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Abstract

Background: Fertility preservation (FP) protocols in case of breast cancer (BC) include mature oocyte cryopreservation
following letrozole associated controlled ovarian hyperstimulation (Let-COH). To date, the impact of Let-COH on the
follicular microenvironment has been poorly investigated, although a high androgen/estrogen ratio was previously
associated with low oocyte quality.

Methods: In this prospective study, follicular fluid (FF) steroid levels (estradiol, testosterone, progesterone) and cumulus
cell (CC) gene expression related to oocyte quality (HAS2, PTGS2, GREM1) were compared between 23 BC patients
undergoing Let-COH for FP and 24 infertile patients undergoing conventional COH without letrozole. All patients
underwent an antagonist COH cycle, and ovulation was triggered with hCG or GnRHa in both groups.

Results: FF estradiol levels were significantly lower while testosterone levels were significantly higher in the study group
compared to controls irrespective of the trigger method. However, estradiol levels increased significantly with GnRHa
triggering compared to hCG in the study group (median = 194.5 (95.4–438) vs 64.4 (43.8–152.4) ng/ml, respectively, p < 0.
001), but not in the control group (median = 335.5 (177.5–466.7) vs 354 (179–511) ng/ml, respectively). After hCG trigger,
Cumulus cell (CC) gene expression was lower in the study group compared to the control group, and difference was
significant for PTGS2. Conversely, CC gene expression of PTGS2 and GREM1 was significantly higher in the study group
compared to controls when ovulation was triggered with GnRHa.

Conclusions: Let-COH triggered with hCG may negatively impact oocyte quality. However, ovulation triggering with
GnRHa may improve the oocyte microenvironment and cumulus cell genes expression in Let-COH, suggesting a positive
impact on oocyte quality in breast cancer patients.
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Background
Recent advances in primary systemic therapy have greatly
improved relapse-free survival of young breast cancer (BC)
patients [1, 2], and increased survival has led clinicians to
focus on long-term quality of life issues such as access to
motherhood. Moreover, pregnancy after BC treatment does
not increase relapse risk and may even improve overall sur-
vival [3]. Nevertheless, chemotherapy including alkylating
agents may cause infertility or premature ovarian failure, re-
ducing patient’s chances to conceive [4]. Furthermore, in
patients with hormone-sensitive disease, endocrine therapy
is administered for several years. Consequently, aging
should also be taken into consideration as a crucial fertility
decline factor [5–7]. Fertility preservation (FP) has hence
become a priority for patients requiring chemotherapy.
Oocyte and/or embryo vitrification before treatments are
usually offered to BC patients [8]. However, high estradiol
level observed during controlled ovarian hyperstimulation
(COH) before oocyte collection has been subject of debate
regarding possible proliferative effects on the tumor.
Consequently, more than a decade ago, a new COH proto-
col associated with letrozole, a type II nonsteroidal com-
petitive aromatase inhibitor, was developed (Let-COH) to
collect several mature oocytes while potentially avoiding
negative effects of estrogens on tumor growth [9, 10].
Through its competitive action on the aromatase enzyme
[11, 12], letrozole prevents the aromatization of androgens
to estrogens, which may induce significant changes in the
endocrine follicular environment and impact oocyte com-
petence. However, an estrogenic environment was previ-
ously associated with better oocyte outcomes and
anti-atretic effect, while elevated androgen/estrogen ratio
was reported to induce granulosa cell apoptosis, associ-
ated with low quality or degenerating oocytes [13–17].
Recent studies have shown significantly improved oocyte
yield in BC patients undergoing Let-COH for FP com-
pared to conventional COH for elective oocyte cryopreser-
vation, as well as in infertile patients undergoing IVF with
Let-COH or conventional COH [18, 19].
Nevertheless, as developmental competence of frozen

oocytes/embryos of large cohorts of BC patients might
be known only in several years through live-birth rates,
the assessment of indirect markers in the microenviron-
ment surrounding the oocyte is an attractive approach
to evaluate the oocyte quality. Several genes expressed in
cumulus cells (CC) have been evaluated as potential
markers of oocyte competence, offering an attractive
approach to select embryos with the highest developmen-
tal potential. Among them, Hyaluronic acid synthase 2
(HAS2), Prostaglandin-endoperoxide synthase-2 (PTGS2)
and Gremlin1 (GREM1) have been associated with higher
oocyte competence and good embryo quality, given their
interaction with oocyte secreted factors and their role in
CC expansion during oocyte maturation. Although not
always statistically significant, a higher expression of
these genes has been associated with higher oocyte
competence [20–25].
The impact of Let-COH for FP in BC patients on the

follicular milieu remains poorly investigated so far. The
objective of this study was hence to compare the impact
on follicular fluid (FF) steroid levels and CC gene
expression of the Let-COH protocol for FP in BC
patients and conventional COH in infertile patients.

Materials and methods
Population
BC patients were enrolled in the BROVALE trial, a pro-
spective study conducted between December 2012 and
February 2017. The study group included 23 young BC
patients of 18–41 years with non-metastatic disease and
basal follicle stimulating hormone (FSH) < 20 IU/L,
undergoing oocyte/embryo freezing for FP with Let-COH
protocol. The control group included 24 infertile women
aged < 41 years, treated with first or second ICSI cycles for
tubal, male, and/or idiopathic infertility, undergoing simi-
lar ovarian stimulation for intra-cytoplasmic sperm injec-
tion (ICSI), without letrozole (conventional COH).
Patients with severe endometriosis, ovarian insufficiency
or severe polycystic ovary syndrome (PCOS), based on
Anti-Müllerian Hormone (AMH) levels < 0.5 or > 8 ng/ml
respectively, were excluded from this analysis.

Controlled ovarian hyperstimulation protocols
For this study, patients in both groups underwent a
gonadotropin releasing hormone (GnRH) antagonist cycle
(Cetrorelix, Cetrotide® 0.25mg, Serono, Germany) with
recombinant FSH (rFSH 150–300 IU/day, Gonal-f®, Serono,
Germany) and were triggered using 10,000 IU hCG (Preg-
nyl®, MSD, Switzerland) or 0.2mg Triptorelin (GnRH-ago-
nist, Decapeptyl®, Ipsen, Belgium) [26], according to local
protocol. In the control group, Triptorelin was used mainly
when there was a risk to develop ovarian hyperstimulation
syndrome (OHSS). In the BC group, GnRHa trigger
recently replaced hCG trigger in all patients, regardless of
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OHSS risk, to maintain low progesterone level during luteal
phase [26].
In BC group, a “standard” or “random start” COH was

applied depending on the cycle phase, either early
follicular or late follicular/luteal phase, respectively [27].
In standard protocol, letrozole 5mg/day (Femara®, Novar-
tis, Switzerland) was started on cycle day 2, and gonado-
tropins were administered the following day. GnRH
antagonists were initiated after 5 days. In the “random
start” protocol, letrozole, gonadotropins, and GnRH
antagonist were often administered together during the
stimulation. Letrozole administration was discontinued on
the ovulation trigger day in both protocols. Follicular
development was monitored by pelvic ultrasound scans
and serum endocrine profile (luteinizing hormone (LH),
estradiol, and progesterone) and ovulation was triggered
as soon as at least 2 follicles reached 19–20mm [10].
In the control group, patients underwent a conven-

tional antagonist COH, without letrozole. Ovulation was
triggered according to usual practice, as soon as at least
3 follicles reached 17–18mm. Oocyte pick-up (OPU)
was performed 34-36 h after ovulation triggering. Folli-
cles were aspirated via a single-lumen needle (Cook®,
Australia) using transvaginal ultrasound transducer, with
an aspiration pressure of 120 mmHg (Cook®, Australia).
Each follicle was aspirated individually into a 5 ml Falcon
tube and systematically separated from the flush
medium.

Follicular fluid (FF) analysis
After removal of the cumulus-oocyte-complex (COC),
each FF was recovered separately and centrifuged at
3000 RPM for 10min. Only individual samples of > 2ml
enclosing a mature oocyte, without visible contamin-
ation of flushing media or blood were stored at − 20 °C
for further analysis.
Estradiol (E2), and progesterone (P) were assayed by

electrochemiluminescence immunoassay using a com-
petitive immunoassay (Modular E170 – Roche diagnos-
tics, Mannheim, Germany). The inter-assay coefficient of
variation was less than 5% for both assays. Testosterone
(T) levels were measured by radioimmunoassay (DIA
source, Louvain-La-Neuve, Belgium). The inter-assay
coefficient of variation was less than 7%. Samples were
diluted (1:1000) in Multi assay diluent (MA) for E2 and
in the E2-P diluent for P. T was diluted (1:2) in study
group only, in fetal calf steroid-free serum.

Cumulus cell (CC) collection and oocyte handling
Collected COC were washed and incubated individually
in Fertilization medium (Cook Medical, USA) under
mineral oil for 1 h before denudation. Denudation was
performed in 30 μl droplets of Gamete Buffer (Cook
Medical, USA) containing 80 IU hyaluronidase (HYASE,
Vitrolife, Sweden) for 30 s, and then washed in two 30 μl
droplets of enzyme-free Gamete Buffer.
Whenever a BC patient had a male partner, ICSI was

performed on a variable proportion of mature oocytes
(MII), according to patient’s decision. Embryos obtained
were vitrified at 2PN or cleavage stage. If the patient was
single, all MII oocytes were directly vitrified after
denudation.
In the control group, all MII oocytes were subjected to

ICSI. Embryo transfer was performed on day 3 or 5 of
culture and the remaining good quality embryos were
vitrified according to local protocol. Oocytes and
embryos were handled individually in both groups to
allow CC per oocyte analysis.

RNA extraction, reverse transcription (RT) and real-time
PCR
For each individual mature oocyte, CC samples were
collected separately and centrifuged twice for 10 min
(2000 RPM at 4 °C in PBS) to remove culture media and
mineral oil.
Total RNA extraction was performed immediately, using

RNAqueous®-Micro Total RNA Isolation kit (Thermo
Fisher Scientific, USA) according to manufacturer’s instruc-
tions. Samples were treated with recombinant DNase I
RNase-free (Thermo Fisher Scientific, USA) to remove any
potential genomic DNA contamination. RNA was assessed
for quantity and purity by spectrophotometry (NanoDrop
2000) and stored at − 80 °C until RT. RT and qPCR were
conducted on CC samples with an mRNA concentration >
5 ng/μl. Reverse transcripts of total RNA were prepared
using a High Capacity cDNA Reverse Transcription Kit
(Thermo Fisher Scientific, USA) with a final reaction
volume of 20 μl. Negative controls were performed by re-
placing the enzyme with water. cDNA samples were stored
at − 20 °C until qRT-PCR. HAS2, PTGS2, and GREM1 were
selected as target genes. Ribosomal protein L19 (RPL19)
and Hypoxanthine phosphoribosyltransferase-1 (HPRT1)
were selected as housekeeping genes (validated by Genorm
software). Primers were designed using the free Primer3-
Plus software except for GREM1 (commercial assay,
SigmaAldrich, Austria) (Additional file 1: Table S1). Ampli-
fication efficiency ranged between 90 and 110% for each
primer pair. Specificity of single PCR products was con-
firmed by gel electrophoresis for all genes. qPCR experi-
ments were performed on a 7500 Cycler (Applied
Biosystems). The reaction mixture contained 5 μl cDNA (1
ng), 200 nM of each primer and 10 μl PowerSYBR® Green
PCR Master Mix (Thermo Fisher Scientific, USA) in a final
reaction volume of 20 μl. After activation and denaturation
(20 s at 50 °C and 10min at 95 °C), the cDNA was sub-
jected to 40 amplification cycles (15 s at 95 °C and 1min at
60 °C). All samples were run in triplicate and a No Tem-
plate Control (NTC) was included for each gene. Gene
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expression levels were normalized to the geometric mean
of the housekeeping genes and fold increases were calcu-
lated using the 2ΔΔCT method.

Statistics
Statistical analyses were performed using SPSS 23 (IBM,
Brussels, Belgium) on Mac OS X. Mann-Whitney or
Student’s t-tests were performed where appropriate.
Considering some patients in the study group underwent
2 cycles of Let-COH, and the number of samples per
patient was variable in both groups, we performed a
Two-way ANOVA with group as a fixed factor and
patients as a nested within group random factor to test
statistical dependencies of samples using the NCSS 10
Statistical Software 2015 LLC. Kaysville, Utah, USA,
ncss.com/software/ncss). All tests were two-tailed and a
P-value of less than 0.05 was considered statistically
significant.

Results
Biomarkers data were analyzed separately for hCG and
GnRHa triggers, as follicular microenvironment differs
according to ovulation trigger method [28–30]. Patient
and cycle characteristics are shown in Table 1.

FF endocrine profile assessment
We assessed the effect of letrozole on steroid levels in
the FF to indirectly evaluate its impact on oocyte com-
petence. To avoid potential bias related to differences in
follicular size, only FFs of similar volumes were analyzed
in both groups (3.4 ± 1.4 vs 3.2 ± 1ml per follicle, p =
0.533). Additionally, after exclusion of contaminated
samples, a total of 73 FF samples from 18 control
patients, and 66 FF samples from 16 BC patients per-
forming 18 and 20 cycles respectively, were eligible for
the FF analysis. First, we confirmed that no difference
Table 1 Patients and cycle characteristics

Study group Control Group P value

N patients 23 24

N cycles 27 24

Age (years) 30.4 ± 3.8 30.8 ± 3.9 0.71

AMH (ng/dl) 2.7 ± 2.1 3.1 ± 1.7 0.32

N stimulation days 9.9 ± 2.6 9.7 ± 1.3 0.8

Total dose of FSH used 2280 ± 1027 1629 ± 624 0.004

E2 level at triggering (pg/ml) 315 ± 225 2144 ± 915 < 0.001

Triggering methods (cycles) 0.22

hCG 9 12

GnRHa 18 12

Number of oocytes collected 9.5 ± 5.1 10.9 ± 6.8 0.4

Maturation rate 0.83 ± 0.19 0.87 ± 0.14 0.34
was observed in FF steroid levels between “standard”
and “random start” protocols in the study group, in both
ovulation trigger methods (unpublished data). Steroid
levels were then compared between study and control
groups.
Estradiol levels were significantly lower in the study

compared to the control group, while testosterone levels
were significantly higher (Fig. 1a, b). Progesterone levels
were comparable between groups (Fig. 1c). Using a
nested two-way ANOVA analysis, we confirmed there
was no group effect regarding FF volume. However, we
observed a significant effect of both patient and group
factors for hormonal levels (p < 0.001). Interestingly, es-
tradiol levels increased significantly after GnRHa trigger
compared to hCG trigger in the study group (median =
194.5 (95.4–438) vs 64.4 (43.8–152.4) ng/ml, respect-
ively, p < 0.001) but not in the control group (median =
335.5 (177.5–466.7) vs 354 (179–511) ng/ml, respect-
ively) (Fig. 1a).

CC gene expression related to oocyte competence
A total of 19 controls (82 CC samples) and 22 BC pa-
tients (89 CC samples) performing 19 and 24 cycles re-
spectively, were eligible for the CC analysis. To validate
the analysis, we first confirmed that the expression of
genes was lower in CC from unfertilized oocytes or low
quality embryos compared to CC from mature oocytes
resulting in top quality embryos in our control group.
However, the difference reached significance only for
HAS2 and PTGS2 after GnRHa trigger (Additional file 2:
Figure S1).
In the hCG-trigger, expression of HAS2 and PTGS2

was lower in the study group (n = 8 Let-COH) compared
to the control group (n = 10 COH), but the difference
reached statistical significance only for PTGS2 (p =
0.015) (Fig. 2a). Conversely, when GnRHa was used as
the trigger, HAS2 expression was comparable between
groups (n = 16 Let-COH and 9 COH), but expression of
PTGS2 and GREM1 was significantly higher in the study
compared to the control group (p < 0.001 for both genes)
(Fig. 2b). As for FF hormonal levels, nested Two-way
ANOVA analysis showed an effect of both patient and
group factors (p < 0.05).

Discussion
While hundreds of BC patients have cryopreserved eggs
using Let-COH, to date, only two studies have reported
specific outcomes of nearly 100 frozen embryo transfers.
Success rates were similar to that of the general infertile
population after frozen embryo transfer, with implant-
ation and live birth rates per transfer reaching 39.7 to
40.7% and 32.3 to 45%, respectively [18, 31]. A recent
study on infertile patients undergoing IVF confirmed the
similar cumulative pregnancy rates between Let-COH

http://ncss.com/software/ncss
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Fig. 1 Steroid levels in follicular fluid: estradiol (a), testosterone (b) and progesterone (c) concentrations in study and control groups. Boxplots
represent the median, 25th, and 75th percentiles. The whiskers represent 1.5 times the interquartile range, and outliers are identified by circles
(out-values) and stars (extreme values). *: p < 0.001; **: p = 0.011
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Fig. 2 Fold-change in gene expression in cumulus cells in study and control groups after hCG (a) and GnRHa (b) ovulation trigger, respectively.
Results are presented in mean +/− SEM. *: p < 0.001; **: p = 0.015. HAS2: hyaluronan synthase 2; PTGS2: prostaglandin endoperoxide synthase 2;
GREM1: gremlin 1

Goldrat et al. Reproductive Biology and Endocrinology            (2019) 17:3 Page 6 of 9



Goldrat et al. Reproductive Biology and Endocrinology            (2019) 17:3 Page 7 of 9
and conventional COH groups (58.3% vs 65.2% respect-
ively) [19]. Notwithstanding these promising results, oo-
cyte quality has been poorly investigated so far in BC
patients undergoing Let-COH for FP. Our study aimed
to compare indirect markers potentially related to oocyte
quality, following Let-COH in BC patients and conven-
tional COH in infertile patients. Ovulation was triggered
with either hCG or GnRHa in both groups, and con-
sidering the impact of ovulation triggering on the
microenvironment surrounding the oocyte [32], we
compared results between groups according to final
oocyte maturation trigger methods. In the control
group, we observed stable FF steroid levels regardless
of ovulation trigger method. Conversely, in the study
group triggered with GnRHa, E2 levels increased sig-
nificantly as compared to hCG trigger, although T
levels remained comparably high. Similarly, results of
CC gene expression revealed a less favorable profile
in the study compared to the control group triggered
with hCG, although only difference in PTGS2 expres-
sion reached statistical significance. On the contrary,
the expression of PTGS2 and GREM1 was signifi-
cantly improved in the study compared to the control
group when triggered with GnRHa. Decreased estra-
diol/testosterone ratio in Let-COH triggered with
hCG may actually generate a suboptimal FF environ-
ment. This observation is in accordance with previous
studies on infertile patients, in which aromatase in-
hibitors were used for androgen priming before stand-
ard COH to increase follicular sensitivity to FSH. In
these studies, high FF testosterone level was associ-
ated with reduced oocyte fertilization rates but good
embryo quality [33, 34]. The authors suggested a dual
effect of androgens on granulosa cell function, as they
increase FSH receptors and stimulate steroidogenesis
in small antral follicles but may be detrimental in
later stages of follicular development. Similarly, in a
mouse model, addition of a high dose of an aroma-
tase inhibitor during follicular culture improved mat-
uration rates compared with controls However the
fertilization rates were decreased (45% vs 76%) while
blastocyst/2-cell embryo ratios were similar between
groups [35].
In our study, increased E2 levels following GnRHa

trigger in the Let-COH group induced a high PTGS2
expression, which may be beneficial in terms of oo-
cyte quality. Indeed, estradiol has been previously
shown in aromatase knockout mice to be mandatory
for PTGS2 induction and ovulation [36]. We hence
hypothesize that the FSH surge induced by agonist
trigger at the time of letrozole interruption may
stimulate aromatase activity to increase estradiol pro-
duction in the pre-ovulatory follicle. This rise in
estradiol level may positively influence oocyte
maturity and quality, regardless of follicular testoster-
one level [37].
Our results are also in accordance with a recent study

that showed comparable pregnancy rates in normal re-
sponder infertile patients undergoing Let-COH or con-
ventional COH. The authors observed significantly
lower E2 and significantly higher T levels in the FF [38].
Our study has several limitations. Follicular size limit

determined for ovulation trigger was different between
groups. Indeed, more than a decade ago, Oktay et al.
showed lower maturation rates when Let-COH was trig-
gered as soon as follicles reached 17-18 mm as in con-
ventional COH. This observation led to a timing
modification of ovulation triggering in Let-COH and
maturation rate improvement [10]. In our study how-
ever, maturation rates were comparable between groups
regardless of ovulation trigger, and only FFs of similar
size were analyzed to avoid possible bias related to fol-
licular size.
FF steroid concentrations should be interpreted with

caution despite the significant difference observed
between groups, as high variability of FF steroid concen-
trations within and between subjects were previously
reported; testosterone and progesterone showed higher
inter-subject variability while estradiol showed higher
intra-subject variability, suggesting that estradiol may be
a better marker to indirectly assess oocyte quality [39].
Comparison of CC gene expression between groups
should also be interpreted with caution since they
remain merely indirect markers of oocyte competence.
Moreover, the use of predictive gene panel of oocyte
quality expressed in CC has not been validated yet in
clinical practice. Finally, difference between high and
low quality embryos didn’t reach significance in the hCG
triggered control cohort. However, as all our BC patients
are now triggered with GnRHa, CC gene expression ana-
lysis in the latter was more clinically relevant.
In conclusion, clinical results of Let-COH efficiency in

terms of oocytes quality and pregnancy outcomes in BC
patients are still limited, and large data will probably be
available in several years. We evaluated for the first time
Let-COH impact on oocyte microenvironment in BC
patients. Our results suggest that GnRHa-trigger may
improve oocyte quality in this population.

Additional files

Additional file 1: Table S1. Primer sequences for housekeeping and
target genes. (DOCX 14 kb)

Additional file 2: Figure S1. Fold-change in gene expression in cumu-
lus cells of good quality embryos compared with poor quality embryos
and unfertilized oocytes in the control group, after hCG (a) and GnRHa
(b) ovulation trigger, respectively. Results are presented in mean +/−
SEM. *: p = 0.004; **: p = 0.036. HAS2: hyaluronan synthase 2; PTGS2: pros-
taglandin endoperoxide synthase 2; GREM1: gremlin 1. (DOCX 64 kb)
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