increase in intra-abdominal fat positively correlates with 
serum androgen concentrations and fasting circulating 
levels of insulin, triglyceride (TG), as well as non-high-
density lipoprotein (non-HDL) cholesterol [24].
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Intra-abdominal adipose in humans is highly lipolytic 
and resists androgen inhibition of catecholamine-induced 
lipolysis (lipid breakdown) despite expressing androgen 
receptors [31]. Instead, intra-abdominal adipose of non-
obese PCOS women shows exaggerated catecholamine-
induced lipolysis despite normal insulin suppression 
of lipolysis [32, 33]. Consequently, an increase in intra-
abdominal fat in normal-weight PCOS women likely 
enhances FFA delivery to the liver and muscle for energy 
storage, but worsens insulin resistance if increased FFA 
availability exceeds the capacity of these tissues to oxidize 
fat or convert diacylglycerols to triacylglycerols [32–34].

Subcutaneous abdominal adipose
Subcutaneous (SC) abdominal adipose normally protects 
against insulin resistance through a balance between 
lipogenesis (lipid formation) and lipolysis (lipid break-
down) in mature adipocytes combined with new adipo-
cyte formation (i.e., adipogenesis), whereby adipose stem 
cells (ASCs) initially undergo commitment to preadipo-
cytes and then differentiate into newly-formed adipo-
cytes [35–37]. Subcutaneous adipose can thus increase 
its fat storage capacity through both enlargement of 
mature adipocytes (i.e., hypertrophy) and development 
of new adipocytes (i.e., hyperplasia) to buffer fatty acid 
influx when energy intake exceeds energy expenditure 
[38, 39].

Within SC adipose, androgen normally inhibits early-
stage adipogenesis, diminishes insulin-stimulated glucose 
uptake and impairs catecholamine-stimulated lipolysis 
through reduced β2-adrenergic receptor and hormone-
sensitive lipase (HSL) protein expression [31, 32, 35, 
40]. As a result, SC abdominal adipose of PCOS women 
shows diminished insulin-mediated glucose uptake, 
reduced glucose transporter type 4 (GLUT-4) expression 
[41] and catecholamine lipolytic resistance from dimin-
ished protein levels of β2-adrenergic receptor, HSL and 
protein kinase A regulatory-IIβ component (PKA-RegIIβ) 
[42, 43]. As a biomarker of lipolysis, serum glycerol levels 
are decreased in normal-weight PCOS women with nor-
mal insulin sensitivity [42], yet increased in overweight 
PCOS women [44], likely because androgen-induced cat-
echolamine lipolytic resistance in normal-weight PCOS 
women [43] is antagonized by impaired insulin suppres-
sion of lipolysis in overweight PCOS women [44].

Consequently, adipose-IR is often increased in healthy 
normal-weight women with NIH-defined PCOS com-
pared to age- and BMI-matched normal women [26]. 
Moreover, adipose-IR in these women positively cor-
relates with serum androgen and fasting TG levels, 
and negatively correlates with Si values [26]. These 
endocrine-metabolic relationships are further modi-
fied by local intracellular aldo-ketoreductase type 1C3 

(AKR1C3) activity, an aldo-ketoreductase enzyme that 
generates testosterone (T) from androstenedione (A4) 
and exists predominantly in SC rather than intra-abdom-
inal adipose [45, 46]. In overweight/obese PCOS women, 
increased AKR1C3-mediated T generation from A4 in 
SC abdominal adipose enhances lipid storage through 
increased lipogenesis and decreased lipolysis [47]. Simi-
larly, in normal-weight women with NIH-defined PCOS, 
an increased serum total T/A4 ratio, as a marker of 
enhanced SC adipose AKR1C3 activity, negatively corre-
lates with fasting serum TG levels, adjusting statistically 
for serum free T as a possible confounding variable [48]. 
This inverse relationship of serum total T/A4 ratio with 
fasting serum TG level in normal-weight, NIH-defined 
PCOS women may reduce TG turnover to counter-bal-
ance androgen inhibition of insulin-stimulated glucose 
uptake in SC abdominal adipocytes [40].

SC abdominal stem cells
The dynamic process of adipocyte development begins 
in early life [49]. Subcutaneous abdominal ASCs from 
normal-weight PCOS by NIH criteria compared to age−/
BMI matched normal healthy women exhibit inherently 
altered gene expression of adipogenic/angiogenic func-
tions involving androgen-insulin interactions through 
transforming growth factor (TGF)-β1 signaling [26]. 
When SC abdominal ASCs from normal-weight PCOS 
women are cultured in vitro (without exogenous andro-
gen), exaggerated commitment of ASC to preadipocytes 
via zinc-finger protein 423 (ZFP423) expression nega-
tively correlates with fasting circulating glucose levels 
[50]. Subsequently, accelerated lipid accumulation in 
newly-formed PCOS adipocytes during adipocyte matu-
ration in vitro positively correlates with hyperandrogen-
emia and predicts both reduced serum FFA levels and 
improved systemic insulin sensitivity in vivo [50, 51]. In 
some SC abdominal ASCs from normal-weight PCOS, 
overexpression of peroxisome proliferator-activated 
receptor γ (PPARγ) and CCAAT enhancer binding pro-
tein a (CEBPa) during adipocyte maturation in  vitro 
accompanies altered dynamic chromatin remodeling, 
with enrichment of binding motifs for transcription fac-
tors of the activator protein-1 (AP-1) subfamily that gov-
ern adipocyte differentiation [23]. These findings suggest 
that triacylglycerol synthesis, lipid oxidation, free fatty 
acid beta-oxidation and oxidative phosphorylation may 
be reprogrammed in these cells to promote greater fat 
storage [50]. Similar studies of SC abdominal ASC gene 
expression and function in overweight/obese PCOS by 
NIH criteria have not yet been performed.

Linked with this exaggerated ZFP423-induced ASC 
commitment to preadipocytes in vitro is a greater forma-
tion of small SC abdominal adipocytes in normal-weight 



Page 4 of 11Dumesic et al. Reproductive Biology and Endocrinology           (2022) 20:12 

PCOS women [24, 26, 50]. A similar population of small 
SC abdominal adipocytes in other individuals [49, 52, 
53] protects against insulin resistance through enhanced 
ASC commitment to preadipocyte differentiation and 
ZFP423 upregulation due to epigenetic changes in its 
promoter region [54]. An increased proportion of small 
SC abdominal adipocytes occurs in PCOS-like prena-
tally-T treated adult rhesus monkeys with increased 
visceral adiposity and insulin resistance [5, 55]. It also 
occurs in prenatally-T treated sheep with insulin resist-
ance [56], perhaps as a compensatory adaptation to an 
altered intrauterine metabolic environment apart from 
extant androgen since enhancement of the small adipo-
cyte population is not reversed with flutamide cotreat-
ment [57, 58].

Finally, overexpression of PPARγ and CEBPa in some 
PCOS SC abdominal stem cells accompanies upregula-
tion of AKR1C3 during adipocyte maturation in  vitro. 
These findings correspond with an inverse relationship of 
serum total T/A4 ratio with serum TG level in normal-
weight PCOS women [48], and suggest that reduced TG 
turnover in SC adipose of these individuals favors insulin 
sensitivity [59, 60]. AKR1C3 gene expression and activ-
ity are normally greater in preadipocytes and adipose of 
gluteal compared to omental fat, with gluteal fat favor-
ing androgen activation (i.e., AKR1C3), and omental cells 
favoring androgen inactivation (i.e., aldo-ketoreductase 
type 1C2 [AKR1C2]) [46]. These differential actions of 
AKR1C3-mediated androgen activation by fat depot, 
combined with hyperandrogenemia and preferential 
intra-abdominal fat accumulation, likely influence body 
fat distribution and function in normal-weight PCOS 
women through a programmed mechanism to balance 
glucose-insulin homeostasis with fat accretion [24, 50].

Lipotoxicity
Several endocrine-metabolic characteristics of PCOS 
women worsen with increased adiposity. Overweight/
obese compared to normal-weight women with PCOS 
exhibit greater preferential abdominal fat accumulation, 
hyperandrogenism and insulin resistance [2] accompa-
nied by increased serum glycerol levels from impaired 
insulin suppression of lipolysis [44]. Their enlarged SC 
abdominal mature adipocytes are also more pre-disposed 
to a pro-inflammatory lipid depot environment than the 
increased number of smaller SC abdominal adipocytes 
present in normal-weight women with PCOS [24, 44]. 
Given androgen inhibition of early-stage SC abdominal 
adipogenesis [35], overweight/obese women with PCOS 
are more likely than normal-weight PCOS women to 
have an impaired ability to properly store fatty acid influx 
in SC fat as energy intake exceeds energy expenditure 

[38, 39], promoting ectopic lipid deposition in non-adi-
pose tissue [1] (Fig. 1).

Lipotoxicity refers to the ectopic lipid accumulation in 
non-adipose tissue where it induces oxidative/endoplas-
mic reticulum stress tightly linked with insulin resistance 
and inflammation [61]. Overweight/obese women with 
PCOS are at increased risk of developing lipotoxicity due 
to excess FFA uptake into non-adipose cells, including 
the muscle, liver, pancreas and ovary, which is exacer-
bated by increased intra-abdominal fat with high lipolytic 
activity [32, 33, 62–65]. Consequently, excess fatty acid 
influx into skeletal muscle and liver promotes diacylg-
lycerol-induced insulin resistance, which impairs insulin 
signaling via increased insulin receptor serine phospho-
rylation, and worsens with disrupted mitochondrial oxi-
dative phosphorylation [34, 66].

Developmental programming: dual hits 
from maternal‑fetal endocrine‑metabolic dysfunction
Through an evolutionary perspective, the high world-
wide prevalence of PCOS in today’s environment and 
its negative impact on reproduction should have disap-
peared over millennia unless a beneficial effect favored 
both survival and reproduction [67]. There is little 
genetic evidence of strong selection against transmis-
sion of PCOS risk genes across multiple generations 
[68]. Rather, ancestral traits may have originally favored 
PCOS in hunter-gatherers of the late Pleistocene, or 
perhaps in more ancient human populations, when 
scarcity of food in pregnancy programmed in the fetus 
enhanced adipogenesis for greater fat storage to meet 
the metabolic demands of reproduction in later life (i.e., 
metabolic thrift). In this regarding, the same PCOS risk 
genes expressed in women with PCOS from both Chi-
nese and European populations suggest ancient origins 
[68], potentially dating back before human diaspora out 
of sub-Saharan Africa 100,000–50,000 years ago [69, 70].

Indeed, commonality among > 20 PCOS candidate 
genes in women with differing PCOS phenotypes, 
including those diagnosed by Rotterdam or NIH crite-
ria, or by self-report, strongly suggests shared molecu-
lar and developmental origins despite heterogeneity of 
PCOS phenotypic expression [71]. Moreover, rare gene 
variants of DENND1A involved in regulating andro-
gen production, have been identified in ~ 50% of fami-
lies with PCOS [72]. In this regard, a posttranscription 
form of DENND1A, DENND1A.v2, is over-expressed 
in some women with PCOS [73], while experimen-
tally-induced DENND1A.v2 over-expression in human 
theca cells increases androgen biosynthesis and release 
as a fundamental PCOS trait linked to metabolic dys-
function. But without evidence of GWAS-identified, 
PCOS-associated, intronic gene variants of DENND1A 
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enabling DENND1a.v2 over-expression or ovarian 
hyperandrogenism, investigations continue into the 
pathogenic mechanisms underlying this PCOS-associ-
ated gene variant [74].

A separate whole-genome sequencing study found 
in ~ 3% of families with PCOS, rare gene variants in 
anti-mullerian hormone (AMH) and its type 2 receptor 
(AMHR2) [75]. Both genes are involved in intra-ovarian 
follicle development and hypothalamic GnRH stimula-
tion, which ultimately regulate ovarian androgen pro-
duction [76]. Whether these mostly missense variants in 
AMH and AMHR2 induce the elevated circulating and 
intrafollicular levels of AMH and the ovarian hyperan-
drogenism of PCOS women remains unclear [75].

In addition, some PCOS candidate genes, such as thy-
roid adenoma associated (THADA) and insulin receptor 
(INSR), have been associated with metabolic syndrome 
and impaired glucose regulation in PCOS and type 2 dia-
betes [77], suggesting genetic contributions to metabolic 
dysfunction in women with PCOS. Moreover, in a recent 
Mendelian randomization study, gene variants associ-
ated with high bioavailable (unbound) circulating T lev-
els were also linked with PCOS and type 2 diabetes [78], 

providing an additional causal role for female hyperan-
drogenism in the onset of both disorders.

Maternal-fetal endocrine-metabolic dysfunction 
appears to enable genetic and/or epigenetic re-program-
ming of the female phenotype into PCOS [79]. During the 
second trimester of development, the human fetal ovary 
contains several steroidogenic enzymes, genes encoding 
steroid-signalling pathways, and receptors to steroids, 
insulin and insulin-like growth factors, when primordial 
ovarian follicles and abdominal fat are present [1, 80, 
81]. Mid-trimester human and nonhuman primate fetal 
ovaries can metabolize progestins and their conjugates 
into androgens enabling T secretion [82, 83]. The human 
midgestational fetal ovary also may produce androgens in 
response to in utero hyperinsulinemia, particularly in a 
female fetus with a genetic susceptibility to PCOS. Amni-
otic fluid T levels are elevated in female fetuses of dia-
betic [84] mothers, along with theca and pancreatic beta 
cell hyperplasia accompanying ovarian theca-lutein cysts 
in hirsute female stillbirth offspring of these women [85, 
86]. Amniotic fluid T levels also are elevated in female 
fetuses of PCOS mothers [87] during mid-gestation 
when regional fat depots in the human fetus develop [81]. 

Fig. 1  Altered molecular pathways of subcutaneous (SC) abdominal adipogenesis in polycystic ovary syndrome (PCOS) as a risk factor for 
lipotoxicity. In normal-weight PCOS women, exaggerated adipose stem cell (ASC) development to adipocytes occurs via androgen-independent 
mechanisms [23, 50]. Simultaneously, androgen excess inhibits early-stage adipogenesis, diminishes insulin-stimulated glucose uptake, promotes 
lipid storage and impairs catecholamine-stimulated lipolysis [31, 32, 35, 40, 47], favoring abdominal fat deposition and increased energy availability 
through hyperandrogenism and insulin resistance, respectively. These same traits are worsened in overweight/obese PCOS women who have 
greater preferential abdominal fat accumulation, hyperandrogenism, and systemic insulin resistance [2], along with impaired insulin suppression of 
lipolysis [2, 44], promoting ectopic lipid deposition and lipotoxicity [1]
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Elongated anogenital distances, as postnatal biomarkers 
of mid-gestational fetal hyperandrogenism, occur in both 
female infants of PCOS mothers and in PCOS women 
[5], affirming midgestational fetal female hyperandrogen-
ism. Interestingly, term umbilical cord T levels are ele-
vated in only some female infants of PCOS mothers since 
sex differences in fetal T exposure are normally mini-
mal at birth [4]. These findings collectively suggest that 
endocrine-metabolic disorders of pregnancy in mothers 
with PCOS can induce epigenetic modifications of fetal 
genetic susceptibility to PCOS after birth.

From a maternal perspective, PCOS women in preg-
nancy have greater serum androgen levels, higher fasting 
and 2-h post-prandial insulin values and elevated serum 
AMH levels [88–90] compared to normal mothers. Sub-
sequently, the prevalence of gestational diabetes, glucose 
intolerance and type 2 diabetes in PCOS women is up to 
5-fold higher than that of other women and is worsened 
by obesity, with about 40% of PCOS women developing 
gestational diabetes and other pregnancy complications 
[5, 8]. Moreover, PCOS women in pregnancy exhibit 
exaggerated dyslipidemia and elevated circulating 
inflammatory markers that predict gestational diabetes, 
hypertensive disorders and adverse obstetrical/neonatal 
outcomes [91, 92]. Maternal hyperandrogenemia from 
PCOS, however, may not directly program PCOS in off-
spring if placental aromatization is normal [93]. Instead, 
metabolic dysfunction in a PCOS mother may be trans-
mitted through the placenta to a female fetus with a 
genetic susceptibility to PCOS, promoting fetal hyperin-
sulinemia as a cause for hyperandrogenism and altered 
folliculogenesis in utero [5, 87, 94–96].

Alternatively, hyperandrogenic PCOS mothers [89] 
with elevated serum AMH levels in pregnancy [90] may 
have reduced placental aromatase expression [97], pro-
viding a potential maternal androgen contribution to 
female fetal hyperandrogenism. Evidence for this second 
mechanism is that gestational exposure of mice to recom-
binant AMH during a critical gestational age induces 
maternal neuroendocrine-driven hyperandrogenism and 
diminishes placental aromatization, causing a PCOS-like 
phenotype in female offspring and their descendants over 
multiple generations [90, 98].

Animal models affirming developmental programming 
of PCOS through maternal‑fetal endocrine‑metabolic 
dysfunction
Gestational exposure of female nonhuman primates, 
sheep, rats, and mice to excess T, or dihydrotestoster-
one (DHT), induces reproductive and metabolic PCOS-
like phenotypes resembling those of women with 
PCOS [99]. Such PCOS animal models provide unique 

perspectives on how hyperandrogenism and increased 
adiposity interact to affect PCOS phenotypic expres-
sion, given the worldwide human obesity epidemic [67].

As precocial species, in which tissue differentia-
tion is completed during fetal life as in humans [100], 
prenatally T-treated monkeys and sheep provide par-
ticularly valuable mechanistic links between endocrine-
metabolic dysfunction in pregnancy and its long-term 
metabolic-reproductive consequences in offspring. In 
prenatally T-treated monkeys, maternal glucose intoler-
ance causes transient hyperinsulinemia in their female 
fetuses. Specifically, prenatal T-treatment in rhesus 
monkeys impairs maternal glucose tolerance and stim-
ulates fetal insulin release, which then potentiates insu-
lin action within the fetus [101]. Prenatal T-treatment 
in sheep also induces maternal hyperinsulinemia [102]. 
When these sheep are co-treated with either flutamide 
or rosiglitazone, juvenile insulin resistance and early 
adult hyperleptinemia are prevented [58].

Mid-gestational prenatal T-treatment in rhesus mon-
keys and sheep also programs adipose dysfunction with 
insulin resistance in adult offspring [94, 103]. Adult 
prenatally T-treated sheep with insulin resistance [58, 
103, 104] also develop hypertension and hypercholes-
terolemia after puberty [105], although their long-term 
risks of developing increased adiposity and diabetes 
with age remain unclear. Prenatally-T treated juvenile 
female sheep also show increased stem cell commit-
ment to preadipocytes and decreased preadipocyte 
differentiation of visceral adipocytes, with the latter 
prevented by dual prenatal flutamide/rosiglitazone 
co-treatment [57]. This increase in commitment may 
underlie the increased proportion of small adipocytes 
observed in both prenatal T-treated sheep and mon-
keys [55, 56].

Naturally-occurring female hyperandrogenism also 
occurs in some adult female macaques accompanied 
by PCOS-like endocrine-metabolic traits [106, 107]. 
A positive correlation of anogenital distance with cir-
culating T levels in these adult monkeys suggests mid-
gestational hyperandrogenic origins. Most naturally 
hyperandrogenic female macaques are not overweight 
[106], and resemble normal-weight women with PCOS 
[26], while those with the highest T values exhibit 
increased BMI, central adiposity and insulin resist-
ance [107]. Since rhesus monkeys share > 97% DNA 
sequence homology with humans at protein-coding 
exons, evolutionary changes in the rhesus monkey 
exome that resemble those previously identified in 
human PCOS candidate genes could generate common 
biological phenotypes with initial selective advantages 
but comparable physiological consequences across pri-
mates [108].
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Clinical interventions that diminish metabolic dysfunction 
ameliorate PCOS symptomology
Potentially programmed in part during gestation, an 
altered metabolic phenotype in women with PCOS 
could predispose them to excess weight gain in today’s 
obesogenic environment, emphasizing the need for 
appropriate clinical strategies to improve their health, 
reduce their risks of developing maternal-fetal compli-
cations and optimize the long-term health of their off-
spring [51]. Although weight loss in overweight/obese 
women with PCOS through lifestyle intervention, 
medication use and/or bariatric surgery can improve 
their metabolic-reproductive function [5, 109, 110], 
long-term effects of these clinical therapies remains 
uncertain, while gestational use of some medications 
are either contraindicated (i.e., antiandrogens) or asso-
ciated with childhood adiposity and insulin resistance 
(i.e., metformin) [111]. A more effective strategy may 
be to identify young girls at risk for PCOS, perhaps 
by measuring facial sebum content [112], anogenital 
distance [113] and/or circulating AMH levels [114] in 
early life, and then initiate relevant interventions before 
puberty. Such a clinical strategy for the treatment of 
PCOS shifts the paradigm from disease treatment to 
preventive intervention, stressing early and appropriate 
lifestyle choices and the development of novel therapies 
to improve the fertility and endocrine-metabolic health 
of PCOS women, reduce their risks of maternal-fetal 

complications and optimize the long-term health of 
their offspring.

Conclusions
Polycystic ovary syndrome has persisted from antiq-
uity to become the most common reproductive-
metabolic disorder of reproductive-aged women. Its 
ancestral traits once favored abdominal fat deposition 
and increased energy availability through hyperandro-
genism and insulin resistance, respectively, for repro-
duction during food deprivation. These same traits 
in today’s environment, however, underlie different 
PCOS phenotypes with variable risks for subfertility 
and metabolic dysfunction that are worsened by obe-
sity. Recent studies of healthy normal-weight women 
with NIH-defined PCOS show enhanced AKR1C3 
activity in SC abdominal adipose favoring lipid stor-
age in combination with preferential intra-abdominal 
fat deposition accompanying hyperandrogenemia and 
low-normal insulin sensitivity. Potentially programmed 
as an ancestral trait by genetic inheritance and epige-
netic events during early life, such a metabolic adap-
tation in these normal-weight PCOS women provides 
a balance between enhanced SC adipose TG storage 
and increased circulating glucose and FFA availability 
as energy substrate for crucial target tissues, including 
brain and muscle (Fig. 2). It also favors subfertility from 
infrequent ovulation, perhaps allowing women from 

Fig. 2  Metabolic adaptation in polycystic ovary syndrome. Inherently accelerated adipogenesis, along with enhanced intracellular 
aldo-ketoreductase type 1C3-mediated testosterone generation, in subcutaneous (SC) abdominal adipose promotes lipid storage (through 
increased lipogenesis and decreased lipolysis) to protect against insulin resistance. Simultaneously, hyperandrogenemia accompanies preferential 
accumulation of highly-lipolytic intra-abdominal fat with an opposite effect. As a result, SC fat storage counterbalances increased circulating 
glucose and free fatty acid (FFA) availability for energy use. When energy intake exceeds fat storage capacity, excess fatty acid influx into skeletal 
muscle and liver promotes lipotoxicity through ectopic lipid accumulation accompanied by oxidative stress, insulin resistance and inflammation in 
non-adipose tissue
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antiquity sufficient time and strength for childrearing 
of fewer offspring who have an enhanced likelihood of 
childhood survival [67]. Future studies should examine 
how heritable PCOS characteristics are influenced by 
today’s obesogenic environment through an epigenetic-
related metabolic adaptation that favors fat storage, but 
predisposes to lipotoxicity with excess weight gain and 
pregnancy complications. Such investigations should 
focus on a new perspective that PCOS may have evolu-
tionary origins in both human and nonhuman primates.
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