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Abstract

Background: Bisphenol A is well known endocrine-disrupting chemical while Bisphenol S was considered a safe
alternative. The present study aims to examine the comparative effects of xenobiotic bisphenol-A (BPA) and its
substitute bisphenol-S (BPS) on spermatogenesis and development of sexually dimorphic nucleus population of
dopaminergic neurons in the anteroventral periventricular nucleus (AVPV) of the hypothalamus in male pups.

Methods: Sprague Dawley rat’s pups were administered subcutaneously at the neonatal stage from postnatal day
PND1 to PND 27. Thirty animals were divided into six experimental groups (6 animals/group). The first group served
as control and was provided with normal olive oil. The four groups were treated with 2 μg/kg and 200 μg/kg of
BPA and BPS, respectively. The sixth group was given with 50 μg/kg of estradiol dissolved in olive oil as a standard
to find the development of dopaminergic tyrosine hydroxylase neurons in AVPV regions. Histological analysis for
testicular tissues and immunohistochemistry for brain tissues was performed.

Results: The results revealed adverse histopathological changes in testis after administration of different doses of
BPA and BPS. These degenerative changes were marked by highly significant (p < 0.001) decrease in tubular and
luminal diameters of seminiferous tubule and epithelial height among bisphenols treated groups as compared
to control. Furthermore, significantly increased (p < 0.001) TH-ir cell bodies in the AVPV region of the brain with
200 μg/kg dose of BPA and BPS was evident.

Conclusion: It is concluded that exposure of BPA and BPS during a critical developmental period can structural
impairments in testes and affects sexual differentiation of a dimorphic dopaminergic population of AVPV region of
hypothalamus in the male brain.
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Background
Bisphenol A (BPA) is employed in industry, particularly
in polycarbonate plastics industrial processes and food-
stuff containers. The resiliency of BPA plastics has led to
their use in medical equipment’s such as heart-lung ma-
chines, incubators, hemodialyzers, and dental sealants
and fillers; also, their light weight and optical clarity have
made them especially useful for eyeglasses. Phthalates
help make plastic, like pacifiers, flexible. Due to his
widespread applications, the use of BPA has gathered
cumulative consideration over the last decade, particu-
larly in terms of human safety. It is believed that both
BPA and phthalates can leach from the plastic into food,
liquid, and directly into the mouths of children while
sucking on pacifiers or teethers. It has been estimated
that levels of conjugates of BPA in urine are above safety
thresholds in 90% of individuals tested in several popula-
tion studies [1]. Fetal exposure to high doses of dibutyl
phthalate was shown to cause a testicular dysgenesis
syndrome (TDS)-like phenotype in the rats [2]. TDS is a
male reproduction-related condition characterized by
the presence of symptoms and disorders such as hypo-
spadias, cryptorchidism, poor semen quality, and testicu-
lar cancer. TDS is a result of disruption of embryonal
programming and gonadal development during fetal life
[2] Various reports established that BPA acts as an endo-
crine disrupting chemical and its exposure can affect the
reproductive system of a male by disturbing spermato-
genesis and fertility, furthermore, its exposure during de-
velopment causes organizational effects on brain [3–10].
BPA has increased excess to estrogen sensitive tissues in
brain [16]. At the hypothalamic or pituitary level, BPA
may inhibit the estrogen binding to its receptors. Thus,
circulating estrogen reduces its negative feedback actions
on luteinizing hormone (LH) and follicle stimulating
hormone (FSH) release, resulting in high levels of circu-
lating LH and FSH. Thus, it is suggested that BPA’s ac-
tions are greater during development[13–15].
Bisphenol S (4, 4′–dihydroxydiphenyl sulphone) abbre-

viated as BPS, is a man made, industrial chemical and an-
other member of bisphenol family. BPS has increased
stability and resistance against sunlight and high tempera-
tures. Like BPA, BPS is an endocrine disrupting molecule
and its increasing use is alarming for human health [11].
In zebrafish, BPS exposure has shown to induce a reduc-
tion in gonadal weight, alteration in hormonal and disrup-
tion in the normal process of reproduction (i.e. decreases
egg production and hatchability, increases embryo malfor-
mations, increase in time to hatch) [17]. BPS exposure
also decreases body length, increases male and female sex
ratio and causes reproductive disruption, disturbs the
balance of sex steroid hormones in adult zebrafish [18].
Several studies show androgenic and anti-androgenic
activities of BPS [19]. Similar to BPA, BPS can induce

alterations in an embryonic, nervous and endocrine sys-
tem [17, 20, 21]. Exposure of BPA and BPS to zebrafish
embryo causes 180 and 240% increase in hypothalamic
neurogenesis [21]. During early developmental stages,
BPA exposure has been suspected to affect testicular de-
velopment and spermatogenesis [22, 23].
In mammals, ovaries are generally quiescent in devel-

oping females, so reproductive tract and brain develop-
ment occurs in the absence of estrogen. Whereas in
developing male, elevated estrogen levels locally synthe-
sized by aromatization of testosterone (testicular) are
present. The sexual differentiation of estrogen exposure
and hormonal synthesis results into distinct develop-
ment of neuroanatomical circuits, neuroendocrine func-
tions, and reproductive behaviors in both male and
females [24]. The anteroventral periventricular nucleus
(AVPV) is a small cluster of neurons along the wall of
the third ventricle just caudal to the vascular organ of
lamina terminalis (OVLT). AVPV receives sexually di-
morphic innervation by dopaminergic afferents that
regulate gonatropin-releasing hormone and sexual
reproduction [25, 26]. AVPV is three times more sexu-
ally dimorphic in females, being larger in volume and
containing more cells in females than male. This sug-
gests that this brain region is very important in control-
ling the estrous cyclicity in females. In female AVPV, for
dopamine synthesis, the rate limiting enzyme tyrosine
hydroxylase (TH) expressing neurons are more abun-
dantly and topographically distributed and are distinct
from males [26, 27]. The perinatal administration of tes-
tosterone or estrogen can defeminize the neuron count
and distribution in female AVPV [28]. One of the func-
tion of TH cells of AVPV is to regulate the secretion of
gonadotropin releasing hormone (GnRH) neurons in the
medial preoptic area (POA) [29]. Total numbers of TH-
cells are more in female’s AVPV than males, hence sexu-
ally dimorphic GnRH secretions. Estradiol administra-
tion have no effect on TH cell numbers in males and it
is suggested that BPA have antiestrogen action on this
neural cell population [24].
If it is speculated that BPA acts as estrogen or an anti-

estrogen in the AVPV region, then it can be hypothe-
sized that more or less sexually dimorphic areas could
be affected by exposure to BPA or BPS. Considering our
chosen endocrine active compounds to be estrogenic,
masculinization of female AVPV should be evident via a
reduction in TH-expressing neurons number. In con-
trast, anti-estrogenic bisphenols through increment in
TH-expressing neurons count should de-masculinized
the male AVPV.
This study was designed to determine the low dose ef-

fect of BPA and BPS on sexual differentiation of the
AVPV region of the male brain at the neonatal stage and
to find out the possible role of endocrine disrupting
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chemicals on the reproductive system of male rats at ini-
tial stages of life. These finding will further provide the
evidence of negative effects of BPA and its analogue BPS
on the reproductive system of male rats.

Methods
Animals
At the start, five wooden breeding cages were separated
and five adult female Sprague Dawley rats were kept in
each breeding cage with two adult male Sprague Dawley
rats. Ten days later, adult male rats were separated from
females. Laboratory pelleted food and water was avail-
able to animals ad libitum. Pregnant females were reared
singly till the birth of pups on day 22 (gestational day-
GD-22). The day of birth of the pups was called as post-
natal day 1 (PND1. Total numbers of pups were counted
and separated from female pups by measuring the ano-
genital distance (AGD) under a stereomicroscope. For
each experimental group, six male pups were separated
from each litter. Animals were handled and sacrificed
according to the guidelines provided by the Ethical
Committee of Animal Sciences department, Faculty of
Biological Sciences, Quaid-i-Azam university, Islamabad.

Experimental plan
Newborn pups (PND1) animals were distributed into six
groups (n = 6/group). The first group served as control
and received subcutaneous injection of olive oil (50 μl).
The second and third group rats were treated with BPA
(2 μg/kg and 200 μg/kg) respectively. Fourth and fifth
group male pups were injected with BPS (2 μg/kg and
200 μg/kg) respectively. The sixth group was given with
50 μg/kg of estradiol dissolve in olive oil as a standard to
a find development of dopaminergic tyrosine hydroxy-
lase neurons in AVPV regions. All treatments were
dissolved in olive oil and were given from PND 1 to
PND 27 with reference to prior studies [30–32]. Es-
tradiol treated group was only used to serve as a
standard to find a development of dopaminergic tyro-
sine hydroxylase neurons in AVPV of rodents’ hypo-
thalamus. All dosages were adjusted daily according
to body weight. We selected a higher dose of 200 μg/
kg because it is higher suspected human exposure
dose and a low dose of 2 μg/kg approaches to human
exposure level [24, 33].
On PND 27, animals were weighed (using Sarotoreious

Digital Balance) and sacrificed by decapitation. The
brain tissues were used only for immunohistochemistry.
Testicular tissues were dissected out for tissue histology
and were washed in saline and weighed. Other tissues
(brain, kidney, liver, and intestine) were also dissected
out and weighed also.

Histological analysis
Histological analysis was done exactly by using a method
given by Ullah et al. [34]. Firstly, testis was kept in sera
(composed of ethyl alcohol, formaldehyde, and glacial
acetic acid in a ratio of 6:3:1), and then placed in 10%
formalin for 24 to 48 h. Following fixation, tissues were
dehydrated with ascending grades of ethanol, cleared
with xylene and embedded in paraffin wax. Microtomy
was then carried out and seven μm thick sections of
testis were cut (Thermo, Shandon finesse 325, UK).
Testis sections were then fixed on albumenized glass
slides, placed in an incubator overnight for completion
of deparaffinization and on next day, were stained with
hematoxylin and eosin and then, observed under the
light microscope (Nikon, 187,842, Japan). Leica LB
microscope (Germany) equipped with canon digital cam-
era was used for microphotography. For histolomorpho-
metric studies, Image J software was used for the
measurement of testis parameters (National Institutes of
Health, Bethesda, MD, USA).

Brain tissue fixation and processing
The entire hypothalamic blocks of the brain were
placed in 4% paraformaldehyde overnight. Next day,
these samples were dehydrated and cleared through
different grades of ethanol and xylene follow embed-
ding in paraffin wax. The tissue was then deparaffi-
nized with xylene and rehydrated in graded ethanol
before being washed with twice-distilled water. Later,
hypothalamic blocks were cut into consecutive sec-
tions of 7–10 μm thickness on a cryostat (Bright
OTF 5000, A-M Systems, Sequim, Washington, USA;
temperature − 25 °C) and preserved in an antifreeze
cryoprotectant solution (1% polyvinylepyrrolidone,
30% ethylene glycol and 30% sucrose in PBS) at −
20 °C until used for immunocytochemistry.

Immunocytochemistry
Standard double immunocytochemistry protocol was
followed for the processing of hypothalamic sections.
Total numbers of TH cell bodies were immunolocalized
in the mediobasal hypothalamic region using a cocktail
of primary antibodies directed against TH. For TH ex-
pression monoclonal antibody TOH A1.1 raised in
mouse against human TH (Catalogue no. ab-150,659;
Abcam Biotechnology, Inc., Cambridge, United King-
dom) was used and Alexa Flour 488 labeled goat anti-
mouse IgG (Catalogue no. ab150117; Abcam, Cam-
bridge, UK) was used as a secondary antibody. From
each animal, three slides of hypothalamus were obtained
for TH labeled immunostaining. While, one section from
each group was used as primary antibody omitted con-
trol. Hypothalamic sections were washed with phosphate
buffered saline (PBS; PH7.3) (Omnipur PBS tablets,
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Calbiochem, EDM chemicals Inc., Gibbstown, New
Jersey, USA) for 8 × 15 minutes at room temperature
(25 °C), to remove the cryoprotectant afterwards sections
were incubated in incubation solution containing 10%
normal goat serum, 0.05% Triton-X 100 and 0.1% bovine
serum albumin (BSA) in PBS for two hours on shaker at
room temperature to block the non-specific binding of
the antibodies. Sections were then washed with PBS for
3 × 15 minutes. Then sections were incubated at 4 °C for
48 h on a shaker in a cocktail of primary antibodies
(anti-TH antibody at 1:20) diluted at PBS containing
10% normal goat serum, 0.03% Triton X- 100 and 0.5
BSA. Control sections were incubated in PBS with 10%
normal goat serum in PBS containing 0.05% TritonX-
100 and 0.1% BSA. After incubation of 48 h, sections
were washed in PBS for 3 × 15 min at room temperature.
After washing, the sections were incubated in the
cocktail of secondary antibodies Alexa Flour 488 la-
beled goat anti-mouse at 1:1000 diluted in PBS con-
taining 0.05% Triton X- 100 and 0.1 BSA 10% normal
goat serum for 2 h in dark, at room temperature on a
shaker. Control sections were also incubated with sec-
ondary antibodies at this stage. After incubations, sec-
tions were again washed with PBS 3 × 15 min. Later,
all sections were mounted on super frosted glass
slides (Micro slides, Santa Cruz Biotechnologies, Dal-
las, Texas USA) and left overnight for drying at 4 °C
in dark. Then coverslip was placed on slides using
laboratory-prepared gelvatol as a mounting medium.
Gelvatol was prepared by adding 10.5 g polyvinyl alco-
hol and few crystals of sodium azide in 12 ml gly-
cerol. Then 21 ml distilled water and 53 ml Tris (Ph
8.5) were added. The mixture was stirred on low heat
for six hours until reagents were properly dissolved.
The mixture was placed overnight in a refrigerator
and centrifuged at 5000 g for 15 minutes. Slides were
stored at 4 °C after drying until further analysis. Slides
were viewed using fluorescent microscope (Bx51,
Olympus, Tokyo, Japan) to localize, Tyrosine hydroxy-
lase immuno-reactive neurons in the AVPV region of
the brain. Sections were examined at 10X, 20X and
40X magnifications.

Statistical analysis
For histological data analysis of testes and the number
of single TH-immunoreactivity cells, GraphPad prism 5
software (GraphPad Software, Inc., San Diego, CA,
USA) was used. One way analysis of variance (ANOVA)
was used for statistical analysis of studied parameters.
Later, Dunnet’s multiple comparison tests were prac-
ticed to relate the controls results with treated ones. All
the data is shown as mean ± SEM. Significance value
was set at p < 0.05.

Results
Effect of subcutaneous exposure of bisphenol A
bisphenol S on body weight (g) in male rats, during the
neonatal period
Mean ± SEM body weight of all experimental groups in
male rats are shown in Table 1. As compared to control
group, significant (p < 0.05) change was detected in body
weight recorded on PND 8, among low and high con-
centrations of BPA groups. On PND 16, very remarkable
increment (p < 0.001) was noticed in body weight among
BPA 2 μg/kg and BPS 2 μg/kg treated groups comparison
with control. Animals treated with BPS 200 μg/kg
showed significance change (p < 0.05) than control
group. BPA (2 μg/kg dose) induced significant (p < 0.01)
increase in body weight on PND 24 compared to the
control group.

Effect of subcutaneous exposure of BPA and BPS on
weight of testis (g), prostate (g), seminal vesicle (g),
liver (g), heart (g) and kidney (g)
Table 2 indicated the effect of various treatments of BPA
and BPS on organ weights of rats.
Testicular weight seen to be increased (p < 0.05) in

BPA 2 μg/kg, BPS 2 μg/kg and BPS 200 μg/kg treated
groups than the control. No significant differences were
noticed in prostrate, seminal vesicle, liver and kidney
weights when all experimental groups were compared to
control. Heart weight of BPA and BPS 2 μg/kg and 2 μg/
kg treated animals show significance change (p < 0.01) as
compared to control.

Tissues histology
The histological studies of the testis showed closely ar-
ranged seminiferous tubules and normal spermatogen-
esis in the control group. A photomicrograph of a
section of the testis of 27 days old albino rat of the BPA
2 μg/kg group showing a prominent increase in the
interstitial spaces between seminiferous tubules ap-
peared irregular and smaller in size as compared to con-
trol group. A decrease was observed in the epithelial
diameter so it is evident that there will be a reduction in
the number of spermatogonia and primary spermato-
cytes near the lumen of the tubule. Some germ cells ap-
peared shattered and separated with the appearance of
empty spaces; some appeared desquamated toward the
lumen with the disappearance of the early spermatids.
Lumen diameter in BPA 2 μg/kg treated group was in-
creased as compared to the control group. BPA 200 μg/
kg treated rat testis showing a normal testis structure
with a slight decrease in tubular diameter as compared
to BPA 2 μg/kg. There was an increase in the interstitial
spaces between the tubules with a slight appearance of
destructed Leydig cells. BPA 200 μg/kg treated rats
showed less loss of stratification and disorganization of
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the lining epithelium of the seminiferous tubules show
more closely resembled to control group. Epithelial layer
contained spermatogonia, primary spermatocytes, and
early spermatids. Some interfollicular spaces of the tu-
bules showed destructed interstitial tissue and most sec-
tions of testis treated with BPA 200 μg/kg shows a
reduction in lumen diameter show slight variation as
compare to control group. Histomorphology of the
testicular section from BPS 2 μg/kg showed a major dif-
ference in the appearance of seminiferous tubules com-
pared to control group. Lumen diameter is somehow
appeared similar to the control group.

Seminiferous tubule diameter
Significantly increased (p < 0.001) diameter was observed
when BPA 2 μg/kg and BPS 200 μg/kg treated groups
compare with a control group. No significant difference
was found when compared BPS 2 μg/kg treated group
with BPA 200 μg/kg treated groups as compared to con-
trol. (Table 3, Fig. 1).

Tubular lumen diameter
Mean tubular lumen diameter in BPA treated animals
was decreased significantly (p < 0.001) as compare to
control animals. Statistical difference in the mean of the
lumen diameter was decreased significantly (p < 0.01)
when compare BPA 200 μg/kg treated group with a con-
trol group. A highly significant decrease (p < 0.001) in
tubular lumen diameter was observed in BPS 2 μg/kg
and BPS 200 μg/kg treated groups respectively when
compared to control group (Table 3, Fig. 1).

Epithelial height
Mean epithelial thickness was decreased significantly
(p < 0.001) in BPA 2 μg/kg treated group as compare to
control group. Highly significant (p < 0.001) reduction
was seen in BPA 200 μg/kg treated group as compare to
control group. There was highly significant (p < 0.001)
decrease in mean was observed between BPS 200 μg/kg
treated group and BPS 2 μg/kg treated group as compare
to control group (Table 3, Fig. 1).

Tunica Albugenia height
There was no significant change was noticed in Tunica
Albuginea height among all treated groups except BPA
2 μg/kg showed significant decrease (p < 0.005) with
their comparison to that of the control group (Table 3,
Fig. 1).

TH immunoreactive cells
TH expression is sexually dimorphic in the AVPV region
of brain. No significant alterations were observed in TH-
ir cell number between control, estradiol and a low dose
of BPA 2 μg/kg treated groups. Extremely prominent
(p < 0.001) rise was seen in the TH-ir cell bodies between
BPA 200 μg/kg treated group and control group. Treat-
ment with a low dose of BPS 200 μg/kg and a high dose
of BPS 2 μg/kg were significantly (p < 0.001) different
from control group (Table 4, Fig. 2).

Discussion
Over the last decade, it has become well known that
BPA, a ubiquitous environmental endocrine disruptor

Table 1 Comparative effects of different concentrations (2 μg/kg, 200 μg/kg) of Bisphenol A and Bisphenol S on body weight (g)
recorded on 8th, 16th, 24th and 28th day of development

Groups Day 8 Day 16 Day 24 Day 28

Control 9.71 ± 0.52 12.4 ± 0.87 20.5 ± 0.92 43.7 ± 6.54

BPA (2 μg/kg) 13.6 ± 0.65 21.9 ± 0.32 a** 35.3 ± 0.60 a** 40.1 ± 1.66

BPA (200 μg/kg) 13.0 ± 0.30 12.8 ± 0.87 19.4 ± 1.88 37.6 ± 3.38

BPS (2 μg/kg) 11.5 ± 0.28 19.9 ± 1.50 a**c*** 28.9 ± 2.79 40.4 ± 0.32

BPS (200 μg/kg) 13.9 ± 0.38 17.2 ± 0.41 a* 31.6 ± 2.12 a*c*** 38.5 ± 2.05

Values are expressed as mean SEM *p < 0.05, **p < 0.01, p*** < 0.001
a = Values vs control, b = Values vs Bisphenol A 2 μg/kg, c = Values vs Bisphenol A 200 μg/kg, d = Values vs Bisphenol S 2 μg/kg

Table 2 Comparative effects of different concentrations (2 μg/kg,200 μg/kg) of Bisphenol A and Bisphenol S on body organs weight

Groups Testes paired weight(g) Prostate (g) Seminal Vesicle (g) Liver (g) Heart (g) Kidney (g)

Control 0.74 ± 0.19 0.04 ± 0.01 0.34 ± 0.19 1.90 ± 0.20 0.58 ± 0.22 0.59 ± 0.21

BPA 2 μg/kg 0.24 ± 0.01a* 0.06 ± 0.01 0.03 ± 0.01 1.90 ± 0.17 0.20 ± 0.01** 0.45 ± 0.01

BPA 200 μg/kg 0.39 ± 0.17 0.05 ± 0.01 0.01 ± 0.0 1.92 ± 0.08 0.23 ± 0.02** 0.49 ± 0.02

BPS 2 μg/kg 0.25 ± 0.01 0.02 ± 0.01b** 0.09 ± 0.07 1.63 ± 0.13 0.23 ± 0.01** 0.55 ± 0.00

BPS 200 μg/kg 0.24 ± 0.03 0.02 ± 0.01b** 0.02 ± 0.01 1.43 ± 0.15 0.23 ± 0.02** 0.47 ± 0.02

Values are expressed as mean SEM
*p < 0.05, **p < 0.01, p*** < 0.001
a = Values vs control, b = Values vs Bisphenol A 2 μg/kg, c = Values vs Bisphenol A 200 μg/kg, d = Values vs Bisphenol S 2 μg/kg

John et al. Reproductive Biology and Endocrinology           (2019) 17:53 Page 5 of 10



administration causes reproductive toxicity and
gonadal damage [35–39]. Similarly, BPS is another
strong estrogenic and anti-androgenic compound,
which has been banned now in different countries due
to its toxic effects on the physiology of the reproduct-
ive system [19, 40, 41].
The present study shows irreversible organizational ef-

fects in testis of prepubertal male rats exposed to BPA
and BPS different concentrations (2 μg/kg and 200 μg/
kg) during the neonatal stage [42]. We observe no sig-
nificant change in final body weight in all treatment
groups. These results are similar to a study where ani-
mals were treated with 50 μl genistein and 5 μg/kg BPA
(Gen/BPA 0.005) and no significant change in body
weight were observed [43]. Alike results were experi-
enced in postnatal male mice as compared to control
mice when administered with BPA at early embryonic
stage [36]. Ullah et al. (2016) also noticed no alteration
in body weight of adult male rats after sub-chronic oral
administration of BPS [34]. However, in the current
study significant increase in body weights was recorded
at PND 16 and PND 24 in BPA (2 μg/kg) and BPS (2 μg/
kg and 200 μg/kg) treated groups. Our results are in ac-
cordance with the former study by Rubin et al. (2001)
where female rat dams, when exposed to BPA from day
6 of pregnancy until lactation, resulted in increased body
weight relative to control group in offspring [45]. Previ-
ously, Sakaue et al. reported that exposure of BPA (2 μg/
kg to 200 μg/kg) to adult male rats resulted in decreased
testicular weight and impaired spermatogenesis [44].
It is known that administration of exogenous estrogen

results in reduced adipocyte number and it might con-
tribute to reduction of body weight [46–50]. No signifi-
cant change was seen for liver, kidney and heart weights
when compared in experimental groups (Table 2). Some
studies showed no significant change in organ weights
by BPA administration [39].
In the present study, pubertal spermatogenesis for histo-

morphometric analysis was characterized by seminiferous
tubule diameter, lumen diameter, epithelial and tunica
albugenia height. A significant increase was witnessed in

interstitial spaces and tubular lumen diameter with expos-
ure to bisphenol analogues. Both BPA low and high dose
exposure led to reduce seminiferous tubule diameter, epi-
thelial and tunica albugenia height and germ cells. In our
former study by Jahan et al., 2016, it has been reported
that administration of BPA in adult rats induces similar
changes with low efficiency of spermatogenesis. Studies
have shown that not only tissue morphology is affected by
BPA but also the number of mature spermatids becomes
limited [34]. Similarly, low dose exposed BPS groups
underwent a minimal level of damage to epithelial and re-
duction in lumen diameter, however, seminiferous tubule
presented almost same pattern as control and as such no
evident damage in high dose BPS exposed group.
In vertebrates and mammals, reproductive system and

brain are physiologically and anatomically differentiated
in both males and females, as a result of postnatal sex
steroids during early development in the hypothalamic
sexually differentiated anteroventral periventricular
nucleus (AVPV). AVPV region of the brain has multiple
cell types that are sexually dimorphic and tyrosine
hydroxylase positive cells are one of them [47].
Aromatization of estrogen in the medial region of male
brain results in expression of few Tyrosine hydroxylase
cell. It is well documented that in rats and mice, neurons
of TH + ve cells in the AVPV of brain act as a potent
anatomical marker of brain sexual differentiation [48,
49]. TH neurons number in the AVPV region of brain is
effectively reduced by administrating testosterone or es-
tradiol at the perinatal and/or postnatal stage. No sex
difference in TH number was seen in ERKO (lack ER)
mice, however, mice lacking TH receptor for androgen
maintain sexual dimorphism in TH number [49]. So
through these studies, it might be proposed that ER is
important for estrogen action in reducing TH neuron
number in males as compared to females.
The postnatal exposure of bisphenol analogues has

displayed no significant effect at low dose 2 μg/kg of
BPA and BPS on the total amount of TH-ir neurons in
males. Our present results are in line with findings of
Patisaul et al. (2006) [24]. But the significant increase

Table 3 Mean ± SEM of seminiferous tubule diameter, tubular lumen diameter, seminiferous tubule epithelial height, tunica
albuginea height of testis in control and treated groups after 28 days of treatment

Groups Seminiferous
Tubule Diameter

Lumen
Diameter

Epithelial Height Tunica Albuginea
Height

Control 106.46 ± 2.94 84.19 ± 3.46 35.59 ± 0.63 19.79 ± 1.14

BPA 2 μg/kg 126.03 ± 4.19a*** 61.72 ± 3.09 a*** 23.00 ± 0.48 a*** 16.34 ± 0.54

BPA 200 μg/kg 133.98 ± 3.23a*** 71.22 ± 2.60 a** 25.16 ± 0.48ab*** 17.66 ± 0.90

BPS 2 μg/kg 106.60 ± 2.46bc*** 62.90 ± 1.77 a*** 32.39 ± 0.54abc*** 18.61 ± 0.63

BPS 200 μg/kg 114.29 ± 2.45c*** 64.86 ± 2.20 a*** 26.55 ± 0.57abd*** 18.19 ± 0.67

Values are expressed as mean SEM
*p < 0.05, **p < 0.01, p*** < 0.001
a = Values vs control, b = Values vs Bisphenol A 2 μg/kg, c = Values vs Bisphenol A 200 μg/kg, d = Values vs Bisphenol S 2 μg/kg
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was observed in the number of TH-ir cell bodies with
high doses of 200 μg/kg of BPA and BPS. These re-
sults indicate that BPA interferes with estrogen action
at low dose [28] and acts as antiestrogenic at high
doses resulting in demasculinization of positive cells
that can lead to reproductive damage in adulthood.
The data point that just like BPA, BPS effectively in-
terferes with endogenous estrogen and demasculinizes

expression of TH in AVPV region suggesting that
BPA, as well as BPS, play an anti-estrogenic role in
the developing brain of male rats. Various scientists
also support this idea [24].
The underlying mechanisms behind estrogen actions

on TH expression patterns in AVPV in the neonatal
males are not well understood. But it appears to be act-
ing through estrogen receptor signaling. According to

A B

C D

E
Fig. 1 Photomicroghaph of 27 days old neonatal male rat seminiferous tubules(H&E, 40X) from: (a) Control; showing normal morphology of
closely packed tubules with basal lamina, stratification and increased spermatogenic epithelium Spermatogonia, primary spermatocytes and early
spermatids well developed lumen, (b) BPA group treated with 2 μg/kg of dose; showing noticeable increase in interstitial spaces between
destructed tubules and basal lamina, decrease in epithelial height, only spermatogonia and large lumen, (c) BPA group treated with 200 μg/kg;
showing decreased tubular diameter damaged interstitial tissues and increased interstitial spaces, narrow lumen, (d) BPS 2 μg/kg treated group
showing semineferious tubules without interstitial space, minimal damage to epithelial, decrease in lumen diameter, (e) BPS 200 μg/kg; showing
no interstitial space, normal spermatogenesis and basal lamina around tubules and very short lumen with early spermatids. Interstitial space (IS),
Spermatogonia(S), Primary spermatocytes (PS), Early spermatids (ES), Epithelial Height (EH), Interstitial tissues (IT), Basal lamina (BL), Lumen (L)
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Rubin et al. (2011), a study conducted on the pregnant
mice delivering low levels of BPA to their offspring by
subcutaneous implanted Alzet pumps resulted into de-
creased TH cell number in AVPV of females as com-
pared to control male [12]. Simerly et al., (1997)
reported that male mice in which TH-ir neurons lack
ERa, are phenotypically similar to wild type female mice,

suggesting that ERa is important for the normal
masculinization of the male brain by estrogen [44–49].
It is also demonstrated that developing AVPV TH-ir

cells are sensitive to EACs disruption, reliability of dopa-
minergic TH expression patterns make it more vulner-
able to examine the sensitivity of EACs in the neonatal
brain [50]. Previous epidemiological studies for early life

Table 4 Comparison of Mean ± SEM TH-ir neuronal cells of control, estradiol, BPA 2 μg/kg, BPA 200 μg/kg, BPS 2 μg/kg, BPS 200 μg/
kg treated groups, in 20 μm thick hypothalamic sections of 28 days old male rats

Animals Control Estradiol 50 μg/kg BPA 2 μg/kg BPA 200 μg/kg BPS 2 μg/kg BPS 200 μg/kg

1 74.5 60.75 75 163.75 183 148

2 46.25 56.25 101 178.25 100.75 119.5

3 65.25 56.5 94.75 56.5 64.5 87

TH-ir Cell Bodies 62 ± 4.47 57.83 ± 3.68 90.25 ± 7.41b* 175 ± 8.2abc*** 80.08 ± 10.03d*** 118.16 ± 10.23abd***e*

Values are expressed as mean SEM
*p < 0.05, **p < 0.01, p*** < 0.001
a = Values vs control, b = Values vs Bisphenol A 2 μg/kg, c = Values vs Bisphenol A 200 μg/kg, d = Values vs Bisphenol S 2 μg/kg

A B C

D E

G H

F

Fig. 2 Photomicrograph (10X) of TH-immunoreactive cells in AVPV of representative Sprague Dawley male rat pups that were neonatal treated
with BPA 2 μg/kg (a), BPA 200 μg/kg (b), BPS 2 μg/kg (c), BPS 200 μg/kg (d), Control (e), Estradiol (f). Omitted controls g and h show no
significance results
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exposure of BPA in young girls in humans associated
with a high level of anxiety and hyperactivity suggest
that early life BPA exposure has injurious, sex specific
and neural effects in humans [51, 52, 56].
According to observations of the USA population from

2010 to 2014, a trend of using BPS as BPA substitute
has led to increased use of this chemical in industrial
products [53]. Sexual dimorphism in AVPV volume and
TH neurons are appeared to be influenced by BPA ex-
posure and there are different mechanisms that appear
to be responsible to influence both, including cell surviv-
ing gene Bcl-2 and BAX gene deletion and overexpres-
sion, they are responsible for cell death reduction in
AVPV and eliminated sex differences in AVPV volume
in mice [54–57]. However, all these manipulations were
failed to alter the TH neuron number in this nucleus.
Beside Bcl-2 family of proteins, other pathways appear
to be responsible for a dopaminergic neuron sex differ-
ence in AVPV [16].

Conclusion
The current investigation provides the warning of pos-
sible toxic effects of exposure of BPA substitute “BPS”
during early life period. Since, BPS exposure during neo-
natal developmental periods act as endocrine disruptors
and could have serious consequences that might alter
systematic organization of reproductive organs and
brain’s sex specific regions leading to severe reproductive
health concerns in adulthood. Future studies are re-
quired for risk assessment of bisphenols on the sexual
differentiation of AVPV region of females and to un-
cover mechanisms through which these bisphenols affect
dimorphism of AVPV region in both sexes. Thus, we
proposed that BPS cannot be recommended as a safer
alternative of BPA.
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