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patients with gestational diabetes mellitus
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Abstract

Background: Gestational diabetes mellitus (GDM) has a high prevalence in the period of pregnancy. However, the
lack of gold standards in current screening and diagnostic methods posed the biggest limitation. Regulation of
gene expression caused by DNA methylation plays an important role in metabolic diseases. In this study, we aimed
to screen GDM diagnostic markers, and establish a diagnostic model for predicting GDM.

Methods: First, we acquired data of DNA methylation and gene expression in GDM samples (N = 41) and normal
samples (N = 41) from the Gene Expression Omnibus (GEO) database. After pre-processing the data, linear models
were used to identify differentially expressed genes (DEGs). Then we performed pathway enrichment analysis to
extract relationships among genes from pathways, construct pathway networks, and further analyzed the
relationship between gene expression and methylation of promoter regions. We screened for genes which are
significantly negatively correlated with methylation and established mRNA-mRNA-CpGs network. The network
topology was further analyzed to screen hub genes which were recognized as robust GDM biomarkers. Finally, the
samples were randomly divided into training set (N = 28) and internal verification set (N = 27), and the support
vector machine (SVM) ten-fold cross-validation method was used to establish a diagnostic classifier, which verified
on internal and external data sets.

Results: In this study, we identified 465 significant DEGs. Functional enrichment analysis revealed that these genes
were associated with Type I diabetes mellitus and immunization. And we constructed an interactional network
including 1091 genes by using the regulatory relationships of all 30 enriched pathways. 184 epigenetics regulated
genes were screened by analyzing the relationship between gene expression and promoter regions’ methylation in
the network. Moreover, the accuracy rate in the training data set was increased up to 96.3, and 82.1% in the
internal validation set, and 97.3% in external validation data sets after establishing diagnostic classifiers which were
performed by analyzing the gene expression profiles of obtained 10 hub genes from this network, combined with
SVM.

Conclusions: This study provided new features for the diagnosis of GDM and may contribute to the diagnosis and
personalized treatment of GDM.
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Introduction
Gestational diabetes mellitus (GDM) is a common preg-
nancy complication associated with various perinatal con-
ditions, including pre-eclampsia, cesarean section,
macrosomia, birth injury, and neonatal hypoglycemia [1].
About 6 to 9% of pregnancies are associated with GDM
[2], and the prevalence of undiagnosed Type II diabetes
among women of childbearing age has increased due to
the increased obesity and Type II diabetes in recent years
[3]. Therefore, the International Association of Diabetes
and Pregnancy Research Groups (IADPSG) recommended
that women diagnosed with diabetes based on early preg-
nancy diagnostic criteria should be classified as epigenetics
diabetic [1]. However, the criteria for GDM diagnosis are
still controversial. Therefore it is essential to find an ef-
fective diagnostic method, and optimal medical and ob-
stetric managements for reducing the adverse pregnancy
outcomes of GDM.
DNA methylation is an epigenetic modification of

cells, it can regulate gene expression without altering the
gene sequence [4]. Although the relationship between
gene expression and gene sequence is complex [5, 6],
these methylation events can respond to nutritional and
environmental effects, and modulate gene expression
patterns based on the flexibility of epigenome modifica-
tion [7, 8]. Thus, methylation can serve as potential bio-
markers for early cell transformation [9]. In fact, it has
been reported that serum DNA methylation can be con-
sidered as a biomarker for early detection of cancer, es-
pecially in the field of cancer. [10, 11]. Moreover, DNA
methylation of specific genes (SEPT9, RASSF1A, APC,
and GADD45a) has been proposed as a biomarker for
the diagnosis and prognosis of colorectal cancer [12]
and breast cancer [13].
The aim of this study was to integrate high-

throughput methylation profiles and gene expression
profiling data from a large number of patients to
study altered DNA methylation patterns between
GDM and healthy pregnant women. In addition, we
aimed to identify specific DNA methylation sites as
potential biomarkers and further establish a GDM
diagnostic classifier.

Materials and method
In the present study, the analysis methods included the
following steps: data collection, DEGs analysis, enrich-
ment analysis, pathway interaction network, feature se-
lection, and classifier construction and validation. The
workflow was shown in Fig. 1.

Data collection
Gene methylation and gene expression data were ob-
tained from previous studies by Binder AM et al. [14],
from the GEO database (http://www.ncbi.nlm.nih.gov/

geo/). The gene methylation data was performed by the
GPL13534 platform (Illumina HumanMethylation450
BeadChip), numbered as GSE70453. The data set con-
tained a total of 82 samples, including 41 GDM samples
and 41 normal placental tissues (Table 1). Samples were
matched based on maternal age, pre-pregnancy BMI,
method of conception, ethnicity, smoking status, and in-
fant sex. Approximately 50% of these women were nor-
mal weight (18.5 ≤ BMI < 25) prior to pregnancy. Aside
from two previously underweight mothers, the
remaining women were either overweight (20%; 25 ≤
BMI < 30) or obese (29%; 30 ≤ BMI). Birth weight and
gestational age were not associated with GDM in this
study population. The gene expression profile data was
acquired from GPL17586 platform (Affymetrix Human
Transcriptome Array 2.0), numbered as GSE70493. The
data set contained a total of 63 samples from the same
batch of samples for detecting methylation data, of
which 32 were GDM samples and 31 were healthy pla-
cental tissues.

Methylation data processing
We first downloaded the methylation Beta values of the
normalized CpG sites and further converted it to the
methylation M value. A total of 82 samples of the GDM
and healthy group samples were included in the study
cohort, and we further removed the sites with missing
valuesgreater than 20% of all samples, as well as samples
with missing values greater than 20% in each CpG sites.
Then we used the impute R package [15] for missing
value completion. Probes which were known to bind sex
chromosomes, cross-hybridize to multiple locations, or
target a single-nucleotide polymorphism (SNP) were re-
moved, based on previous annotation [16, 17]. As the
treatment of Zhang et al. [18], we further removed the
methylation site from the non-promoter region, thus
236,070 probes for DNA methylation analysis were ob-
tained. All analysis was performed by using M valuesto
improve the statistical calculation of methylation [19],
though Beta values were also included in the tables for
biological interpretation.

Gene expression data processing
For gene expression data, we first downloaded the raw data
of microarray data, removed the duplicated samples, and fi-
nally screened 30 GDM placental tissues and 25 healthy
placental tissues. The oligo R package [20] was used for
data processing to obtain probe expression profiles and fur-
ther the RMA [21] method for data standardization. We fi-
nally obtained the expression matrix of 55 samples of 70,
523 gene probes, and probe annotation was performed by
the R package hta20transcriptcluster.db to remove probes
matched to multiple genes (https://bioconductor.org/pack-
ages/release/data/annotation/html/hta20transcriptcluster.
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db.html). Multiple probes matched to one were used the
median values as the expression of this modified gene. The
expression profiles of 23,313 genes were finally obtained.

Screening of significant DEGs
The R package limma [22] was used to screen DEGs be-
tween GDM samples and normal samples. The p-value
< 0.05 as the threshold.

Functional enrichment analyses
Gene Ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway enrichment analysis was
performed by using the R package clusterProfiler [23]
for DEGs. To identify over-represented GO terms in
three categories (biological processes, molecular function
and cellular component), and KEGG pathway, we used
the R package DOSE [24] to visualize. For both analyses,
a p-value < 0.05 was considered to denote statistical
significance.

Construction of KEGG pathway gene interaction network
An XML file of the enriched KEGG pathway was down-
loaded from the KEGG [25] website. We used the R
package XML to extract the relation, entry, and group
relationships in these XML files. Then the script was
used to extract the interaction information of these
genes. We constructed the KEGG pathway gene inter-
action network, and used Cytoscape [26] software to
visualize, and analyze the topological properties of the
network.

Screening for key epigenetics diagnostic genes in GDM
First, we extracted the methylation data of the samples
which matching the gene expression profile, and further
extracted the CpG methylation sites of the gene pro-
moter region in the pathway network. By calculating the
correlation between the promoter methylation site and
gene expression, we selected a significantly negative cor-
relation with the threshold of p-value < 0.05. Thus, we
obtained the methylation site corresponding to the

Fig. 1 The workflow of the present study
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epigenetics driven gene and its promoter region. Based
on the network interaction information of these genes
and the relationship with CpG, the gene-gene-CpG net-
work was visualized by using Cytoscape. The Degree,
Closeness, and Betweenness in the network was calcu-
lated by using the plug-in of cytohubba [27] and the
intersection genes of top 10 Degree, Closeness, and Be-
tweenness were selected as the final key genes.

Construction of GDM diagnostic prediction model and
validation
A diagnostic prediction model based on the SVM
[28] classification was built to predict GDM and nor-
mal healthy samples by feature-based genes. The
SVM was a supervised learning model in machine
learning algorithms that it can analyze data and iden-
tify patterns. It can construct a hyperplane, which can
be used for classification and regression in high or in-
finite dimensional space. Given a set of training sam-
ples, each tag belongs to two categories. One SVM
training algorithm builds a model and assigns new in-
stances to one class or another, making it a non-

probabilistic binary linear classification. We randomly
and uniformly divided all samples into training data
sets and validation data sets. The model was con-
structed in the training data set, and the ten-fold
cross-validation method was used to verify the classi-
fication ability of the model. The established model
was then used to predict the samples in the validation
data set. The predictive power of the model was esti-
mated by using the area under the ROC curve (AUC)
and the model’s predictive sensitivity and specificity
for GDM were analyzed.

External data sets validate the clinical validity of the
model
A set of Agilent-039494 SurePrint G3 Human GE v2
8x60K Microarray chipset dataset GSE128381 [29]
with 183 Placental tissue samples, including 6 GDM
patients, 177 normal samples, was selected as a separ-
ate external validation dataset. The standardized data
was downloaded, and the expression profile of charac-
teristic genes was extracted and substituted into the
model to predict the samples and compare with the

Table 1 Characteristics of placenta samples were assessed on the Illumina Infinium Array

Characteristic Cases (n = 41) Controls (n = 41) p-value

Pre-pregnancy BMI (kg/m2) 26.653 (5.733) 26.410 (5.422) p = 0.7635

Maternal Age (years) 33.171 (4.652) 33.487 (4.853) p = 0.7635

Gravidity p = 0.3891

1 8 (19.51%) 4 (9.76%)

2 11 (26.83%) 16 (39.02%)

3 13 (31.71%) 10 (24.39%)

> 4 8 (19.51%) 11 (26.83%)

Smoke during Pregnancy

No 38 (92.683%) 38 (92.683%) p = 1

Yes 3 (7.317%) 3 (7.317%)

Infant Sex

Males 20 (48.78%) 21 (48.78%) p = 1

Females 21 (51.22%) 20 (51.22%)

Ethnicity

Non-Hispanic White 23 (56.098%) 23 (56.098%) p = 0.9437

Hispanic or Latino 5 (12.195%) 4 (9.756%)

Asian/Pacific Islander 7 (17.073%) 6 (14.634%)

Black/African-American 6 (14.634%) 8 (19.512%)

Conception

Spontaneous planned 24 (58.537%) 24 (58.537%) p = 1

Spontaneous unplanned 12 (29.268%) 12 (29.268%)

Ovulation-induction drug 2 (4.878%) 2 (4.878%)

IVF 3 (7.317%) 3 (7.317%)

Gestational Age (weeks) 39.077 (0.932) 39.206 (1.047) p = 0.5576
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clinically detected diseases to analyze the accuracy of
prediction, as well as the cross-platform of the model
was verified. Furthermore, a random sample of 50%
of normal samples is extracted one thousand times,
and the expression spectrum of the characteristic
gene is extracted from the model, and the prediction
of the model is observed to observe the prediction
stability of the model. The differences between pre-
pregnancy age and pre-pregnancy BMI between the
GDM-predicted and normal samples were compared.
At the same time, a set of chip dataset GSE128381
[30] of the NuGO array platform was included, and
sample generation into the model to predict the
GDM samples and compared with the GDM identi-
fied by the underwent a 100 g 3 h Oral Glucose
Tolerance Test (OGTT) between the 24 -34th gw
method.

Results
Identification of DEGs between GDM and healthy samples
The gene microarray data of 55 samples were obtained
from GEO database. After standardization and gene an-
notation, the expression profiles of 23,313 genes were
obtained. The gene expression distribution of each sam-
ple was shown as Fig. 2a. A total of 465 DEGs were ob-
tained between GDM and healthy samples, of which 165
genes were up-regulated in the healthy group, 300 genes
were up-regulated in the GDM group. The volcano map
was shown in Fig. 2b, and the expression heatmap of the
DEGs was shown in Fig. 2c.

Functional enrichment analysis of DEGs
To better understand the functional implications of the
465 DEGs, GO and KEGG functional enrichment ana-
lysis was performed (Additional file 1: Table S1). In the
biological process category, 108 enriched GO terms were
observed. They were mainly enriched in response to
interferon-gamma, T cell chemotaxis, and type I inter-
feron signaling pathway (Fig. 3a). These results sug-
gested a link between insulin resistance and the immune
pathway. Insulin resistance was reported as the result of
an inflammatory environment [31]. Categorization by
“cellular component” revealed 41 enriched GO terms,
and they were mainly associated with MHC protein
complex and lumenal side of endoplasmic reticulum
membrane (Fig. 3b). Moreover, the “molecular function”
category revealed 14 significant enrichment in GO terms
associated with the MHC class II receptor activity, and
chemokine receptor binding (Fig. 3c).
The KEGG enrichment analysis revealed 30 biological

pathways such as Type I diabetes mellitus, Cell adhesion
molecules (CAMs), and Intestinal immune network for
IgA production (Fig. 3d). It was worth mentioning that
Type I diabetes mellitus was associated with GDM. In

short, these DEGs were closely related to immunity,
MHC, and diabetes mellitus.

KEGG pathway gene interaction network
We then downloaded the XML file of 30 enriched path-
ways from the KEGG website, extracted the gene inter-
action information by the XML R package, and
converted the gene id into gene symbol. Finally, we con-
structed a KEGG pathway gene interaction network,
which had a total of 1091 genes with expression levels
with 4169 interactions. As shown in Fig. 4a, most of
them were down-regulated in GDM. In the further ana-
lysis of network topology properties, the network degree
distribution was shown in Fig. 4b. We found that the
proportion of nodes with large degree was small, and
most node degrees were small and exhibited power law
distribution, which was consistent with the distribution
characteristics of biomolecular network. In the analysis
of methylation sites of gene promoter regions in the net-
work, we found that a total of 1013 (92.9%) genes with
methylation sites at promoter region. The number of
methylation sites was as shown in Fig. 4c, and there were
876 (82.5%) genes, whose promoter regions with methyl-
ated CpG sites were below 20.

Identification of key epigenetics driven genes in GDM
We analyzed the correlations between KEGG pathway
gene expression and promoter methylation sites. A total
of 184 (18.2%) genes with 242 methylation sites were
significantly negatively correlated with their promoter
region methylation (Additional file 2: Table S2). These
genes were potentially key epigenetics driven genes that
were linked to promoter methylation sites to form a
gene-gene-CpG interaction network (Fig. 5a). The de-
gree distribution of the network was shown in Fig. 5b,
and the power law distribution was also presented.
Moreover, we calculated the Closeness of this network.
It was found that most nodes had lower Closeness, and
a few nodes had higher Closeness (Fig. 5c). The network
Betweenness distribution was shown in Fig. 5d, and most
nodes had low Betweenness; high degree, high Closeness
or high Betweenness were considered to be important in
the network. Next, we chose the node that satisfies the
top 10% degree, Closeness, and Betweenness as 10 epi-
genetics driven hub genes (STAT1, HLA-DOA, HLA-
DMB, HLA-DQB1, HLA-DRB1, HLA-DMA, HLA-DRA,
HLA-DPB1, IFNGR2, EIF2AK2), wherein HLA-DMB,
HLA-DMA, HLA-DQB1, HLA-DRB1, HLA-DRA, HLA-
DPB1 were HLA class II histocompatibility antigen. The
main genomic region controlling the predisposition to
type 1 diabetes was the Human Leukocyte Antigens
(HLA) class II of the major histocompatibility complex
[32]. HLA-DRB1 was proved to increase insulin secre-
tion and reduce the risk of type 2 diabetes [33]. STAT1
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mutation was closely related to type 1 diabetes suscepti-
bility [34]. EIF2AK2 was overexpressed in islets of type 1
diabetes patients [35]. In total, these hub genes were
closely related to the development of diabetes, and these
10 genes may be used as GDM markers.

Construction of diagnostic models and validation
We randomly divided 55 samples into two groups, one
group as training data set (n = 27, GDM= 15, Normal =
12), and one group as validation data set (n = 28, GDM=
15, Normal = 13). In training dataset, 10 hub genes were

used as features to obtain their corresponding expression
profiles, and then the SVM classification model was con-
structed. The model test used a ten-fold cross-validation
method with a classification accuracy of 96.3% (Fig. 6a)
and 26 of 27 samples were classified correctly. The
model has a sensitivity to GDM of 100% and a specificity
of 91.7% with the AUC of 0.96 (Fig. 6b). Further, we
used the established model to predict the samples in the
validation data set to test the predictive power of this
model. Twenty-three of 28 samples were correctly classi-
fied and the classification accuracy was 82.1%. The

Fig. 2 Identification of DEGs between GDM and healthy controls samples. (a) The box plot depicts the overall gene expression level of each
sample after normalization (blue bars: normal sample, orange bar: GDM sample). (b) The volcano plot of DEGs. (c) The expression heatmap
of DEGs
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model had a sensitivity of 80% for GDM and a specificity
of 84.6% (Fig. 6a). The AUC value was 0.82 (Fig. 6b). Fi-
nally, all samples were predicted using above established
model to test the predictive power. Forty-nine of 55
samples were correctly classified, with a classification ac-
curacy of 89.1%. The model had a sensitivity of 90% for
GDM and a specificity of 88% (Fig. 6a). The AUC value
was 0.89 (Fig. 6b). These results indicated that the diag-
nostic prediction model constructed in this study can ef-
fectively distinguish between GDM patients and normal
controls. These 10 epigenetics driven genes may be used
as reliable biomarkers for GDM diagnosis.

The superiority of diagnostic model in the external
verification set
A separate set of data sets GSE128381 was selected, con-
taining 183 Placental tissue samples, and the model was
applied to these pregnant Placental tissue samples to
analyze the accuracy of the model. Specifically, we se-
lected a set from the Hasselt University Centre for The
Environmental Sciences data set, GEO number is
GSE128381, the expression matrix of 10 hub genes were
extracted, our model was used to predict the sample and
compared it with the clinical diagnosis. Among them,

178 of the 183 patients diagnosed as normal samples
were predicted as normal samples, and 5 of the 6 pa-
tients diagnosed as GDM were predicted as GDM pa-
tients, with an accuracy rate of 97.3% (Fig. 6a), the area
under the ROC curve was 0.773 (Fig. 6b), and the overall
prediction performance was good, and a good predictive
performance across data platforms. Furthermore, 88
(50%) samples were randomly selected from 177 known
normal women using our model for prediction, and the
number of normal samples was statistically predicted. In
order, 1000 times were randomly selected, among which
400 (40%) times were correctly classified 100%, 5 (5.6%)
were the biggest prediction errors, and the frequency
was 133 (13.3%) times (Fig. 6c). This indicated that the
model has good stability. To analyze the relationship be-
tween the model and the maternal history, the 183 cases
from Hasselt University Centre for Environmental Sci-
ences were predicted to be GDM group and normal
group. The characteristics of the two groups of pregnant
women were analyzed, and we found the age of the
pregnant women predicted to be GDM were signifi-
cantly higher than that the predicted normal sample
(Fig. 6d). The pre-pregnancy BMI comparison also
showed that the GDM sample was significantly higher

Fig. 3 Functional enrichment analysis of 465 DEGs. (a) Enriched GO terms in the “biological process” category. (b) Enriched GO terms in the
“cellular component” category. (c) Enriched GO terms in the “molecular function” category. (d) Enriched KEGG biological pathways. The x-axis
represents the proportion of DEGs, and the y-axis represents different categories. The different colors indicate different properties, and the
different sizes represent the number of DEGs
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than normal (Fig. 6e). It is well known that age and BMI
are risk factors for GDM in pregnant women, and the
model is consistent with maternal age and BMI. To run
the double-blind trial, we used the expression profiles of
HUVEC cells from umbilical cords in six pregnant
women tested by Ambra R et al. [30], our model was
used to predict and identify three GDM and three
normal samples. The oral glucose tolerance test
(OGTT) was further performed between the 24th and
34th gestational weeks, and the three GDMs reported
by the GTT were completely consistent with the
model predictions. Furthermore, the expression pro-
files of Placental tissue samples from 183 pregnant

women tested by Cox B et al. [29] were predicted by
our model to identify 11 GDM samples and 172
healthy group samples, However, according to clinical
diagnosis of Cox B et al., 5 of the 11 predicted GDM
samples were diagnosed as GDM, and 172 predicted
healthy samples were all diagnosed as normal samples
(Fig. 6f). This suggests that the model is suitable for
different data platforms and is highly consistent with
current clinical diagnostic methods.

Discussion
Some studies have showed that patients with GDM suf-
fer a higher risk of developing type I/II diabetes in the

Fig. 4 KEGG pathway gene interaction network analysis. (a) KEGG pathway gene interaction network. The colors indicated different fold-change.
(b) The distribution of network degree. (c) The distribution of network methylation CpG sites in the promoter region
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future than normal pregnant women [36]. Type I/II
diabetes will be a major healthy burden without
proper medical intervention. In this study, we com-
pared the differences in gene expression between
GDM and healthy control samples. Function analysis
of these DEGs revealed that these genes were mainly
enriched in immune, histocompatibility complex
(MHC) and type I diabetes-related pathways. The
underlying pathogenesis of type I diabetes in GDM
may be associated with autoimmunity. Type I diabetes
was characterized by progressive destruction of pan-
creatic beta cells due to T cell-mediated autoimmun-
ity, leading to insulin deficiency and hyperglycemia.
Polymorphisms in the class II human leukocyte anti-
gen (HLA) gene encoded by the MHC region were
related to susceptibility in type 1 diabetes [37]. These
class II molecules play important roles in antigen-
peptide presentation-assisted T cells.
DNA methylation was an indispensable epigenetic

modification which inhibited transcription of a gene
by inhibiting the binding of specific transcription fac-
tors [38]. Hyperglycemia in the uterine environment
may also induced epigenetic adaptation, led to DNA
methylation changes, thus affected the risk of obesity
and type 2 diabetes in future generations [39]. We
combined the gene expression and gene promoter
methylation to screen for genes those regulate

abnormalities from the GDM-related KEGG pathway
gene regulatory network, and further screened hub
genes such as STAT1, HLA-DOA, and HLA-DMB,
HLA-DQB1, HLA-DRB1, HLA-DMA, HLA-DRA,
HLA-DPB1, IFNGR2, and EIF2AK2. The literature
mining found that most of these genes were associ-
ated with type I diabetes.
In addition, pregnant women with gestational dia-

betes are prone to miscarriage early in pregnancy,
and impaired fetal development may lead to glucose
intolerance and obesity in infants [40]. Therefore,
early diagnosis and personalized medical intervention
of GDM are of great significance. Previously, Wang
et al. [41] has established a diagnostic model by using
six gene expression profiles, but the AUC was rela-
tively low. In this study, the SVM was used which
based on 10 hub genes for GDM. The gene expres-
sion profile was constructed and verified by a classi-
fier. The AUC reached 0.96 in the training set,
indicating that these genes have a good classification
effect on GDM. The AUC in the validation data
set also reached 0.82. Our double-blind trial that the
model is suitable for different data platforms and is
highly consistent with current clinical diagnostic
methods. These results indicated that these 10 genes
may be regard as GDM diagnostic markers, which
provided targets and references for clinicians.

Fig. 5 Identification of key epigenetics driven genes in GDM. (a) Gene-gene-CpG interaction network, in which the pink dot was methylated CpG,
the blue dot represented the gene. (b) The degree distribution of the network. (c) The network Closeness distribution. (d) The network
Betweenness distribution
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Although we identified potential candidate genes in-
volved in GDM development in large samples through
bioinformatics techniques, we should be aware of several
limitations of this study. First, the samples lack for clin-
ical follow-up information, so we did not consider other
factors such as the presence of other health status of the
patients to distinguish GDM diagnostic biomarkers. Sec-
ond, it was inadequate that the results were obtained
only by bioinformatics analysis, thus further experimen-
tal validation was needed to confirm above results, such
as genetic analysis and experimental studies of larger
sample sizes.
In summary, we systematically analyzed the methyla-

tion status of more than 20,000 gene expressions and

270,000 CpGs, and extracted key genes based on regula-
tion relationships in GDM-related pathways. We found
the expression characteristics of key genes, which were
closely related to the development of type 1 diabetes in
the GDM. Although our proposed gene expression pro-
file still lacked the high specificity required for immedi-
ate diagnostic applications, GDM may be predicted with
high accuracy (AUC = 0.96) from gene expression pro-
files in placental tissue for clinicians.

Conclusions
In conclusions, this study provided new features for the
diagnosis of GDM and may contributed to the diagnosis
and personalized treatment of GDM.

Fig. 6 Construction of diagnostic models and validation. (a) The classification result of the diagnostic model in the training data set, verification
data set and GSE128381 data set. (b) The ROC curve of diagnostic model in the training data set, verification data set and GSE128381 data set. (c)
The number of normal samples predicted by the prediction model in a thousand random normal samples. (d) Age distribution difference of pre-
pregnancy between GDM samples and normal samples, and t-test was used to calculate the p value. (e) BMI distribution difference of pre-
pregnancy between GDM samples and normal samples, and t-test was used to calculate the p value. (f) Relationship between model prediction
results and OGTT diagnostic results
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