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Abstract

Background: Preimplantation genetic testing for chromosomal structural rearrangements (PGT-SR) is widely applied
in couples with single reciprocal translocation to increase the chance for a healthy live birth. However, limited
knowledge is known on the data of PGT-SR when both parents have a reciprocal translocation. Here, we for the
first time present a rare instance of PGT-SR for a non-consanguineous couple in which both parents carried an
independent balanced reciprocal translocation and show how relevant genetic counseling data can be generated.

Methods: The precise translocation breakpoints were identified by whole genome low-coverage sequencing
(WGLCS) and Sanger sequencing. Next-generation sequencing (NGS) combining with breakpoint-specific
polymerase chain reaction (PCR) was used to define 24-chromosome and the carrier status of the euploid embryos.

Results: Surprisingly, 2 out of 3 day-5 blastocysts were found to be balanced for maternal reciprocal translocation
while being normal for paternal translocation and thus transferable. The transferable embryo rate was significantly
higher than that which would be expected theoretically. Transfer of one balanced embryo resulted in the birth of a
healthy boy.

Conclusion(s): Our data of PGT-SR together with a systematic review of the literature should help in providing
couples carrying two different reciprocal translocations undergoing PGT-SR with more appropriate genetic
counseling.
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Background

Balanced reciprocal translocations, an exchange of two
terminal segments from different chromosomes, occur
in approximately one in every 500-625 human new-
borns [1]. Carriers of reciprocal translocations usually
have a normal phenotype, except when the translocation
breakpoint results in gene interruption. Nevertheless, in
most cases, these individuals are at high risk of produ-
cing unbalanced gametes, which associate with infertility,
recurrent pregnancy loss or offspring abnormality [2, 3].
For reciprocal translocations, unbalanced gametes are
likely to be generated owing to abnormal segregation
patterns at meiosis.

During meiosis, three theoretical segregation patterns
(2:2, 3:1 or 4:0) might occur in the presence of a recipro-
cal translocation, resulting in 32 possible gametes with
the consideration of recombination [4]. But only two
gametes from the alternate segregation mode are normal
or balanced, and the others are unbalanced with an
estimated prevalence of 60-70% [4—6]. However, Preim-
plantation genetic testing for chromosomal structural
rearrangements (PGT-SR) following an in vitro
fertilization (IVF) procedure has become an attractive
option for translocation carrier couples to improve the
pregnancy outcomes by selecting balanced/euploid
embryos [1, 7]. To date, the vast majority of the PGT-SR
studies were conducted in couples in which one of the
partners is a carrier for a reciprocal translocation [2, 4—
8]. By contrast, limited knowledge is known on the data
of PGT-SR when both parents have a reciprocal trans-
location. Are double translocations associated with
double risks? Here, we for the first time present a
healthy live birth derived from a non-consanguineous
couple carrying two different reciprocal translocations
involving four chromosomes by PGT-SR combine with
translocation breakpoint identification and show how
relevant genetic counseling data can be generated. More-
over, we specifically reviewed the available literature to
estimate the reproductive risk and discuss counseling

approaches when couples with double reciprocal
translocations.
Methods

Case presentation

A 30-year-old woman and her 35-year-old husband,
both phenotypically normal, were not consanguineous.
They were referred for a 5-year history of secondary in-
fertility and had experienced 3 consecutive spontaneous
abortions at 5 or 6 weeks of gestation, none of which
had been cytogenetically examined. The wife’s
gynecological examination was normal and the husband
had no abnormality on semen analysis. No histories of
abnormal pregnancy were reported in the family history,
as shown in the pedigree (Fig. 1a).
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This study was reviewed and approved by the Institu-
tional Review Board (IRB) of Guangdong Women and
Children Hospital. Written consent was obtained from
parents before commencing the study.

Cytogenetic study

Cytogenetic karyotype analyses were performed on
peripheral blood lymphocytes from the couple according
to the conventional technique.

Identification of precise translocation breakpoint
Genomic DNA was extracted from peripheral blood using
the standard phenol/chloroform method. To analyses the
molecular karyotype of the couple, we applied whole gen-
ome low-coverage sequencing (WGLCS) to initially iden-
tify the four breakpoint regions of the reciprocal
translocations. The details of this method can be found in
our previous report [9]. In brief, approximately 500 ng
genomic DNA samples from translocation carriers were
sheared into small (~500bp) fragments for the small-
insert library construction. Then, the genomic libraries
were subjected to 50-bp-end multiplex sequencing on the
Mlumina HiSeq TM 2000 platform. For bioinformatics
analysis, high-quality paired-end sequencing reads were
aligned to the National Center for Biotechnology Informa-
tion human reference genome (hgl9, GRCh37.1) using
SOAP?2 [10] with parameters that include the total allowed
mismatches (-v 2), seed length (-s 35), minimal aligning
length (~/ 23), and insert DNA size ranging from 400 to
600 bp. Only unique reads were retained for further ana-
lysis. The chimeric read pairs would suggest the possible
candidate translocation “clusters” throughout the genome
through data filtering [9]. The sequences included in the
flanking region of the putative breakpoint regions were
verified using polymerase chain reaction (PCR) with
junction-spanning primers, followed by subsequent identi-
fication of the precise position of the breakpoints through
Sanger sequencing.

Controlled ovarian stimulation and in vitro fertilization
(IVF)

Controlled ovarian stimulation was performed using
gonadotropin-releasing hormone (GnRH) (Merck KGaA,
Darmstadt, Germany) agonist, recombinant follicular-
stimulating hormone (FSH) (Merck KGaA, Darmstadt,
Germany) and human chorionic gonadotropin (HCG)
(Livzon, Zhuhai, China). Standard techniques were used
in IVF treatment, including fertilization, embryo culture,
blastocyst biopsy, and blastocyst transfer at the Repro-
ductive Medical Centre of Guangdong Women and
Children Hospital.
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PGT-SR and embryo carrier testing

Biopsied trophectoderm (TE) cells for PGT-SR were
used for whole-genome amplification (WGA) using the
PicoPLEX single-cell WGA kit (Rubicon Genomics, Ann
Arbor, USA). Sequencing libraries were prepared using
the embryo WGA products and then subjected to detect
24-chromosome copy number variation (CNV) via next-
generation sequencing (NGS) according to standard
protocol [11]. The excess WGA products were amplified
with breakpoint-specific diagnostic primers using PCR
for further determined the carrier status of the bal-
anced/euploid embryos and those positive results were

predicted to be carrier embryos. Instead, the embryos
that showed negative in the breakpoint-specific PCR
analyses were noncarrier embryos.

Prenatal diagnosis

Clinical pregnancy was defined when an intrauterine
gestational sac with a heartbeat was observed through
ultrasound examination 30—40 days after embryo trans-
fer. Amniocentesis was performed at 18 weeks of gesta-
tion, and the amniocentesis fluid sample from fetus was
used for karyotyping and SNP-based chromosomal
microarray analysis (CMA) analysis to confirm the PGT-
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SR result. SNP-based CMA using Affymetrix Cytoscan™
750K array was performed according to standard
protocol.

Results

Cytogenetic study revealed that wife and husband car-
ried independent balanced reciprocal translocations: 46,
XX,t(10;16)(q25.2;q12.1) and 46,XY,t(9;14)(p21.1;q12),
respectively (Fig. 1b). The husband’s translocation was
familial while the translocation of the wife was de novo.
WGLCS technique was subsequently performed on the
couple and four derivative fragment sequences (der 10,
der 16, der 9 and der 14, respectively) were successfully
detected, which identified the breakpoint on chromo-
some 10 in a 247bp region at 10q25.2 (chrlO:
114078982-114,079,229), the chromosome 16 break-
point in a 211 bp region at 16q12.2 (chrl6: 50898455—
50,898,666), chromosome 9 breakpoint in a 1081 bp
region at 9qll (chr9: 27576481-27,577,562) and
chromosome 14 breakpoint in a 355bp region at
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14q11.2 (chrl4: 26085650—26,086,005) through bioinfor-
matics analysis. The junction fragments were amplified
using the junction-spanning primers to confirm the
breakpoints, followed by subsequent identification of the
precise position of the breakpoints through Sanger
sequencing. As shown in Fig. 1c, two accurate transloca-
tion breakpoints of the wife were chr10:114079218 &
chr16:50898510 and  chr16:50898508 &  chrl0:
114079218, respectively; two accurate translocation
breakpoints of the husband were chr14:26085924 &
chr9:27577048 and chrl4: 26085933 & chr9:27577052,
respectively. Fortunately, we found that all of the break-
points were mapped in the intergenic regions, although
several nucleotides insertions and/or deletions at the
breakpoint junctions in the formation of these two
translocations were observed (Fig. 1c).

A total of 16 metaphase II (MII) oocytes were retrieved
after ovarian stimulation, and 10 were fertilized normally
using intracytoplasmic sperm injection (ICSI). At last,
three blastocysts (embryo 1, embryo 2 and embryo 3) were
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subjected to biopsy on day 5 for comprehensive chromo-
some screening via WGA-based NGS. Unexpectedly, the
result indicated that two of them (embryo 1 and embryo
2) were detected as either normal or had balanced
translocation from the wife or the husband, and the other
one (embryo 3) was unbalanced in all four affected chro-
mosomes: 46,XX,+(9)(p24.3-p21.1)(27.60 Mb),-(10)(q25.3-
q26.3)(20.18 Mb),-(14)(q12-q32.33)(91.09 Mb),-(16)(p13.3-
q12.1)(49.33 Mb) (Fig. 2a). To distinguish the carrier sta-
tus of these two balanced/euploid blastocysts (embryo 1
and embryo 2), we then performed breakpoint-specific
PCR analyses on the rest of the WGA products. The result
showed that both embryo 1 and embryo 2 were carrier
embryos with two maternal breakpoints (Fig. 2B), and
embryo 1 was transferred on day 5 resulting clinical
pregnancy. Cytogenetic analysis was done to confirm the
diagnosis at 18 weeks of gestation and revealed the pres-
ence of a male karyotype with a heterozygous balanced re-
ciprocal translocation like that present in the mother: 46,
XY,t(10,16)(q25.2;q12.1) mat (Fig. 2c). In addition, SNP-
array analysis of DNA from amniotic fluid cells demon-
strated that the fetus cells were euploid without small
segmental chromosome abnormalities (Fig. 2d). A healthy
male was born at 40weeks of gestation by caesarian
section. At the time this report was written, the boy was
more than 1 year old and showed no malformations and
mental retardation.

Discussion

The frequency of heterozygous carriers of reciprocal
translocations is about 0.16 to 0.2% [1], which means
that the probability of two carriers being a couple is
less than 4x10°° The case with recurrent miscar-
riage in the present report represents rare instance in
which both parents had an independent balanced re-
ciprocal translocation affecting four chromosomes: 46,
XX,t(10;16)(q25.2;q12.2) and 46,XY,t(9;14)(p21.1;q12).
Since there are extremely rare PGT-SR data on a
couple with two independent reciprocal translocations
in reviewing the literature, the reproductive risk as-
sessment and genetic counseling for this case would
be unique and complex. However, a considerable
number of PGT-SR data with regard to one reciprocal
translocation might provide bases for predicting PGT-
SR outcomes in couples with two reciprocal translo-
cations. Generally, genetic counseling for a couple
with one reciprocal translocation focuses on the risk
of unbalanced gametes from one parent. Zhang et al.
published a PGT-SR data indicated that the propor-
tion of alternate segregation pattern, which can pro-
duce normal/balanced gametes, was 40.7% (749/1842)
on average by testing 1842 embryos from 356 carriers
of single reciprocal translocations [6]. Given that each
partner’s translocation is thought to segregate
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independently, the risks for generating abnormal gam-
etes might be additive for couples with two reciprocal
translocations. Thus, the probability of normal/bal-
anced zygotes for such couples was estimated to be
16.6% (40.7% x 40.7%) without considering non-
translocation chromosomes abnormalities. Another
large practical PGT-SR data of the European Society
of Human Reproduction and Embryology (ESHRE)
PGT Consortium showed that 19.5% (4681/23960)
day-3 embryos were transferable after genetic testing
when one of the partners is a carrier for a reciprocal
translocation [8], and this rate increased to 30.0%
(142/473) when biopsy at the blastocyst stage [12].
Therefore, theoretically, the transferable embryos rate
might be as low as 3.8% (19.5% x 19.5%) in cleavage-
stage embryos or 9% (30.0% x 30.0%) in blastocysts for
both spouses having a reciprocal translocation. In fact,
in 2010 Beyazyurek et al. [13] reported only one PGT-SR
study performed for a consanguineous couple carrying
the same familial reciprocal translocation between chro-
mosomes 1 and 16 (Table 1 and Fig. 3a), and the result
showed that only one out of 15 (6.7%) day-3 embryos
was detected as balanced and transferable which is close
to the empirical rate that we extrapolated (3.8%). By
contrast, surprisingly, we found that 2 out of 3day-5
blastocysts were balanced for the current couple. The
transferable embryo rate was significantly higher than
that which would be expected theoretically could be
partly explained by chromosome self-correction at the
blastocyst stage, as has been suggested by a few authors
[28, 29]. The self-correction may occur in a mosaic or
aneuploidy embryo. Nevertheless, the probable self-
correction of an unbalanced embryo involving translo-
cated chromosome requires further clarification. In fact,
it has been reported that the euploidy rate was found to
be significantly higher for blastocyst stage embryos as
compared to that of cleavage stage embryos (60.3 and
33.4%, respectively) [30]. In addition, another possible
explanation is that these two translocations may tend to
produce a lower proportion of unbalanced gametes, thus
forming a higher proportion of euploidy embryos. Be-
sides, this may due to the small number biopsied blasto-
cysts for PGT-SR, thus more such cases reported and
sperm fluorescence in situ hybridization (FISH) analysis
[31] would be helpful to predict PGT-SR outcomes.
However, other factors including the location of trans-
location breakpoints, the age of the carriers and chromo-
some type also made the difference between empirical
and practical rates.

In reviewing the literature, there are 15 couples in
which both wife and husband had a balanced reciprocal
translocation without clinical expression (Table 1), and
Fig. 3 illustrates nuclear pedigrees for them [13-27]: 8 in
whom both spouses had an identical balanced reciprocal
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Table 1 Previously reported couples with two reciprocal translocations
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Family Reference

Karyotypes of couples

Brief clinical details

3 spontaneous abortions
1 balanced child with phenotypic abnormalities
2 spontaneous abortions and 1 balanced child with an abnormal

phenotype

2 spontaneous abortions and 2 balanced siblings showed
phenotypic abnormalities

1 balanced fetus termination with phenotypic abnormalities
2 spontaneous abortions and 1 unbalanced infant with
phenotypic abnormalities

2 spontaneous abortions

1 unbalanced child with multiple congenital anomalies

4 spontaneous abortions

1 unbalanced infant with phenotypic abnormalities

1 balanced infant with an abnormal phenotype
2 spontaneous abortions and 2 abnormal deceased neonates
4 previous newborns died in the early neonatal period

Infertility for several years

Maternal Paternal
A Beyazyurek et al. 46,XX,t(1,16)(q12; 46,XY,1(1;,16)(@12,911.2)
[13] ql1.2)
B Vu et al. [14] 46,XX,t(16;20)(q21; 46,XY,1(16;,20)(q21;p11.2)
p11.2)
C Schneider et al. [15] 46,XXt(10;11)(q24.3;  46,XY,t(10;11)(g24.3;,923.3)
q23.3)
D Zaki et al. [16] 46,XX1(7;12)(q22; 46,XY,1(7,12)(@22;p13)
p13)
E Martinet et al. [17] 46 XXt(17,20)(g21.1;  46,XYt(17;20)(21.1,p11.21)
p11.21)
F Kupchik et al. [18]  46XXt(16,18)(p133;  46XY,1(16,18)(p133;p11.2)
p11.2)
G Ozkul and Dundar ~ 46XX,t(1;16)(q24; 46, XY,1(1;16)(p22;p13)
[19] q24)
H Cook et al. [20] 46,XXt(2,3)(p13.1; 46,XY,1(7,8)(036.1,g24.13)
p13)
Tsuji et al. [21] 46 XX(7;,13)(p153;  46XY,t(1;7)(p11.1,g11.1)
q12.3)
J Teivi et al. [22] 46, XX t(3:4)(p12;15.1) 46 XY t(510)(p12;p13)
K Wilrnot et al. [23] 46,XX,t(3:16)(p25; 46,XY,1(3:16)(p25,913)
q13)
L Bowser-Riley et al. 46 XXt(1,2)(q42: 46,XY,(519)(p11;,13.1)
[24] g31.1)
M Barros et al. [25] 46,XX,1(6;14)(925; 46, XY X (1;19)(p11;p1 N)X(1;
q21) 19)(p11;p11)
N Mulcahy and 46 XXt(2,17)(p13; 46,XY,1(1,10)(p34,924)
Watson [26] q21)
0 Simoni et al. [27] 46, XX127)(p11;031) 46, XY,1(2;7)(p11;931)

1 spontaneous abortion

translocation because of consanguineous marriage (Fam-
ilies A, B, C, D, E, F, K and O), one in whom consan-
guineous partners were inherited with two similar
balanced reciprocal translocations (Family G) and 6 in
whom unrelated members of couples carried two differ-
ent reciprocal translocations (Families H, I, J, L, M and
N). Figure 3 shows that there were 52 recognized preg-
nancies among the 15 couples including 50 natural and
2 PGT-SR pregnancies (Family A), resulting in 19
phenotypically normal live births (2 with a normal
karyotype, 11 with a single parental balanced reciprocal
translocation and 6 with double parental balanced recip-
rocal translocations); 14 phenotypically abnormal live
births (3 unbalanced offspring, 5 balanced offspring with
two identical reciprocal translocations and 6 neonatal
deaths without karyotype examination); and 19 abortions
(1 termination of pregnancy for an abnormal fetus with
two balanced reciprocal translocations and 18 spontan-
eous abortions). The probability of a clinically recog-
nized pregnancy through natural conception ending
with healthy live birth was only 17/50 (34.0%) when both
partners carried a balanced reciprocal translocation.

However, the overall risk for abnormal live births and abor-
tions/stillbirths in these families was 14/50 (28.0%) and 19/
50 (38.0%), respectively. It is worth noting that, 6 offspring
were homozygous carriers of translocations in 5 consanguin-
eous couples (marked in bold in Families B, C, D, E, and K).
Even though they had apparently balanced karyotypes, mul-
tiple abnormal phenotypes were observed. Several studies
have suggested that the disease causing genes were disrupted
by the breaks and that the affected offspring were homozy-
gous for a recessive gene defect, masked by the unaffected
heterozygous parents with a same balanced reciprocal trans-
location [14—17, 23]. Thus, in this context, the genetic risk of
the reciprocal translocations should be specially investigated.
It is of great importance to identify whether the translocation
breakpoints give rise to gene interruption in PGT-SR treat-
ment and prenatal diagnosis for couples with two balanced
reciprocal translocation. The review of the literature indicates
that the fetus could indeed inherit unbalanced gametes from
mother, father, or both; thus the risk of having abnormal live
offspring and of spontaneous abortion might be cumulative
in couples with two reciprocal translocations. We believe
that PGT-SR would be a useful and practical tool in the
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aspect of increasing healthy birth rates and decreasing recur-
rent abortions for such couples.

In recent vyears, precise translocation breakpoint
identification has been increasingly used for estimating
the phenotypic outcomes of balanced reciprocal

distinguishing
translocation-carrying embryos in PGT-SR cycles. To
date, several approaches have been developed to iden-
tify transferable translocation-free embryos in PGT-SR
treatments, such as mate-pair sequencing [32],
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MicroSeq-PGD [33], MaReCs [34] and SNP array-based
analyses [35, 36]. In this study, we applied WGLCS, an
accurate approach which can limit the breakpoints to +
1 Kb region, to initially map the four breakpoint
regions of the reciprocal translocations [9]. Then,
junction-spanning PCR combined with Sanger sequen-
cing were used to characterize the precise breakpoints.
Subsequently, the carrier status of the two balanced/eu-
ploid embryos was determined using breakpoint-
specific PCR. The sequencing results showed that there
were several nucleotides insertions and/or deletions
occurred at the breakpoint junctions during the trans-
location formation. This junction is common in human
chromosomal translocations and may arise from a non-
homologous end-joining (NHEJ) mechanism [37-39].
Hence, balanced translocations may have imbalances in
the molecular level. However, these four breakpoints on
chromosome 10, 16, 9 and 14 were mapped in the
intergenic regions, which did not cause gene interrup-
tion. Therefore, we speculated that no matter their off-
spring carrying heterozygous balanced reciprocal
translocation or double heterozygous balanced recipro-
cal translocations would have normal phenotype.

Conclusions

Our study presents a rare example of PGT-SR for recip-
rocal translocations. To the best of our knowledge, this
is the first PGT-SR study performed for a non-
consanguineous couple carrying two different reciprocal
translocations. The carrier status of the euploid embryos
was identified through WGLCS approach combining
with breakpoint-specific PCR and Sanger sequencing.
The method has potential application in clinical PGT-SR
cycles for some patients, particularly those who experi-
enced multiple miscarriages or suffered a clinical pheno-
type and do not wish to pass on the translocation to
their offspring. The healthy live birth in our case and the
systematic review of the literature provide a better un-
derstanding of reproductive consequences for couples in
which both members have a balanced reciprocal trans-
location and should be useful in PGT-SR, prenatal diag-
nosis and genetic counseling.
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