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Abstract

Kisspeptin and its G protein-coupled receptor KISS1R play key roles in mammalian reproduction due to their
involvement in the onset of puberty and control of the hypothalamic-pituitary-gonadal axis. However, recent
studies have indicated a potential role of extra-hypothalamic kisspeptin in reproductive function. Here, we
summarize recent advances in our understanding of the physiological significance of kisspeptin/KISS1R in the
peripheral reproductive system (including the ovary, testis, uterus, and placenta) and the potential role of
kisspeptin/KISSTR in reproductive diseases. A comprehensive understanding of the expression, function, and
potential molecular mechanisms of kisspeptin/KISS1R in the peripheral reproductive system will contribute to the
diagnosis, treatment and prevention of reproductive diseases.
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Introduction

Different species have evolved various survival strategies,
but reproduction is an indispensable function of all spe-
cies permanence. Reproductive function is driven by a
complex neuro-hormonal system, with considerable con-
tribution by the hypothalamic-pituitary-gonadal (HPG)
axis. The HPG axis is divided into three main levels with
the following regulatory signals: 1) hypothalamus: go-
nadotropin-releasing hormone (GnRH); 2) pituitary: go-
nadotropin, luteinizing hormone (LH) and follicle-
stimulating hormone (FSH); and 3) gonads: sex steroids
and peptides [1]. In the regulation of the reproductive
system, GnRH neurons are the main hub, and their
regulation is complicated, as a wide range of cell types
and signalling molecules directly or indirectly converge
on the GnRH neuron network [2]. Many regulators of
GnRH neurons act through G protein-coupled receptors
(GPCRs). KISSIR is one of the most important GPCRs
in the neuroendocrine control of reproductive function,
and its ligand kisspeptin has a significant effect on the
hypothalamus [3]. However, the expression of KISSI and
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KISSIR in peripheral reproductive tissues led us to
hypothesize that kisspeptin signalling is involved in the
local regulation of reproduction within these tissues [4—6].
In particular, three recent reviews have discussed the role
of KISS/KISSR signalling in the ovary, the reproductive
axis, implantation and placentation [7-9]. In this review,
we focus on the local expression and regulation of kis-
speptin and its receptor KISSIR in the peripheral repro-
ductive system, including in the ovary, testis, uterus, and
placenta, and highlight the potential role of kisspeptin/
KISSIR in reproductive diseases.

The role of kisspeptin in pubertal onset

Kisspeptin is an Arg-Phe-NH, (RF-amide) peptide
encoded by the KISSI gene [10]. The KISSI gene was
named after Hershey’s chocolate kisses because it was
initially isolated from human non-metastatic pigment
tumours in Hershey (Pennsylvania, USA), and the “SS”
represents “suppressor sequence” [11]. In humans, the
KISS1 gene is located on chromosome 1g32.11 and
encodes a 145-amino acid peptide that is cleaved into
four shorter peptides: KP-54, KP-14, KP-13, and KP-10
of 54, 14, 13 and 10 amino acids, respectively. These
forms all share a common C-terminal decapeptide (KP-
10), which is required for binding with its receptor
KISSIR (also known as GPR54) [12]. In humans,
kisspeptin is synthesized in two major sections of the
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hypothalamus: the arcuate nucleus and the anterior
ventral periventricular nucleus [13]. The binding of
kisspeptin to KISSIR activates the phospholipase C
pathway in hypothalamic cells, leading to changes in
cellular activity [14]. Current evidence suggests that the
kisspeptin signalling pathway is essential for the onset of
mammalian puberty. Loss of KISSIR function causes hu-
man hypogonadotropic hypogonadism (HH), and one
manifestation of HH is the failure to establish puberty
due to impaired gonadotropin secretion [15]. The
phenotype of human KISSIR mutation is mimicked in
Kiss1r knockout mice [16]. In addition, KissI knockout
rats lack the pulsing and proliferative patterns of
gonadotropin and show puberty failure [17]. Conversely,
mutations that cause hyperactive KISSIR in humans lead
to central precocious puberty [18, 19]. These results
suggest that kisspeptin plays an integral role in the regu-
lation of pubertal onset. However, emerging evidence
indicates the involvement of extra-hypothalamic kisspep-
tin and the KISSIR system in peripheral reproductive
functions.

Ovarian kisspeptin and KISS1R

Distribution in ovarian tissues

The expression of Kissl and KissIr was first demon-
strated in the rodent ovary [4]. To date, the expression
of Kiss1/Kiss1r has been found in the ovaries of different
animals, such as hamsters [20], mice [21], rats [22],
chickens [23], cats [24], dogs [25], pigs [26], humans and
marmoset primates [27]. Because ovarian KissI mRNA is
mainly expressed in rat granulosa cells during proestrus,
granulosa cells are likely the main site of kisspeptin syn-
thesis [28]. The LH surge may directly stimulate kisspep-
tin synthesis through LH receptors on granulosa cells
[29], and prevention of the preovulatory gonadotropin
surge can block the upregulation of ovarian KissI
expression [22]. The expression of ovarian KissI mRNA
shows a distinctive cell- and stage-specific pattern under
regulation of LH [22, 29, 30], whereas KissIr mRNA
expression remains low and does not significantly fluctu-
ate with the oestrous cycle or gonadotropin treatment in
rats [28-30]. Interestingly, in both rodent and human
growth follicles, kisspeptin is present in theca cells of
the growing follicle; in preovulatory follicles, kisspeptin
begins to appear in the basal cells of the granular layer;
after ovulation, positive immunostaining can be
observed in non-luteinized granulosa cells of newly
ruptured ovulation follicles; and in the corpus luteum
(CL), intense kisspeptin immunoreactivity can be detected
in steroidogenic granulosa lutein cells, with a gradual in-
crease with gradual maturation of the CL [22, 27]. These
results demonstrate that kisspeptin and its receptor
have a highly conserved expression pattern in rodent,
monkey and human ovaries. The distribution of
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kisspeptin in the ovary has significant temporal and
spatial specificity, suggesting that the kisspeptin/
KISS1IR system performs multiple functions at differ-
ent physiological stages in the ovary.

The role in follicular development

The expression of ovarian KissI mRNA gradually
increases from infancy to adolescence [28]. The imma-
ture ovary shows negligible Kissl expression [22], and
there is no significant difference in ovarian weight
between KissI/KissIr-deficient mice and normal mice
before puberty [31]. However, after puberty, the ovaries
in Kisslr”’~ and Kiss1/~ mice shrink compared with
those in control mice, likely due to the loss of kisspep-
tin-mediated regulation of follicular development, not
defects in gonadotropin secretion because follicular de-
velopment cannot be rescued by gonadotropin
replacement [32]. In fact, although the role of the HPG
axis cannot be completely ruled out, follicles at all stages
and the CL are present in mice with targeted removal of
kisspeptin and Kisslr neurons (>90%), suggesting that
local kisspeptin in the ovary plays a very important role
in follicle development [1].

Under conditions of a healthy nutrient supply, the
administration of kisspeptin in the ovary reduces the
number of antral follicles and increases the number of
preovulatory follicles, and these structural changes can
be reversed by the administration of the kisspeptin
antagonist peptide 234 (P234). Furthermore, kisspeptin
administration increases plasma anti-Mullerian hormone
(AMH) in 6- and 10-month-old rats. AMH, a marker of
ovarian reserve, is mainly secreted by secondary and
small sinus follicles and can inhibit the activation of
primordial follicles by negative feedback; moreover, P234
administration reduces plasma AMH levels in rats [33].
The FSH/follicle stimulating hormone receptor (FSHR)
axis is responsible for follicular growth [34], but kisspep-
tin can block the increase in FSHR expression by
isoproterenol (ISO, a B-adrenergic agonist). Collectively,
kisspeptin negatively regulates the development of
preantral follicles by inducing the production of AMH
and reduces the sensitivity to FSH by inhibiting the in-
duction of FSHR expression by sympathetic activators,
thereby reducing the recruitment of primary follicles
(Fig. 1a). In the future, an ovarian-specific Kissl/KissIr
knockout model will be established to further elucidate
the role of kisspeptin in follicle development.

The role in oocyte maturation

The addition of kisspeptin to FSH-rich medium for
porcine cumulus-oocyte complexes (COCs) promotes
oocyte maturation, indicating a direct effect of kisspeptin
on oocytes [35], and the mechanism may involve upreg-
ulating the expression of C-MOS, growth differentiation
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Fig. 1 The role of kisspeptin/KISSTR system in the ovary. Ovarian-derived kisspeptin regulates follicular development, oocyte maturation, and
ovulation in autocrine or paracrine manner. a The possible role and mechanisms of kisspeptin in follicular development. b The possible role and
mechanisms of kisspeptin in oocyte maturation. ¢ The role and mechanisms of kisspeptin in ovulation. AMH, anti-Mullerian hormone; BDNF,
brain-derived neurotrophic factor; BMP15, bone morphogenetic protein 15; COX-2, Cyclooxygenase-2; FSH, follicle stimulating hormone; FSHR,
follicle stimulating hormone receptor; GDF9, growth differentiation factor 9; LH, luteinizing hormone; NA, noradrenaline; NTRK2, neurotrophic

factor 9 (GDF 9) and bone morphogenetic protein 15
(BMP 15) [36]. Even in the absence of cumulus cells, kis-
speptin can increase the maturity of oocytes because
KissIr is expressed in oocytes during in vitro maturation
(IVM). Thus, kisspeptin may act continuously and dir-
ectly on oocytes in an autocrine-paracrine manner.
Interestingly, the absence of FSH results in failed oocyte
maturation, even in IVM medium supplemented with
kisspeptin, confirming a critical role of gonadotropins in
the maturation of oocytes in vitro. Moreover, the
addition of FSH to COCs induces a significant increase
in Kisslr expression, reflecting the permissive action of
FSH on kisspeptin.

When a mouse oocyte acquires meiotic capacity, KissI
mRNA expression increases 82.2-fold [36]. However,
when the oocyte progresses through the first and second
divisions of meiosis (MII), KissI mRNA expression de-
creases by 5.4- and 12-fold, respectively [36]. During the
progression from germ-vesicle I to MII, the expression
of KissIr remains stable. However, kisspeptin treatment
fails to affect the percentage of MII eggs [36]. Therefore,
the upregulation of KissI expression may be related to
the ability to undergo meiosis and may affect the recov-
ery of meiosis but not the progression of MIIL. Taken to-
gether, these data suggest that the effect of kisspeptin on

oocyte maturation may be accomplished through the
regulation of meiosis (Fig. 1b).

The role in ovulation

The LH peak plays a crucial role in ovulation by indu-
cing the upregulation of COX-2 and prostaglandin pro-
duction [37]. The COX-2 inhibitor NS398 and the COX
non-selective inhibitor indomethacin significantly inhib-
ited Kiss] mRNA expression in the rat ovary and
decreased the efficiency of rat ovulation, suggesting that
KissI may be a downstream target of COX-2 (Fig. 1c).
Furthermore, administration of prostaglandin E, can
reverse the antagonism of indomethacin on kiss! expres-
sion. The anti-progestin RU486 ameliorates ovulation
defects caused by indomethacin but cannot reverse the
regulation of ovarian Kissl expression [27], implying the
existence of other pathways that regulate ovulation. In
fact, the indispensable role of ovarian kisspeptin in ovu-
lation is suspect because gonadotropins can induce ovu-
lation in KissI-deficient mice with mild hypogonadism
and in women with homozygous KISSIR mutations [38].

The role in ovarian steroidogenesis
Kisspeptin stimulates progesterone secretion by rat luteal
cells and by chicken and porcine granulosa cells. Our
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previous study showed that recombinant KP-10 signifi-
cantly enhances basal and human chorionic gonadotropin
(hCG)-induced progesterone levels in cultured rat luteal
cells and upregulates the transcription of key steroido-
genic enzymes (StAR, CYPI11A, and 3$-HSD) [30]. More-
over, KP-10 promotes the secretion of progesterone by
cultured chicken follicular granulosa cells in vitro, accom-
panied by the upregulation of StAR, CYP11A, and 35-HSD
expression [23]. In addition, KP-10 significantly enhances
progesterone production and prevents the efflux of
oestradiol from granulosa cells of porcine large follicles
[23]. Furthermore, KP-10 increases the phosphorylation of
the mitogen-activated protein kinase Erk1/2 but not of
P38 MAPK and Akt in cultured rat luteal cells, suggesting
that kisspeptin may stimulate progesterone secretion via
the Erk1/2 signalling pathway in these cells [30]. However,
treatment with KP-54 alone did not alter steroidogenesis
or the expression of gonadotropin receptors [39], indicat-
ing that KP-54 may require gonadotropins to promote ste-
roidogenesis [30] or that different kisspeptin isoforms
(such as KP-10) may have different affinities for ovarian
KISS1R [23].

Unlike progesterone, KP-10 does not promote the
basal or hCG-induced secretion of oestrogen by rat lu-
teal cells [30]. Currently, the best data on the effects of
kisspeptin on luteal cell function are from luteinized
granulosa cell cultures. KP-54 significantly augments
the expression of oestrogen receptors alpha and beta
(ESR1 and ESR2) in human granulosa lutein cells, sug-
gesting that kisspeptin may increase sensitivity to
oestrogen [39].

Additional studies have indicated that serum kisspep-
tin levels are significantly higher in women with polycys-
tic ovary syndrome (PCOS), which is characterized by
hyperandrogenism and ovulatory dysfunction [40]. Not-
ably, serum levels of kisspeptin are negatively correlated
with FSH but positively correlated with LH, testosterone
and dehydroepiandrosterone (DHEA) [41]. Mouse KP-

Table 1 The expression of of kisspeptin/KISSTR system in the testis
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10 and KP-52 can significantly increase serum testos-
terone levels in mice [42]. Furthermore, ovary-derived
kisspeptin has been shown to regulate the secretion of
LH [43].

Testicular kisspeptin and KISS1R

Distribution in testicular tissues

There are not only significant differences in the distribution
of testicular kisspeptin and KISSIR between mammals and
non-mammalian species but also diverse distribution
patterns in the same or similar species [5, 44—48] (summa-
rized in Table 1). For example, a previous study reported
kisspeptin and Kisslr immunoreactivity in round sperma-
tids in immature mice [5]. However, another study showed
kisspeptin immunoreactivity mainly in Leydig cells and
sperm cells at different stages, not in only round sperm
cells [47]. Therefore, the different results in the same spe-
cies may be related to the age of the experimental mice and
largely influenced by experimental methods. For example,
when the LacZ gene was inserted into the Kiss! and KissIr
alleles to allow p-galactosidase staining to detect gene
expression, unique structural changes in sperm (deform-
ation) resulted in inactivation of B-galactosidase after the
round spermatid stage, making it impossible to determine
whether kisspeptin is expressed in prolonged spermatid
and spermatozoa [5].

The role in spermatogenesis

In non-mammalian species, subcutaneous injection of
synthetic Kissl pentadecapeptide can speed up sperm-
atogenesis in prepubertal male chub mackerel [47]. In
mammals, gene expression profiling revealed that the
initiation of Kiss1/KissIr expression in mouse testis coin-
cides with the formation of spermatozoa [5], suggesting
a link between spermatogenesis and the testicular
kisspeptin/Kisslr system in mammals. In addition, kis-
speptin exerts anti-metastatic effects by inhibiting cell
chemotaxis and migration, which play important roles in

Reference kisspeptin KISSTR methods species

Mei et al. [5] Round SPT Round SPT, LCs (-) X-GAL staining Mouse
and IHC

Pinto et al. [45] SPz SPz IF, WB Human

Irfan et al. [46] Interstitial SCs ICC Monkey

Anjum et al. Interstitial, LCs, Primordial GCs, elongated GCs,  No data IHC Mouse

[47] Degenerated GCs

Chianese et al. Interstitial Interstitial, PMCs, SCs, ISPG, IISPG, ISPC, lISPC, SPT,  IHC Frog

[44) SpZ

Meccariello et al. ~ No data Interstitial, ISPG, IISPG, PMCs ISH Frog

[6]

SPT, spermatids; LCs, Leydig cells; SPZ, spermatozoa; SCs, Sertoli cells; GCs, germ cells; PMCs, peritubular myoid cells; ISPG, primary spermatogonia; lISPG,
secondary spermatogonia; ISPC, primary spermatocytes; [ISPC, secondary spermatocytes;
IHC, immunohistochemistry; IF, immunofluorescence; WB, western blot; ICC, Immunocytochemistry; ISH, In situ hybridization
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the early stage of spermatogenesis [49]. Furthermore, in
the late stage of spermatogenesis, KP-13 can induce hu-
man sperm motility changes and hyperactivation, pos-
sibly caused by the increase in sperm intracellular Ca**
concentration ([Ca®*]i) [45]. The positive association be-
tween kisspeptin concentration in seminal plasma and
semen quality supports the importance of the kisspeptin
system in spermatogenesis [50]. However, peripheral kis-
speptin may not be essential for spermatogenesis in
mammals. First, KissI and KissIr mutant mice still show
low levels of spermatogenesis on a phytoestrogen diet
[51]. Second, male patients with KISSIR mutations re-
spond to exogenous hormonal therapy and successfully
achieve fertility [52]. Collectively, testicular kisspeptin
may not be necessary for mammalian spermatogenesis
but is an important regulator of this process.

The role in testicular steroidogenesis

Androgens (mainly testosterone) are steroid hormones
secreted by Leydig cells in the testes of males. Thus far,
there is no verdict as to whether peripheral kisspeptin
has an effect on androgen production in Leydig cells.
First, the interruption of Kissl expression is associated
with decreased testosterone levels in rats [53], and the
kisspeptin antagonist P234 reduces the production of
hCG-activated testosterone in vitro [54], but local injec-
tion of P234 does not alter plasma testosterone levels in
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adult rhesus monkeys [55]. Second, although the immor-
talized Leydig cell line MA-10 expresses Kisslr, it does
not respond to KP-10 stimulation [5]. In addition, Sertoli
cells respond to kisspeptin and stimulate the production
of androgen-binding protein (ABP), indicating a poten-
tial role of kisspeptin in ABP production [46].

Roles in the uterus and placenta
The role in the uterus
In the human female genital tract, KISS1/KISSIR is
mainly expressed in epithelial and stromal cells of the
uterus but not of the myometrium [6]. In mice, KissI
and KissIr mRNA expression levels are generally low
from day 1 to 4 of pregnancy, which is the stage of zyg-
ote to blastocyst transformation (Fig. 2a). KISS1 and
KISSIR proteins are mainly localized at low levels in the
luminal and glandular epithelium. However, KissI and
KissIr mRNA expression level dramatically increase with
the progression of uterine decidualization, and attenu-
ated expression of KissI can significantly inhibit the
expression of stromal cell decidualization markers, indi-
cating that the kisspeptin/kisslr system plays an import-
ant role in the decidualization process [56]. However,
the underlying mechanism is unknown.

Calder et al. found that in kiss1 mutant mice, gonado-
tropin and oestradiol replacement could restore ovula-
tion, mating, and fertilization but not lead to pregnancy;

Endometrial glands

Angiogenesis

Vessels
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DeIivery“\ -
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Fig. 2 The potential role of kisspeptin/KISS1R system in the pregnancy. a A schematic diagram of zygote development, embryo implantation and
fetal development in the uterus. b The known and potential mechanisms of locally produced kisspeptin in embryo implantation. ¢ The known
and potential mechanisms of peripheral kisspeptin in fetal development. HFA, human fetal adrenal; MMPs, matrix metalloproteinases; LIF,
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moreover, leukaemia inhibitory factor (Lif), a crucial
cytokine required for implantation, is weakly expressed
in these mice [57]. Lif secreted by the uterine glands
promotes embryo-uterine communication and contrib-
utes to embryo attachment and decidualization [58, 59].
Oestrogen upregulates Lif expression in the uterus, and
supplementation with Lif restores implantation and
decidualization in ovariectomized mice and mice lacking
uterine oestrogen receptor expression [60, 61]. Further-
more, in Kiss1 knockout mice, exogenous administration
of Lif, but not E,, partially rescues implantation failure
[57], and our data demonstrated that E, significantly in-
creases the expression of uterine kissI mRNA in ovariec-
tomized mice [56]. These data suggest that kisspeptin
signalling may act downstream of E, to stimulate uterine
Lif expression and is beneficial for promoting embryo
implantation and decidualization in mice (Fig. 2b).

The role in pregnancy

There is evidence that the primary source of circulating
kisspeptin is trophoblast cells of the placenta [12, 62]. In
rat placental cells, KissI expression is upregulated by
GnRH and neurokinin B, and all of these neuropeptides
can increase hCG expression [63]. Serum KP-54 levels
increase several thousand fold during pregnancy and re-
turn to normal within 15 days after delivery, suggesting
that the placenta produces large quantities of kisspeptin
during pregnancy [4, 62, 64]. Moreover, low circulating
kisspeptin levels during pregnancy are associated with
an increased risk of miscarriage. Therefore, plasma kis-
speptin levels are a potential biomarker for miscarriage
in the first and third trimesters [65, 66]. As one of the
biomarkers of pregnancy, peripheral kisspeptin has mul-
tiple functions, including the regulation of placental in-
vasion and migration (discussed in detail below) [62],
the apoptosis of embryonic and placental cells, and
foetal development [67, 68].

Kisspeptin administration increases the apoptosis of
embryonic cells cultured in vitro by upregulating pro-
apoptotic genes [69]. The expression of the pro-apop-
totic gene BAKI in blastocysts increased 3.5-fold at 24 h
after kisspeptin treatment, but no significant change was
observed in the expression of the anti-apoptotic gene
Bcl-2 [35]. In addition, the apoptosis index (AI), the ratio
of the pro-apoptotic protein BAX to the anti-apoptotic
protein Bcl-2, determines whether the cell will initiate
apoptosis [70]. Interestingly, the Al and KISS1/KISSIR
expression in the placenta are much higher in late preg-
nancy than at term delivery in humans [68]. Further-
more, external administration of kisspeptin increases Al
and induces apoptosis in placental explants in a dose-
dependent manner [68]. Taken together, these data indi-
cate that kisspeptin may be a pro-apoptotic placental
factor during pregnancy.
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In addition, studies have indicated that the kisspeptin/
KISSIR system in the embryo may affect human foetal
adrenal function synergistically with adrenocorticotropic
hormone and corticotropin-releasing hormone secretion
by increasing the production of DHEA in mid to late
gestation (Fig. 2¢) [71, 72].

The role in placental migration and invasion

Kisspeptin was originally called metastin because it can in-
hibit tumour metastasis. Interestingly, the invasion pro-
cesses of placental and tumour cells are markedly similar
[73, 74]. The highest expression of KissI and KissIr in ges-
tational trophoblast cells is consistent with peak tropho-
blast invasion [62, 75]. Thus, kisspeptin is thought to
inhibit trophoblast migration and invasion in the placenta.
A series of studies demonstrated that kisspeptin can regu-
late trophoblast migration and invasion by a variety of
mechanisms. First, kisspeptin stimulates Erk1/2 phosphor-
ylation in trophoblast cells and inhibits the expression of
matrix metalloproteinases (MMPs), such as MMP-2,
thereby regulating placental invasion [74, 76]. Second, KP-
10 inhibits the migration of HTR8SVneo cells by stimulat-
ing complex Erk1/2-GSK3p-FAK feedback interactions in
vitro [77]. Third, kisspeptin suppresses angiogenesis by
downregulating vascular endothelial growth factor A (Fig.
2b) [78]. In addition, the active kisspeptin/KISSIR system
not only suppresses the migration of trophoblast cells but
also inhibits their growth in placental explants [35].

Conclusion

Recently, kisspeptin analogues and KISS1R antagonists
have been developed as modulators of the cascade
upstream of GnRH, and most previous studies have
focused on the central control of the kisspeptin/KISSIR
system in the hypothalamus. However, as discussed in this
review, the kisspeptin/KISSIR system plays a direct role in
peripheral organs (including the ovary, testis, uterus, and
placenta) and is implicated in reproductive diseases such
as miscarriage and PCOS. A comprehensive understand-
ing of the expression, function, and potential molecular
mechanisms of kisspeptin/KISSIR in the peripheral repro-
ductive system will contribute to the diagnosis, treatment
and prevention of reproductive diseases.
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