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Abstract

Context: The H19 long noncoding RNA (lncRNA) belongs to a highly conserved, imprinted gene cluster involved in
embryonic development and growth control. We previously described a novel mechanism whereby the Anti-
mullerian hormone (Amh) appears to be regulated by H19. However, the relationship between circulating H19 and
markers of ovarian reserve including AMH not been investigated.

Objective: To determine whether H19 expression is altered in women with decreased ovarian reserve.

Design: Experimental study.

Setting: Yale School of Medicine (New Haven, USA) and Gazi University School of Medicine (Ankara, Turkey).

Patients or other participants: A total of 141 women undergoing infertility evaluation and treatment.

Intervention: Collection of discarded blood samples and cumulus cells at the time of baseline infertility evaluation
and transvaginal oocyte retrieval, respectively.

Main outcome measure: Serum and cumulus cell H19 expression.

Results: Women with diminished ovarian reserve (as determined by AMH) had significantly lower serum H19
expression levels as compared to controls (p < 0.01). Serum H19 was moderately positively correlated with serum
AMH. H19 expression was increased 3.7-fold in cumulus cells of IVF patients who demonstrated a high response to
gonadotropins, compared to low responders (p < 0.05).

Conclusion: In this study, we show that downregulation of H19 in serum and cumulus cells is closely associated
with decreased ovarian reserve, as measured by decreased AMH levels and reduced oocyte yield at oocyte retrieval.
Further study with expanded sample sizes is necessary to determine whether H19 may be of use as a novel
biomarker for diminished ovarian reserve.
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Precis
Downregulation of H19 in serum and cumulus cells is
associated with decreased ovarian reserve, as measured
by decreased AMH levels and reduced oocyte yield at
oocyte retrieval.

Introduction
The problem of ovarian aging has considerable impact on
public health, and presently no viable preventative or treat-
ment options are available. With age, a drastic decline in
the quantity of follicles and oocytes (the “ovarian reserve”),
occurs [1], leading to decreased female fecundity and infer-
tility. Historical data, as well as studies of women undergo-
ing fertility treatment, have shown that female fertility
begins to decline as early as age 30 [2, 3]. Women are in-
creasingly delaying childbearing [4]. In 2014, over 30% of
first births occurred in women over 30 [4]. Thus, more and
more women are attempting to conceive in their later re-
productive years, when fertility is already in decline [2]. In-
deed, birth rates in the U.S. are at a record low [5]. Adding
to the complexity of this challenge is the fact that fecundity
varies even among women of similar age groups [6], and
some women experience idiopathic accelerated follicle loss
and early menopause. Why follicle growth and develop-
ment go so drastically awry in some women is poorly
understood, and many gaps remain in our understanding of
the processes regulating the recruitment and growth of
ovarian follicles.
To understand the factors underpinning these devel-

opments, it is essential to define the processes regulating
the normal physiology of ovarian aging. In reproductive
age women, the pool of primordial follicles is continu-
ously depleted through cyclic recruitment. This relent-
less loss of follicles leads to a condition known as
diminished ovarian reserve (DOR). Women with DOR
are at increased risk for infertility and poor ovarian

response to ovarian stimulation during in vitro
fertilization (IVF) cycles [7].
We previously described a novel mechanism whereby fol-

licular recruitment appears to be regulated in part by the
long noncoding RNA H19. H19 is highly conserved [8],
expressed during embryogenesis and repressed in most
adult tissues, with the exception of ovary, uterus, skeletal
muscle and heart [9–13]. We showed that the ovaries of fe-
male H19 knockout mice exhibit accelerated follicular re-
cruitment and atresia and a more rapid decline in fertility
as compared to WT mice [14] We also observed that
H19KO mice produce less anti-Mullerian hormone (AMH)
as compared to WT mice, a phenotype that is recapitulated
in vitro in granulosa cells after H19 knockdown [14]. AMH
regulates the size of the follicular pool by inhibiting the ini-
tial recruitment of primordial follicles into the growing pool
and modulating the sensitivity of growing follicles to follicle
stimulating hormone, and is critical in the regulation of fol-
licle numbers [15–17]. Mice lacking AMH exhibit early fol-
licular recruitment and loss [16–18], and AMH sequence
variants in humans have been associated with premature
ovarian insufficiency (POI) [19].
AMH is an informative marker for the assessment of

ovarian reserve, but its regulation remains poorly under-
stood. Additionally, AMH is only one of several available
markers of oocyte quantity. Poor ovarian reserve can be
defined by multiple factors, including age, poor oocyte
yield after IVF, and abnormal ovarian reserve testing
markers including FSH7. A potential link between H19
and markers of ovarian reserve in women, including
AMH, has not yet been investigated. Given the relation-
ship between H19 and follicular recruitment we ob-
served in mice, we sought to determine whether
decreased circulating and follicular H19 expression is
linked to poor ovarian reserve, as determined by clinical
and biochemical markers, (including but not limited to
AMH), in a population of women with infertility.

Table 1 Descriptive statistics for patients from which serum samples were collected. Results of comparisons between baseline
characteristics among the three groups are given. a.DOR group vs unexplained and male/tubal factor groups. b DOR group vs male/
tubal factor groups

Xia et al. Reproductive Biology and Endocrinology           (2020) 18:46 Page 2 of 8



Materials and methods
Collection of patient samples
In order to evaluate circulating H19 expression and correl-
ation with ovarian reserve in infertile women, discarded
blood samples (2mL) were collected from 69 patients
undergoing evaluation for infertility at the Yale Fertility
Center (New Haven, CT) (Table 1). Samples were collected
in the early follicular phase (day 2–4 of the menstrual
cycle). Serum was separated by centrifugation for 10m at
12000 rpm at 4 °C and stored at − 80 °C until RNA extrac-
tion [20–22]. Patients were excluded if any of the following
diagnoses were present: Cushing’s syndrome, hyperprolacti-
nemia, adrenal hyperplasia, acromegaly, hypothalamic
amenorrhea, hypothyroidism, or diabetes mellitus. Patients
were divided into three groups: controls (women diagnosed
with male and tubal factor infertility, n = 19), women with
unexplained infertility (n = 24), and women with dimin-
ished ovarian reserve (DOR, defined as AMH < 1.1 ng/mL
and antral follicle count < 5, n = 26). This study was
approved by the Yale University Institutional Review Board
(IRB protocol # 1606017946).
We also sought to determine whether H19 is detectable

in cumulus cells of women undergoing IVF with oocyte re-
trieval, and whether expression correlates with ovarian re-
serve as measured by response to gonadotropins. For these
studies, we utilized pooled cumulus cells collected from a
total of 72 consecutive cycles in women undergoing infertil-
ity treatment with IVF-ICSI at Gazi University School of
Medicine IVF Center (Ankara, Turkey) (Table 2). Causes of
infertility included diminished ovarian reserve, male factor,
tubal factor, anovulation, endometriosis, and unexplained
infertility, or a combination of these factors. For patients
undergoing agonist cycles, treatment was initiated by
GnRH agonists during the luteal phase of the preceding
cycle. Stimulation with gonadotropins was initiated after
downregulation had been achieved (estradiol level < 50 pg/
ml in the absence of ovarian cysts on transvaginal sonog-
raphy). For patients undergoing antagonist cycles, treat-
ment with gonadotropins was initiated on cycle day 3 when
serum progesterone was < 1 ng/ml and transvaginal sono-
graphy confirmed absence of ovarian cysts. A GnRH

antagonist was added for pituitary suppression after five
days of gonadotropin stimulation. Stimulation protocols in-
cluded 150–300 IU/day of gonadotropins, either recombin-
ant (GonalF, Merck) or in combination with human
menopausal gonadotropin (hMG, Menopur, Ferring). Pa-
tients received hCG (Ovidrel 250 μg, Merck) when two or
more follicles > 18mm in diameter were present with an
adequate estradiol response. Oocytes were collected 36 h
after hCG injection. Retrieved cumulus-oocyte complexes
(COCs) were placed in culture medium (G-MOPS, Vitro-
Life) and cumulus cells were dissected from the oocyte
mechanically in the absence of hyaluronidase. Cumulus
cells from each patient were pooled in a single eppendorf
tube. Samples were washed twice with 0.5ml 1X Phosphate
Buffered Saline (PBS) and centrifuged at 1000 x g for 1min
with the supernatant removed after each wash. After the
final wash, the cell pellet was resuspended in 50 μl Side-
Step™ Lysis and Stabilization Buffer (Stratagene, La Jolla,
CA). Samples were stored at − 80 °C until analysis.
For study analysis, patients were stratified by percentiles

based on the number of retrieved oocytes. The number of
oocytes included in the first quartile, which correspond to
percentile values lower than 25%, was considered as indi-
cation of poor response (PR) to controlled ovarian stimu-
lation. Women producing more oocytes than the 75th %
of their age group were considered high responders (HR)
to controlled ovarian stimulation. Women whose oocyte
production fell between 25-75th % of their age group were
considered normal responders (NR). This study was ap-
proved by the Gazi University Institutional Review Board
committee (IRB protocol #131/11.05.2011).

Materials
Primers for H19 and β-actin were purchased from Real
Time Primers (Elkins Park, PA, USA). The Norgen Plasma/
Serum RNA Extraction Kit was purchased from Norgen
Biotek (Ontario, CA). The Qiagen miRNeasy Mini Kit and
RNeasy MinElute Cleanup Kits were purchased from Qia-
gen (Germantown, MD, USA). SYBRGreen was purchased
from BioRad Laboratories (Hercules, CA, USA).

Table 2 Descriptive statistics for patients from which cumulus cells were collected. Results of comparisons between baseline
characteristics among the three groups are given
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RNA extraction, cDNA synthesis and RT-PCR
RNA extraction from stored blood samples was performed
using the Norgen Plasma/Serum RNA Purification Mini
Kit (Thorold, Ontario, Canada). To purify RNA from cu-
mulus cells, the Qiagen miRNeasy Mini Kit and RNeasy
MinElute Cleanup Kits were used according to the manu-
facturer’s instructions. RNA quantity and purity were de-
termined using an ultraviolet spectrophotometer. Reverse
transcription was carried out using the BioRad iScript
cDNA synthesis kit (Hercules, CA, USA) in a 20ul reac-
tion containing 0.5μg of total RNA. For cDNA synthesis,
the reaction mixtures were incubated at 16 °C for 30min,
at 42 °C for 30min, and at then 85 °C for 5 min. The
cDNA was stored at − 80 °C until qPCR. qPCR was per-
formed in a 25ul reaction containing 1.5ul of cDNA using
Bio-Rad QSYBRGreen in a Bio-Rad iCycler. PCR was per-
formed by initial denaturation at 95 °C for 5min followed
by 40 cycles of 30 s at 95 °C, 30 s at 60 °C, and 30 s at
72 °C. All SYBR green runs had dissociation curves to pre-
dict potential primer-dimers. Specificity was verified by
melting curve analysis and agarose gel electrophoresis.
The threshold cycle (Ct) values of each sample were used
in the post-PCR data analysis, and the delta-delta Ct
method was used to calculate mRNA expression. H19
levels were normalized and expressed as fold change rela-
tive to that of β-actin. The mean level of H19 expression
in the control (tubal/male) factor group was set to 1, and
H19 expression in the other two groups was normalized
to this control group. All SYBR green runs had dissoci-
ation curves to predict potential primer-dimers. Specificity
was verified by melting curve analysis. The PCR primers
for the indicated genes are listed below.
Human H19 forward: 5′-GCACCTTGGACATC

TGGAGT.

Human H19 reverse: 5′-TTCTTTCCAGCCCTAGCT
CA.
β-actin forward: AAGAGCTATGAGCTGCCTGA.
β-actin reverse: TACGGATGTCAACGTCACAC.

Statistical analysis
Descriptive statistics for all patients were analyzed with
one-way ANOVA combined with Bonferroni post hoc
analysis. To compare H19 expression levels, one-way
ANOVA was performed with Bonferroni post hoc ana-
lysis. Association between serum H19 expression and
AMH levels was measured using Pearson’s correlation
coefficient analysis. All P values were considered to be
statistically significant when p < 0.05. Statistical analysis
was performed using GraphPad (Chicago, IL).

Results
H19 expression in serum
Women with DOR had significantly lower serum H19
expression level as compared to women with tubal factor
infertility and women with unexplained infertility (Fig. 1a,
p < 0.05). As expected, women with DOR also had sig-
nificantly lower serum AMH levels 0.4 ng/mL for DOR
vs 2.5 ng/mL for tubal factor and 3.0 ng/mL for un-
explained infertility, p < 0.001). A moderate correlation
was observed between serum H19 expression and AMH
(Fig. 1b, p < 0.05).

H19 expression in cumulus cells
H19 expression was significantly decreased (4.6 fold) in
cumulus cells of IVF patients who demonstrated a poor
response to gonadotropins compared to high responders
(Fig. 2, p < 0.05). Women who were poor responders also
had higher cycle day 3 FSH levels (8.6 mIU/mL vs 6.4

Fig. 1 Serum H19 expression in decreased in women with DOR. a) Expression level of H19 in women with DOR is presented as fold change
relative to women without DOR (i.e. unexplained infertility and male/tubal factor). Relative H19 expression was decreased by half in women with
DOR compared to women with male/tubal factor infertility, and by nearly 60% as compared to women with unexplained infertility (p < 0.05). B) A
moderate positive correlation between H19 expression and serum AMH levels (r = 0.35) was observed; p < 0.05
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mIU/mL, p < 0.05) and lower peak E2 during IVF stimu-
lation (1175.2 pg/mL vs 2094 pg/mL, p < 0.05). Total go-
nadotropin dose did not differ between the two groups.

Discussion
In this study, we show that in women with evidence of de-
creased ovarian reserve, circulating and ovarian levels of
H19 are decreased. We observed that women with dimin-
ished ovarian reserve, as evidenced by a poor response to
gonadotropins and a low oocyte yield after in vitro
fertilization, also exhibited decreased cumulus cell H19 ex-
pression. We also found that serum H19 was lower in
women with decreased serum AMH levels (a proxy for
ovarian reserve which is predictive of low oocyte yield at
retrieval [23]). We also observed a moderate, statistically
significant correlation between decreased serum H19 ex-
pression and decreased AMH. Altered expression profiles
of microRNAs, another class of noncoding RNAs, has
been linked with poor ovarian reserve in plasma and
serum [24, 25], whole ovaries [26], follicular fluid [27],
granulosa cells [28–30], and oocytes [31], and two studies
have reported differential expression of piwi-interacting
RNAs in GCs and oocytes from women with DOR [31,
32]. However, little is known about the role of long non-
coding RNAs such as H19 in ovarian aging.
More work is needed to determine whether H19 may be

useful as a marker of ovarian reserve alone or in combin-
ation with other markers, or as a prognostic marker for fol-
licle loss remains to be determined. Currently available
methods of determining ovarian reserve have their draw-
backs. The antral follicle count, typically performed via
transvaginal ultrasound, is invasive, uncomfortable, and

subject to inter-observer variability. An early follicular
phase FSH has poor sensitivity for predicting failure to con-
ceive, and requires careful timing in order to be accurate.
Estradiol has poor intra- and inter-cycle reliability and is
useful only in conjunction with FSH [33]. Serum AMH has
emerged as a widely used measure of ovarian reserve based
on its consistency within and between menstrual cycles.
AMH is useful as a predictor of ovarian response in con-
trolled ovarian hyperstimulation cycles. However, the PPV
in young women is poor, and AMH does not appear to pre-
dict time to pregnancy in non-infertile women [34]. Com-
bining the different currently available ovarian reserve
testing modalities does not appear to improve predictive
ability over the use of a single test [35]. Importantly, all
available tests are considered diagnostic rather than prog-
nostic; we still seek the “holy grail” of a predictive test for
follicle loss.
As a mechanistic explanation for how H19 might regu-

late ovarian reserve, we have shown that in mice, loss of
H19 leads to accelerated follicular recruitment with in-
creased spontaneous development of secondary, pre-
antral, and antral follicles [14]. We also described a
novel mechanism by which H19 appears to regulate
AMH. AMH is a critical “gatekeeper” which inhibits the
activation of dormant ovarian follicles and slows the
growth of maturing follicles [15–17]. Our previous work
demonstrated low AMH, increased follicular recruitment
and subfertility in H19 knockout mice, suggesting a po-
tential role for H19 in the regulation of anti-Müllerian
hormone AMH [14]. A possible mechanism for this can
be found in a microRNA (miRNA) intermediary, let-7,
which functions as a negative regulator of target genes

Fig. 2 Serum H19 expression in women who are poor responders to IVF treatment. Expression level of H19 in women who were high and low
responders to gonadotropins is presented as fold change relative to controls (women who had a normal / midrange gonadotropin response).
Relative H19 expression was significantly decreased in “low responder” women (p < 0.05)
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[36]. We have shown that H19 acts as a molecular
“sponge” for let-7, binding and modulating its availability
[36] (Fig. 3). The Amh mRNA contains putative binding
sites for let-7 [14], and let-7 transfection leads to de-
creased Amh expression in GCs [14], supporting Amh as
a novel let-7 target. Previous studies have demonstrated
that let-7 expression is increased in GCs from women
with poor ovarian reserve [30] and in plasma from
women with premature ovarian insufficiency, a condition
marked by early loss of ovarian follicles [25]. Taken
together, these studies suggest a plausible ncRNA-
mediated mechanism for AMH regulation by H19, via
let-7, and points to a potential role for H19 in ovarian
aging by identifying a direct link between ncRNAs and
follicular and oocyte quantity.
This work raises the crucial question of whether H19

has a role in the regulation of ovarian aging. As expected,
in order to examine whether H19 is related to markers of
ovarian reserve, our studies included a study population of
women who were older than controls. One question is
whether the decreased H19 expression we have seen in
these populations is correlated with aging itself. To our
knowledge, no data exists regarding whether age-related
changes in H19 expression occur with time in reproduct-
ive tissues. Loss of H19 has been linked to increased ex-
pression of markers of cellular aging and loss of cellular
quiescence in hematopoietic stem cells and endothelial
cells [37–39]. More work is necessary to clarify this ques-
tion. However, even if the differences in H19 expression
observed between populations are a result of age, the idea
that H19 may represent a biological “rheostat” regulating
the aging reproductive endocrine system beyond fertility

is an intriguing one, especially given that ovarian aging
has implications beyond fertility, including the serious
health consequences of menopause such as vasomotor
symptoms, osteoporosis, and cardiovascular disease.
The strengths of our study include the use of different

testing modalities (serum and cumulus cells). Noncoding
RNAs, including miRNAs and lncRNAs, can be collected
from tissues as well as bodily fluids including plasma,
serum, and urine [40, 41]. While tissue-specific changes in
H19 expression have been investigated as potential bio-
markers in other conditions including breast [42] cancer,
this is the first report of H19 expression in cumulus cells,
which are easily accessible at the time of oocyte retrieval.
We also report a correlation between serum H19 and
AMH, a marker of follicular response during IVF23. Circu-
lating H19 has been explored as a diagnostic and prognostic
biomarker for other conditions including coronary artery
disease [43], multiple myeloma [44], and cancers including
bladder and gastric cancer [22, 40, 41, 45, 46]. In the repro-
ductive tract, circulating H19 is higher in women with poly-
cystic ovary syndrome (PCOS) compared to controls [47],
and H19 has been identified as a potential diagnostic and
prognostic marker for epithelial ovarian [48] and cervical
cancer [49]. However, a link between circulating H19 and
markers of ovarian reserve has not previously been de-
scribed. Moreover, our sample groups include a diverse
population of women at a range of ages and ethnic back-
grounds, lending generalizability to our results. Our study
is limited by the small sample size and the fact that limited
demographic data and no AMH was available from the
population of women from whom cumulus cells were ob-
tained. However, while the finding of low H19 in women

Fig. 3 H19 acts as a molecular “sponge” for let-7. (a) The microRNA let-7 functions as a negative regulator of target genes [36]. (b) We have
shown that H19 acts as a molecular “sponge” for let-7, binding and modulating its availability [36]. The Amh mRNA contains putative binding sites
for let-7 [14], and let-7 transfection leads to decreased Amh expression in GCs [14], supporting Amh as a novel let-7 target and representing a
novel ncRNA mediated mechanism by which the bioavailability of Amh can be regulated by H19
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with poor ovarian reserve may be correlative and requires
further study, our findings regarding Amh and let-7 lend
mechanistic plausibility to H19 as a causative factor. Lastly,
it is well established that imprinted genes, including H19,
are susceptible to alteration by assisted reproductive tech-
nologies [50–52]. However, our findings of low H19 in
women with DOR are consistent across women undergoing
controlled ovarian stimulation (COH) and those who pre-
sented prior to initiating COH. Additionally, our findings
are consistent across different testing modalities (serum
and cumulus cells).
In conclusion, our work suggests for the first time that

circulating and intrafollicular H19 levels may be altered
in women with diminished ovarian reserve. H19 may
have an important role as a master regulator of ovarian
reserve markers, particularly AMH, and further elucida-
tion of the role of H19 in the ovarian aging process will
enhance our understanding of normal folliculogenesis as
well as the pathogenesis of diminished ovarian reserve.
Further studies should be conducted to determine
whether the association we have observed holds true in
younger women with diminished ovarian reserve. In the
future, H19 may also prove useful as a novel diagnostic
biomarker for ovarian reserve and premature ovarian in-
sufficiency, and has the potential to improve our diagno-
sis of DOR especially in situations where current ovarian
reserve testing has proven inadequate.
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