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Abstract

Background: To minimize the rate of in vitro fertilization (IVF)- associated multiple-embryo gestation, significant
efforts have been made. Previous studies related to machine learning in IVF mainly focused on selecting the top-
quality embryos to improve outcomes, however, in patients with sub-optimal prognosis or with medium- or
inferior-quality embryos, the selection between SET and DET could be perplexing.

Methods: This was an application study including 9211 patients with 10,076 embryos treated during 2016 to 2018,
in Tongji Hospital, Wuhan, China. A hierarchical model was established using the machine learning system XGBoost,
to learn embryo implantation potential and the impact of double embryos transfer (DET) simultaneously. The
performance of the model was evaluated with the AUC of the ROC curve. Multiple regression analyses were also
conducted on the 19 selected features to demonstrate the differences between feature importance for prediction
and statistical relationship with outcomes.

Results: For a single embryo transfer (SET) pregnancy, the following variables remained significant: age, attempts at
IVF, estradiol level on hCG day, and endometrial thickness. For DET pregnancy, age, attempts at IVF, endometrial
thickness, and the newly added P1 + P2 remained significant. For DET twin risk, age, attempts at IVF, 2PN/ MII, and
P1 × P2 remained significant. The algorithm was repeated 30 times, and averaged AUC of 0.7945, 0.8385, and 0.7229
were achieved for SET pregnancy, DET pregnancy, and DET twin risk, respectively. The trend of predictive and
observed rates both in pregnancy and twin risk was basically identical. XGBoost outperformed the other two
algorithms: logistic regression and classification and regression tree.

Conclusion: Artificial intelligence based on determinant-weighting analysis could offer an individualized embryo
selection strategy for any given patient, and predict clinical pregnancy rate and twin risk, therefore optimizing
clinical outcomes.

Keywords: Artificial intelligence, Embryo selection, Machine learning, In vitro fertilization, In vitro fertilization
prediction
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Introduction
For decades, discussions about how to improve the clin-
ical outcomes of in vitro fertilization (IVF) treatment
have persisted. Multiple-embryo transfer was suggested
to increase the possibility of successful implantation but
inevitably elevated the risk of multiple-embryo gestation.
IVF-associated multiple pregnancies exhibit significant
financial, social, and medical implications [1, 2]. Even
though the transfer of embryos has been limited to no
more than two in recent years, the overall twin rate
worldwide after assisted reproduction has still varied
from 15 to 30% [3]. The incidences of premature birth,
low birth weight, cerebral palsy, neurological complica-
tions, and perinatal mortality of twin pregnancy mark-
edly increased compared with singleton pregnancy [4].
To minimize the rate of multiple-embryo gestation, sig-
nificant efforts, including individualized service provision
and single embryo transfer (SET) enhancement, have
been made in the course of these decades.
Embryo morphological analysis is the routine method

for selecting the highest-quality embryos to transfer. It is
commonly suggested to perform SET on prognostically
good patients with a top-quality embryo and to perform
double embryo transfer (DET) on prognostically poor
patients in whom good-quality embryo is unavailable in
the IVF lab. In a large proportion of IVF patients with
sub-optimal prognosis or with medium- or inferior-
quality embryos, the selection between SET and DET
could be perplexing. Because many features have been
shown to influence embryo implantation potential posi-
tively or negatively in IVF [5–8], developing an optimal
embryo selection plan to balance maximum clinical
pregnancy rate and minimum twin risk is complicated
for IVF clinicians. Therefore, a more precise, quantified,
stable embryo selection model based on all possible in-
fluencing determinants needs to be constructed. This
will potentially offer evidence-based patient counseling
and predictable successful chances for any given patient.
Artificial intelligence (AI) represents the combination

of machine learning, and a moderation and self-adapting
prediction model. Previous studies related to machine
learning in IVF mainly focused on selecting the top-
quality embryos to improve IVF outcomes [9–13]. De-
veloping a flexible, individualized embryo selection ap-
proach based on available embryos of various qualities
and different twin rate threshold settings is another
promising issue.
The purpose of our study is to construct an individual-

ized embryo selection strategy and pregnancy prediction
model, developed by stacking machine learning, to iden-
tify features correlated with embryo implantation poten-
tial and to evaluate available embryos’ implantation
chances quantitatively. We aim to balance maximal clin-
ical pregnancy and minimal acceptable twin risk in IVF

with this model and validate its clinical effectiveness and
practicability in subsequent cycles.

Materials and methods
Study design and participants
IVF patients in Tongji Hospital between January 2016
and December 2018, with one or two embryo transfers
in the fresh cycle, were enrolled in our study. Exclusion
criteria included patients with (1) blastocyst transfer in
fresh cycle; (2) oocyte donation cycles; (3) vitrified/
warmed oocytes; (4) oocytes partially cryopreserved in
fresh cycle; (5) combined vitrified/warmed embryo trans-
fers. In total, 5828 patients, between January 2016 and
March 2018 were included as the training set to con-
struct our model. Thirty-eight features were analyzed in
our study, and their baselines on training and validation
sets were exhibited, among which 21 main variables
were selected and listed in Table 1, including patient fea-
tures, embryo morphology features, and embryo scores.
After model construction, the developed embryo selec-
tion strategy was applied to guide the selection of SET
or DET in 3383 individual cases between April and De-
cember 2018 as the validation set.

Controlled ovarian hyperstimulation, embryo culture, and
pregnancy ascertain
IVF patients were treated with controlled ovarian hyper-
stimulation (COH) by gonadotropin-releasing hormone
(GnRH) agonist or GnRH antagonist, as previously de-
scribed [14, 15]. When two dominant follicles reached
17–18mm in diameter, oocytes were retrieved transvag-
inally 36–38 h after a human chorionic gonadotropin
(hCG) trigger. Embryos were cultured in G1 medium
(Vitrolife, Sweden) after fertilization and transferred on
day 3. Subsequently, biochemical pregnancy was ascer-
tained by a positive serum hCG 2 weeks after embryo
transfer with serial elevation. Clinical pregnancy was de-
fined as a gestational sac and active fetal heartbeat on
ultrasound demonstration 8 weeks after embryo transfer.

Model construction, feature selection, and validation
According to previous studies, the outcome of DET is not
a simple binomial distribution with respect to two trans-
ferred embryos [16]. Therefore, a hierarchical model with
two levels was established to learn single embryo implant-
ation potential and the impact of double embryos trans-
ferred simultaneously. In the first level, patient and
embryo features were applied to predict the implantation
chance for single embryo, from which the output value
was directly treated as the predicted pregnancy chance.
For DET, the respective pregnancy probability of two em-
bryos (P1 and P2) was initially predicted by the first level
calculation, then another two features, generated by
addition (P1 + P2) and multiplication (P1 × P2), were also
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Table 1 Baseline characteristics of the variables included in the training and validation data sets

Features Training set (n = 5828) Validation set (n = 3383)

Patient composition

SET 5264 3082

DET 564 301

Age*, y 30.46 ± 4.20 30.70 ± 3.94

Attempt times of IVF* 0.95 ± 0.43 0.78 ± 0.54

Antral follicle count* 13.64 ± 6.13 13.37 ± 6.36

Follicle stimulating hormone*, IU/L 7.59 ± 2.35 7.68 ± 2.79

Luteinizing hormone*, IU/L 4.71 ± 3.26 4.95 ± 6.08

E2 per mature oocyte, pmol/L 309.60 ± 141.26 265.68 ± 133.16

E2 on HCG day*, pmol/L 2810.88 ± 1424.43 2174.64 ± 1046.56

Endometrial Thickness*, mm 11.79 ± 2.40 11.98 ± 2.55

MetaphaseII(M II)* 9.86 ± 4.14 9.25 ± 4.02

2pronucleus(PN)* 6.79 ± 3.35 6.31 ± 3.22

Oocyte Numbera* 11.03 ± 4.45 10.64 ± 4.49

2PN/MII* 0.70 ± 0.19 0.69 ± 0.20

Frozen Sperm 6.0% 6.3%

Male Factorb

Oligospermia 9.2% 10.3%

Asthenospermia 12.8% 20.0%

Azoospermia 7.1% 9.1%

Female Factorb

Endometriosis 3.0% 4.4%

Ovulation Disorder 5.9% 7.8%

Unknown 5.2% 12.3%

Sperm Retrieval

Ejaculation 95.2% 95.2%

MESA 0.3% 0.7%

TESA 1.0% 1.3%

PESA 3.5% 2.8%

Stimulation Protocolb

Agonist Protocol* 71.4% 70.8%

Antagonist Protocol 22.8% 28.5%

Endometrial Typeb

A* 83.3% 85.0%

B 2.0% 0.4%

C* 21.4% 19.7%

Infertilityc

Primary 64.9% 70.4%

Secondary* 35.1% 29.6%

Fertilization Methodb

IVF 72.5% 57.9%

ICSI* 24.5% 34.8%

Embryo Features

Number of Blastomere* 7.93 ± 0.89 8.06 ± 0.93
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included, followed by the combination of generated
features and patient features as the input for the sec-
ond level. Two models were developed in the second
level, one to predict the DET pregnancy chance and
the other to predict the DET twin risk. The overall
flowchart of our model is shown in Fig. 1. The first-
level model was trained by all data except DET with
only one embryo implantation, whereas the second-
level models were trained by all DET data.
The machine learning system applied here was

XGBoost [17]. XGBoost is a scalable machine learning
system for tree boosting, which uses the boosting tech-
nique to train multiple trees. In other words, XGBoost is
an ensemble of multiple decision trees. Unlike random
forest, which generates trees by randomly selecting a
subset of training sets and features, XGBoost generates
decision trees one by one, based on the performance of
the previous generated trees. And comparing to single
decision tree algorithm such as C4.5 or CART, ensemble
of trees can achieve better performance. Moreover, this
system can automatically deal with missing values and
assign the importance score for each feature, which was
applied for feature selection. Nineteen features were se-
lected and are marked by asterisks in Table 1.
As the training procedure was completed, the per-

formance of the model was evaluated with the area
under the curve (AUC) of the receiver operating charac-
teristic (ROC) curve [18]. Multiple regression analyses

were also conducted on the 19 selected features, with
the glm function in R [19] to demonstrate the differ-
ences between feature importance for prediction and
statistical relationship with outcomes.

Embryo selection strategy development
Subsequently, an embryo selection strategy to maximize
the pregnancy chance with a controlled twin rate thresh-
old setting was developed. As shown in Fig. 2, for any
given acceptable twin rate threshold, the pregnancy and
twin rate could be predicted for every possible embryo
selection strategy, including one or two best embryos to
transfer or the combination of one best embryo and one
medium-quality embryo. Moreover, if the transfer failed
in the fresh cycle, the plan would be redeveloped with
the remaining embryos, following the same protocol
until all embryos were transferred or a new cycle was
started. With this selection strategy, the prediction
model could effectively increase the percentages of elect-
ive SET patients and provide plausible plans for DET pa-
tients in IVF.

Statistical analysis
Continuous variables were presented as mean ± standard
deviation. Categorical variables were presented as per-
centage encoded by one-hot encoding for analysis. For
XGBoost algorithm, we used the implementation from
scikit-learn (https://xgboost.readthedocs.io/en/latest/

Table 1 Baseline characteristics of the variables included in the training and validation data sets (Continued)

Features Training set (n = 5828) Validation set (n = 3383)

Fragmentd* 0.37 ± 0.50 0.32 ± 0.48

Equalitye* 0.91 ± 0.95 0.87 ± 0.91

*The selected features after performing feature selection are marked by asterisks
SET single-embryo transfer, DET double-embryo transfer, IVF in vitro fertilization, ICSI intracytoplasmic sperm injection, E2 estradiol, hCG human chorionic
gonadotropin, MESA microscopic epididymal sperm aspiration, TESA testicular sperm aspiration, PESA percutaneous epididymal sperm aspiration
aNumber of oocytes retrieved; b for multi-category features, the sum of the proportion for each category may not equal 100% because the missing value exists or
another small proportion of category features is not included; c infertility is encoded by 0 or 1 if the patient is primary or secondary, respectively; d the fragment is
encoded by three values: 1 to 3 representing no fragment, 5–15% fragment, and > 15% fragment, respectively; e the equality is encoded by five values, 0 to 4,
and represent equal, sort of equal, unequal, sort very unequal, and very unequal, respectively.

Fig. 1 The overall flowchart of the proposed hierarchical model. The first-level model was trained using all data except double embryo transfer
(DET), with only one embryo implantation to predict single-embryo implantation outcomes. The second level contains two models, which were
trained using DET data to predict both DET implantation outcomes and twin risks
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python/ python_api.html) using Python. The parameters
were as follows: max_depth = 5, min_child_weight = 1,
learning_rate = 0.1, n_estimators = 100, gamma = 0, sub-
sample = 0.8, colsample_bytree = 0.8. Other parameters
were set by default.

Results
Variable analysis using training data (January 2016 to
march 2018)
The results of multiple regression analyses are shown in
Table 2. For a SET pregnancy, the following variables
remained significant: age, attempts at IVF, estradiol level
on hCG day, and endometrial thickness. For DET preg-
nancy, age, attempts at IVF, endometrial thickness, and
the newly added P1 + P2 remained significant. For DET
twin risk, age, attempts at IVF, 2 pronucleus (PN)/ meta-
phase II (M II), and P1 × P2 remained significant.

Feature importance of the hierarchical model
In the XGBoost algorithm, the feature importance
means the number of times that a feature is used to split
the data across all trees. A higher feature importance
score represents greater value for prediction. Figure 3
shows the feature importance in the hierarchical model
for a SET pregnancy, a DET pregnancy, and DET twin
risk. Some features are not shown in Fig. 3 because the
corresponding importance was zero, which means these
features were not used for prediction.
For SET, as shown in Table 2, the luteinizing hormone

(LH) level and follicle-stimulating hormone (FSH) level
were not statistically significant, yet they were the third-
and sixth-important features for the first-level model.
The same phenomenon was observed for FSH, LH, and

antral follicle count (AFC) in DET pregnancy and DET
twin risk prediction. Although P1 × P2 was significantly
correlated with DET twin risk, it was hardly used by ei-
ther level model.

Model validation results
The algorithm was repeated 30 times to eliminate the
interference of random factors, and averaged AUCs of
0.7945, 0.8385, and 0.7229 were achieved for SET preg-
nancy, DET pregnancy, and DET twin risk, respectively.
The ROC curve in one single run is shown in Fig. 4.
To validate the effectiveness of the developed embryo

selection strategy, the consistency between the predicted
chance and the observed actual outcomes was analyzed,
as shown in Fig. 5. The trend of predictive and observed
rates both in pregnancy and twin risk was basically iden-
tical, although with a slight elevation in predictive rates.
To validate the prediction performance among XGBoost

and other algorithms such as logistic regression (LR) and
classification and regression tree (CART), we also performed
a non-parametric multiple comparison test using Dunn’s
procedure [20], with a p-value correction using the False Dis-
covery Rate method [21]. The results are shown in Fig. 6,
where the significant ones (p < 0.05) are marked in asterisk.
In general, XGBoost outperformed the other two algorithms
with obvious prediction power in SET pregnancy prediction
and DET twin risk prediction and similar performance in
DET pregnancy prediction task.

Discussion
One of the most overwhelming challenges in contem-
porary assisted reproductive technology (ART) is how to
narrow the gap in perinatal and neonatal outcomes

Fig. 2 Embryo selection strategy developed by the proposed model. For any given acceptable twin rate threshold, the pregnancy and twin rates
could be predicted
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between spontaneous pregnancy and assisted pregnancy,
usually caused by multiple-embryo transfer and implant-
ation [22]. In recent decades, SET has been advocated in
IVF to prevent multiple pregnancies while led to the
concerns of decreased IVF success [3, 23, 24]. Therefore,
precise embryo selection for SET and twin risk warning
for DET are particularly necessary. In this paper, a novel
hierarchical model was constructed and validated to
optimize embryo selection strategies and successfully
predict pregnancy for both SET and DET, as well as pre-
dict the twin risk of DET for each individual. Subse-
quently, we validated our model on 3383 patients, and
the results showed that our model had achieved an ac-
ceptable performance on embryo selection and twin risk
prediction for each individual, as shown in Figs. 4 and 5.

It is generally accepted that embryos with similar
morphology present variable implantation probability,
depending on other assessed features such as patient
characteristics and cycle demographics. Many features,
including age, FSH level, anti-Mullerian hormone
(AMH) and embryo quality, have been reported as inde-
pendent impact factors on oocyte variability and embryo
implantation potential [5, 25–28]. Machine learning is
considered a powerful mathematical tool for correlation
analysis when huge data is involved; therefore, AI has
been introduced in embryo variability prediction in
many articles [29, 30]. By increasing the information of
the input features, the predictive power of the proposed
model may be improved. Similarly, 19 features from the
initial data sets were considered in the current study to
construct the predictive power in our model. It is note-
worthy that although previous models may have helped
predict the implantation potential of a specific embryo,
they did not offer a reasonable and optimal guidance to
the embryo selection determination in clinical practice.
Minaretzis et al. [31] once presented an embryo selec-

tion strategy of transferring one additional good-quality
embryo for each 5 years of incremental increase in ma-
ternal age to improve IVF outcome by multivariate ana-
lysis of factors predictive of successful live birth. Because
maternal age was the only influencing factor to be con-
sidered, the recommended strategy was not so accurate
or comprehensive. Kaufmann et al. [32] reported a
neural networks predicting model in IVF, where four in-
put parameters were included and the overall accuracy
was 59%. Uyar et al. [33] proposed a Support Vector
Machine (SVM) method in embryo implantation predic-
tion in terms of Area Under ROC curve (0.712 ± 0.032),
when 12 features were included.
Vaegter et al. [16] also constructed a predictive model

for an embryo transfer strategy, in which only one em-
bryo was transferred if the predictive risk of twin im-
plantation was above 15%, using the two highest scored
embryos. While validating this predictive model, the ac-
tual twin rate was 3.8%, which was far lower than the ex-
pected 15% setting, accompanied by a decreased live
birth rate. Unlike previous studies, a novel strategy in
embryo selection based on an accurate embryo potential
prediction and twin risk assessment was developed in
our model. The model not only guides a determination
of the number of embryos for transfer and the specific
embryo selection, but also presents a relatively accurate
prediction of the pregnancy rate and twin risk of the
corresponding selection scheme.
Because SET was not arbitrarily implemented in all

IVF patients, twin pregnancy was inevitable. However,
the acceptable twin rate threshold varied among differ-
ent countries, even among different IVF centers. The
greatest strength of our model was that the embryo

Table 2 Multivariate analysis results of the selected features for
SET pregnancy, DET pregnancy and twin risk prediction

Selected features P value

SET DET

Pregnancy Pregnancy Twin Risk

Age 0.0222* < 0.0001* < 0.0001*

Attempt times of IVF < 0.001* < 0.0001* < 0.0001*

Antral follicle count 0.3332 0.4016 0.4121

Follicle stimulating hormone 0.7307 0.8141 0.4633

Luteinizing hormone 0.3501 0.7230 0.4616

E2 on HCG day 0.0053* 0.9040 0.7684

Endometrial Thickness 0.0046* < 0.0001* 0.2080

MII 0.9455 0.9444 0.0546

2PN 0.1041 0.9068 0.1021

Oocyte Number 0.7510 0.8897 0.6324

2PN/MII 0.5038 0.7772 0.0148*

Stimulation Protocol

Agonist Protocol 0.3692 0.2019 0.4961

Endometrial Type

A 0.8531 0.5324 0.4914

C 0.7138 0.0887 0.4614

Secondary Infertility 0.0816 0.2445 0.6809

Fertilization Method

ICSI 0.2365 0.5069 0.8492

Embryo Features

Blastomere Number 0.5422 NUa NU

Fragment 0.1585 NU NU

Equality 0.5399 NU NU

Embryo Scores

P1 + P2 NU < 0.001* 0.1344

P1 × P2 NU 0.2040 0.007*

*P < 0.05
aNU means this feature was not used in the corresponding level
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selection strategy we developed varied correspondingly
to patients’ characteristics and embryo morphology pa-
rameters as long as different twin rate thresholds were
set. Therefore, the selection strategy model is applicable
to any IVF center in any country. In such a situation,
embryologists can input their accepted twin rate setting
on the model to generate their guided embryo selection
strategies and present a predictable pregnancy possibility
and twin rate assessment.
More important, the predictive twin risk indicated that

the transferred two embryos were neither a simplified

embryo implantation nor an implantation of two inde-
pendent samples. This principle was previously dis-
cussed in an embryo-uterus modeling framework [34–
36]. A higher twin rate than expected would be achieved
if the implantation chances of the embryos transferred
together were completely independent of one another
[16]. As shown in Fig. 3, E2 on hCG day, endometrial
thickness, patient age, FSH, and AFC were ranked within
top seven in the feature importance for the prediction of
SET pregnancy, DET pregnancy, and twin risk, although
with slightly different ranking. However, LH and attempt

Fig. 3 Feature importance in the hierarchical model. Feature importance of (a) first-level model for predicting SET pregnancy, (b) second-level
model for predicting DET pregnancy, and (c) second-level model for predicting DET twin risk

Fig. 4 The ROC curve of a single-embryo transfer (SET) pregnancy, double-embryo transfer (DET) pregnancy, and DET twin risk in our method.
The average AUCs for a SET pregnancy, a DET pregnancy, and DET twin risk were 0.7945, 0.8385, and 0.7229, respectively

Xi et al. Reproductive Biology and Endocrinology           (2021) 19:53 Page 7 of 10



times of IVF, which were key in predicting SET preg-
nancy, were less weighted in DET pregnancy and twin
risk prediction. Considering the variability of confound-
ing factors, a two-level algorithm was introduced in our
model for DET prediction to achieve a satisfying predict-
ive model. Furthermore, unlike previous researches,
which only considered significant influencing factors in
model construction [37–39], concomitant investigation
in our DET model provided a novel insight: that even if
one variable were not statistically significant, it might
still be important for machine learning models to predict
final outcomes.
To minimize twin risk, some researchers also con-

structed a predictable model and validated it in sub-
sequent IVF cycles, and the results showed a

significantly reduced twin rate (from 25.2 to 3.8%)
[16]. However, the proportion of SETs was greatly in-
creased (11.3 to 75.5%), and surplus embryos would
be preserved for future use, resulting in a reduced
live birth rate in fresh cycle (29.0 to 25.1%). Even
though the cumulative live birth rate (CLBR) was not
affected, patients had to pay more fees and spend
more time for a successful pregnancy in subsequent
frozen-thawed cycles. Luke et al. [40] also reported a
similar conclusion of comparative CLBR and de-
creased multiple births in SETs over two cycles,
compared to DET in one cycle. In our algorithm,
conversely, the pregnancy rate and twin risk were
assessed and predicted simultaneously in the fresh
cycle, and further validation showed that it effectively

Fig. 5 Model validation in 3383 patients in comparing the predicted value with the truly observed percentage. a Pregnancy prediction in single-
embryo transfer (SET) and double-embryo transfer (DET) versus truly observed percentage. b Twin risk prediction in DET versus truly observed
twin rate

Fig. 6 AUC performance comparison among XGBoost, CART, and LR on single-embryo transfer (SET) pregnancy, double-embryo transfer (DET)
pregnancy, and DET twin risk prediction. ****P < 0.0001
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reduced twin risk without compromising clinical preg-
nancy in the fresh cycle.
The recommended embryo selection strategy in our

model provides decision support to embryologists with
higher accuracy and efficiency. For a large proportion of
IVF patients with suboptimal prognosis, which plan to
choose was a dilemma to embryologists, because predic-
tion judgment was based on their clinical experience in-
stead of on the analysis of thousands of embryos and
patient records prior to each embryo transfer [41, 42].
Besides, it may also act as a counseling tool for clinicians
to evaluate the chance of pregnancy before the transfer
procedure.
Previous research to establish similar predictive models

were problematic due to the limited number of involved
features or dramatic distinction between the predicted
value and the actual situation [16, 31]. The model in the
current study guides a determination of the number of
embryos for transfer and the specific embryo selection,
based on the analysis of a large number of features. In
addition, the predicted pregnancy rate and twin risk of the
corresponding selection scheme were relatively more ac-
curate. More significantly, our model provides a flexible
strategy, with individualized embryo selection for any
given patient and varied operations corresponding with
any setting acceptable twin rate threshold.
One shortcoming of our predictive model was that the

predicted mean value was slightly elevated compared to
the actual observed rate for both pregnancy and twin
rates in validation, although a modest discrimination
was also reported in the previous prediction model in
ART [43–45]. The model should be adjusted and im-
proved to make the predictive value more closely agree
with the actual virtue in the future verification. Besides,
the model was developed and validated using data from
a single center. As future work, we will need to be much
more rigorous with additional data sets demonstrating
the predictive value, using the same parameters, as well
as applying them in different centers.

Conclusions
In our study, we constructed and validated an individu-
alized embryo selection strategy and pregnancy predic-
tion model developed by stacking machine learning.
This prediction model could provide an accurate and in-
dividualized embryo selection strategy for any given pa-
tient as well as in any twin risk threshold setting and
balance a delicate correlation between clinical pregnancy
and twin risk rate; it therefore promises a better IVF
outcome without compromising pregnancy success and
controlled twin risk.
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