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Abstract

Background: The full maturational capability of mammalian oocytes is accompanied by nuclear and cytoplasmic
modifications, which are associated with proliferation and differentiation of surrounding cumulus cells. These events
are regulated on molecular level by the expression of target genes involved in signal transduction pathways crucial
for folliculogenesis and oogenesis. Transforming growth factor beta signaling includes several molecules that are
involved in the regulation of oogenesis and embryo growth, including bone morphogenetic protein (BMP). However,
the BMP-related gene expression profile in oocytes at different maturational stages requires further investigation.

Methods: Oocytes were isolated from pubertal crossbred Landrace gilts follicles, selected with a use of BCB staining
test and analyzed before and after in vitro maturation. Gene expression profiles were examined using an Affymetrix
microarray approach and validated by RT-gPCR. Database for Annotation, Visualization, and Integrated Discovery (DAVID)
software was used for the extraction of the genes belonging to a BMP-signaling pathway ontology group.

Results: The assay revealed 12,258 different transcripts in porcine oocytes, among which 379 genes were down-regulated
and 40 were up-regulated. The DAVID database indicated a “BMP signaling pathway” ontology group, which was
significantly regulated in both groups of oocytes. We discovered five up-regulated genes in oocytes before
versus after in vitro maturation (IVM): chordin-like 1 (CHRDL1), follistatin (FST), transforming growth factor-beta
receptor-type lll (TGFBR3), decapentaplegic homolog 4 (SMAD4), and inhibitor of DNA binding 1 (ID1).

Conclusions: Increased expression of CHRDL1, FST, TGF3R3, SMAD4, and ID1 transcripts before IVM suggested a
subordinate role of the BMP signaling pathway in porcine oocyte maturational competence. Conversely, it is postulated
that these genes are involved in early stages of folliculogenesis and oogenesis regulation in pigs, since in oocytes before
IVM increased expression was observed.
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Background

The mammalian cumulus-oocyte complexes (COCs)
undergo growth, as well as substantial morphological
and biochemical differentiation, during the long stages
of folliculogenesis and oogenesis [1]. The biochemical
changes include nuclear and cytoplasmic maturation of
the oocyte and formation of gap junction connections
(GJCs) between the gamete and surrounding somatic
cells, which are associated with the bi-directional
transport of small substances [2, 3]. The morphological
changes involve follicle modifications that occur during
their differentiation from primordial and preantral to the
antral stage shortly before ovulation. Moreover, during
COCs maturation the cumulus cells (CCs), which tightly
surround the oocytes, significantly change their structure
from compact in immature gametes to expanded, a
marker of complete maturation [4]. It is suggested that
during in vivo and in vitro mammalian COCs matur-
ation their transcriptomic profile changes. Therefore,
some differentially expressed genes may be recognized
as new markers of maturational competence [5].

Recently, it was demonstrated that bone morpho-
genetic proteins (BMPs), apart from its role in bone
formation, are involved in porcine folliculogenesis, early
embryogenesis and morphogenesis in mammals [6].
Moreover, the BMP family of proteins regulates COCs
maturation and achievement of the MII stage [7].

Transforming growth factors beta (TGEp) are a family
of critical proteins that regulate somatic cell proliferation
and differentiation both in vivo and in vitro. It has been
recognized that the TGF superfamily members regulate
important stages of folliculogenesis, oogenesis, and
embryogenesis in mammals [8]. Additionally, TGEp is an
upstream activator of SMAD signaling pathway via
BMPs kinases complexes [9]. Activation of TGFp in-
duces subsequent phosphorylation of SMAD2 and
SMAD3, finally forming a complex with SMAD4 [10].
The latter, located in the nucleus, regulates expression of
inhibitor of DNA binding 1 (ID1) during development
and cells differentiation [11, 12]. The ID1 protein con-
tains helix-loop-helix (HLH) architecture and functions
in several cell lineages as a regulator of gene transcrip-
tion following binding to target transcription factors via
HLH motif [13]. As the result can regulate growth and
differentiation in embryonic tissues [14].

Follistatin (FST) is a negative regulator of follicle
growth and function, since it inhibits follicle-stimulating
hormone (FSH) release. Interestingly, its increased ex-
pression was found in human chondrocytes [15], where
chordin-like 1 (CHRDL1) can be also found [16]. Fur-
thermore, both are known as competitive inhibitors of
BMPs [17].

Described signaling pathway governs follicle develop-
ment in the ovary, as well as development and oocyte
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maturation and competency [18, 19], therefore our aim
was to present the influence of BMP signaling pathway
on maturation capability of porcine oocytes before and
after IVM.

Methods

Experimental design

Collected oocytes were exposed to two Brilliant Cresyl
Blue (BCB) tests and divided into two groups. The first
group (before IVM) included oocytes graded as BCB-
positive (BCB") and not subjected to further IVM.
The second group (after IVM) included BCB* oocytes
which were then in vitro matured, and graded as
BCB" after [IVM.

Animals

A total of 45 pubertal crossbred Landrace gilts bred on a
commercial local farm were used in this study. They had
a mean age of 155 days (range 140-170 days) and a
mean weight of 100 kg (95-120 kg). All animals were
housed under identical conditions and fed the same
forage (depending on age and reproductive status). All ex-
periments were approved by the Local Ethic Committee.

Collection of porcine ovaries and cumulus-oocyte-complexes
(COCs)

The ovaries and reproductive tracts were recovered at
slaughter and transported to the laboratory within
40 min. at 38 °C in 0.9% NaCl. To provide optimal
conditions for subsequent oocyte maturation and
fertilization in vitro, the ovaries of each animal were
placed in a 5% fetal bovine serum solution (FBS; Sigma-
Aldrich Co., St. Louis, MO, USA) in PBS. Single large
follicles (>5 mm) were opened by puncturing with a
5 ml syringe and 20-G needle in a sterile Petri dish, and
COCs were recovered. The COCs were washed three
times in modified PBS supplemented with 36 pg/ml
pyruvate, 50 pg/ml gentamycine, and 0.5 mg/ml BSA
(Sigma-Aldrich, St. Louis, MO, USA). COCs were se-
lected under an inverted microscope Zeiss, Axiovert 35
(Lubeck, Germany), counted, and morphologically evalu-
ated using the scale suggested by Jackowska et al. Only
COCs of grade I possessing homogeneous ooplasm and
uniform, compact cumulus cells were considered for fur-
ther use, resulting in a total of 300 grade I oocytes (3 x
n = 50 before IVM group, 3 x n = 50 after IVM group).

Assessment of oocyte developmental competence by BCB test
Brilliant Cresyl Blue (BCB) test, which measures activity
of glucose-6-phosphate (G6PDH) enzyme, was used for
assessment of oocytes’ quality and maturity [20]. The
G6PDH enzyme converts BCB stain from blue to color-
less. In oocytes that completed the growth activity of the
enzyme decreases and the stain cannot be reduced,
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resulting in blue oocytes (BCB"). To perform the BCB
staining test, oocytes were washed twice in modified
Dulbecco’s Phosphate Buffered Saline (DPBS) commer-
cially supplemented with 0.9 mM calcium, 049 mM
magnesium, 0.33 mM pyruvate, and 5.5 mM glucose
(Sigma-Aldrich, St. Louis, MO, USA), and additionally
with 50 IU/ml penicillin, 50 pg/ml streptomycin (Sigma-
Aldrich, St. Louis, MO, USA), and 0.4% Bovine Serum
Albumin (BSA) [w/v] (Sigma-Aldrich, St. Louis, MO,
USA). They were then treated with 13 pM BCB (Sigma-
Aldrich, St. Louis, MO) diluted in DPBS at 38.5 °C, 5%
CO, for 90 min. After treatment, the oocytes were trans-
ferred to DPBS and washed twice. During washing, the
oocytes were examined under an inverted microscope
and classified as stained blue (BCB") or colorless (BCB
7). Only the granulosa cell-free BCB™ oocytes were used
for subsequent molecular analysis (before IVM group)
or IVM followed by second BCB test and molecular ana-
lysis (after IVM group).

In vitro maturation of porcine COCs

After the first BCB test, the BCB™ COCs were subjected
to IVM. Immature oocytes have compact cumulus cell
layers that required removal for further oocyte evalu-
ation. Thus, COCs were first incubated with bovine
testicular hyaluronidase (Sigma-Aldrich, St. Louis, MO,
USA) for 2 min at 38° C to separate cumulus and granu-
losa cells. Cells were then removed by vortexing the
BCB" oocytes in 1% sodium citrate buffer followed by
mechanical displacement using a small-diameter glass
micropipette (Nichiryo, Nishikata, Japan). The COCs
were cultured in Nunclon™A 4-well dishes (Thermo
Fisher Scientific, Waltham, MA, USA) in 500 ul stand-
ard porcine IVM culture medium: TCM-199 (tissue cul-
ture medium) with Earle’s salts and L-glutamine (Gibco
BRL Life Technologies, Grand Island, NY, USA), supple-
mented with 2.2 mg/ml sodium bicarbonate (Nacalai
Tesque, Inc., Kyoto, Japan), 0.1 mg/ml sodium pyruvate
(Sigma-Aldrich, St. Louis, MO, USA), 10 mg/ml BSA
(Bovine Serum Albumin) (Sigma-Aldrich, St. Louis, MO,
USA), 0.1 mg/ml cysteine (Sigma-Aldrich, St. Louis,
MO, USA), 10% (v/v) filtered porcine follicular fluid, and
gonadotropin supplements at final concentrations of
2.5 IU/ml hCG (human Chorionic Gonadotropin)
(Ayerst Laboratories, Inc., Philadelphia, PA, USA) and
2.5 TU/ml eCG (equine Chorionic Gonadotropin) (Intervet,
Whitby, ON, Canada). Wells were covered with a mineral
oil overlay and cultured for 44 h at 38 °C under 5% CO..
After cultivation, the BCB staining test was performed, and
BCB" oocytes were used for further experiments.

RNA extraction from porcine oocytes
Total RNA was extracted from samples using TRI
Reagent (Sigma, St Louis, MO, USA) and RNeasy MinElute
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cleanup Kit (Qiagen, Hilden, Germany). The amount of
total mRNA was determined from the optical density at
260 nm, and the RNA purity was estimated using the 260/
280 nm absorption ratio (higher than 1.8) (Nano Drop
spectrophotometer, Thermo Scientific, ALAB, Poland). The
RNA integrity and quality were checked on a Bioanalyzer
2100 (Agilent Technologies, Inc., Santa Clara, CA, USA).
The resulting RNA integrity numbers (RINs) were between
8.5 and 10 with an average of 9.2 (Agilent Technologies,
Inc,, Santa Clara, CA, USA). The RNA in each sample was
diluted to a concentration of 100 ng/pl with an OD260/
OD280 ratio of 1.8/2.0. From each RNA sample, 500 ng of
RNA was taken. The remaining amount of isolated RNA
was used for the RT-qPCR study.

Microarray expression analysis and statistics

The Affymetrix procedure was previously described by
Trejter et al. [21]. Total RNA (100 ng) from each pooled
sample was subjected to two rounds of sense cDNA
amplification (Ambion® WT Expression Kit). The cDNA
was used for biotin labeling and fragmentation by
Affymetrix Gene Chip® WT Terminal Labeling and
Hybridization (Affymetrix). Biotin-labeled fragments of
c¢DNA (5.5 pg) were hybridized to Affymetrix® Porcine
Gene 1.1 ST Array Strip (48 °C/20 h), where the expres-
sion profile of 12,258 porcine transcripts was examined.
Microarrays were then washed and stained according to
the technical protocol using the Affymetrix Gene Atlas
Fuidics Station. The array strips were scanned employing
Imaging Station of the Gene Atlas System. Preliminary
analysis of the scanned chips was performed using
Affymetrix Gene Atlas TM Operating Software. The
quality of the gene expression data was checked ac-
cording to quality control criteria provided by the
software. Obtained CEL files were imported into
downstream data analysis software.

All analyses were performed using Bioconductor soft-
ware based on the statistical R programming language.
For background correction, normalization, and summa-
tion of raw data, the Robust Multiarray Averaging
(RMA) algorithm implemented in “affy” package of
Bioconductor was applied. Biological annotation was
taken from Bioconductor “oligo” package where the an-
notated data frame object was merged with a normalized
data set, leading to a complete gene data table. Statistical
significance of the analyzed genes was performed by
moderated t-statistics from the empirical Bayes method.
Obtained p-values were corrected for multiple compari-
sons using the Benjamini and Hochberg’s false discovery
rate. Selection of significantly changed gene expression
values (differentially expressed genes) was based on a
p-value below 0.05 and an expression fold higher than
|2]. The homogeneity of analyzed groups was checked
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by a principal component analysis (PCA) algorithm in-
corporated in “rgl” Bioconductor package.

Differentially expressed genes were subjected to the se-
lection of genes associated with BMP signaling pathways.
Differentially expressed gene lists (separated for up- and
down-regulated) were uploaded to DAVID software
(Database for Annotation, Visualization and Integrated
Discovery) where differentially expressed genes belong-
ing to “BMP signaling pathway” gene ontology biological
process group (GO BP) were obtained [22]. Expression
data of these genes were subjected to a hierarchical clus-
terization procedure and presented as a heatmap.

Interactions between differentially expressed genes/
proteins belonging to “BMP signaling pathway” ontology
group were investigated by STRING10 software (Search
Tool for the Retrieval of Interacting Genes) [23]. List of
gene names was used as query for interaction prediction.
Search criteria were based on co-occurrences of genes/
proteins in scientific texts (text mining), co-expression,
and experimentally observed interactions. The results of
this analysis generated a gene/protein interaction net-
work where the intensity of the edges reflects the
strength of the interaction score. In addition to inter-
action prediction, STRING also performs functional en-
richments of GO terms based on previously uploaded
gene sets from “BMP signaling pathway” GO BP term.

Real-time quantitative polymerase chain reaction (RT-qPCR)
analysis
RT-qPCR analysis was performed in order to validate
microarray results, using both the same RNA samples
used for PCR and microarray profiling experiments.
Total RNA was isolated from oocytes before or after
IVM. The RNA samples were re-suspended in 20 pl of
RNase-free water and stored in liquid nitrogen. RNA
samples were treated with DNase I and reverse-
transcribed (RT) into cDNA. RT-qPCR was conducted
in a Light Cycler real-time PCR detection system (Roche
Diagnostics GmbH, Mannheim, Germany) using SYBR®
Green I as a detection dye, and target cDNA was quanti-
fied using the relative quantification method. The rela-
tive abundance of CHRDL1, FST, TGEPR3, SMAD4, and
ID1transcripts in each sample was standardized to the
internal standards. For amplification, 2 ul of cDNA solu-
tion was added to 18 pl of QuantiTect” SYBR® Green
PCR (Master Mix Qiagen GmbH, Hilden, Germany) and
primers (Table 1). One RNA sample of each preparation
was processed without the RT-reaction to provide a
negative control for subsequent PCR.

Results

From whole sets of 12,258 analyzed transcripts, 379 genes
were down-regulated whereas 40 were up-regulated in re-
lation to the oocyte transcriptome before and after the in
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vitro maturation procedure. Principal Component Ana-
lysis (PCA) confirmed the homogeneity of the groups,
since we obtained two separated clusters corresponding to
tested experimental groups (before and after IVM).

DAVID software extracted five genes sets belonging to
“BMP signaling pathway” gene ontology biological process
term (GO BP). The set of genes consisting of CHRDLI,
EST, TGEPR3, SMAD4, and ID1 was subjected to hier-
archical clusterization procedure and presented as a heat-
map. Arbitrary signal intensity acquired from microarray
analysis was represented by green (higher expression) and
red (lower expression) colors. Log2 signal intensity values
for any single gene were resized to Row Z-Score scale
(from -2 - the lowest expression to +2 - the highest ex-
pression for single gene) (Fig. 1). The set of differentially
expressed genes belonging to “BMP signaling pathway”
GO BP term category is presented in Table 2 where
their symbols, names, fold changes, and corrected
p-values are shown.

Our analyses of differentially expressed genes, belong-
ing to the BMP signaling pathway GO, with a use of
STRING database revealed only weak interactions be-
tween ID1, SMAD4, and FST genes. We applied predic-
tion methods such as text mining, co-expression and
experimentally observed interactions, and found only
weak interaction of protein homology. Strength of the
interaction was reflected by the intensity of the edges.

STRING-generated functional enrichment of GO
terms showed the top five GO terms that also belong to
“BMP signaling pathway” GO BP. These terms include
those that are very similar to “BMP signaling pathway”
such as: “response to BMP”, “cellular response to BMP
stimulus”, “transmembrane receptor protein serine/
threonine kinase signaling pathway”, and “regulation of
transmembrane receptor protein serine/threonine kinase
signaling pathway”, with their GO ID (pathway ID), GO
term description (pathway description), and number of
the genes belonging to appropriate category (count in
gene set) (Table 3).

The result from the RT-qPCR revealed increased ex-
pression of CHRDL1, FST, TGEPR3, SMAD4, and ID1
in porcine oocytes before IVM as compared to analysis
after IVM. The RT-qPCR assay confirmed the fold
change and significance of microarray expression profil-
ing. Figure 2 shows comparison of both techniques with
their respective fold changes for each gene.

Discussion

Maturation capability is defined as the ability of female
gametes to undergo nuclear and cytoplasmic maturation
[24]. This occurs when oocytes achieve the MII stage
and RNA accumulates, creating the template for further
protein synthesis during early embryogenesis [25]. It has
been clearly demonstrated in several species of mammals,
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Table 1 Oligonucleotide sequences of primers used for RT-gPCR analysis

Transcript Sequence (5™-3' direction) Gene accession no. Product size (bp) Efficiency

CHRDL1 AACAATGCCTGTGTATGAGT XM_005673817.2 242 91%
TCTGGGCTTCTCCTTCAGT

FST GAGCCCACCTCCTCAGGAC NM_001003662.1 238 94%
TCTCAGGGCACAGCTCATCG

TGFBR3 TGATCCACCATGAAGTGCAGT NM_214272.1 190 108%
TGCCTTCCTGCGCTGTCTC

D1 AGCTGAACTCGGAATCCCAA NM_001244700.1 147 107%
TTCAGCGACACAAGATGCGAT

SMAD4 CCAAGTGCATATATAAAGGTCT XM_013985326 235 98%
AGCCTTTCACAAAACTCATCC

PBGD GAGAGTGCCCCTATGATGCT NM_001097412.1 214 bp 97%
ATGATGGCACTGAACTCCT

B-ACTIN GGGAGATCGTGCGGGACAT DQ845171 141 bp 99%
CGTTGCCGATGGTGATGAC

18S rRNA GTGAAACTGCGAATGGCTC AB117609 105 bp 97%
CCGTCGGCATGTATTAGCT

including domestic pigs, that only after proper maturation,
the oocytes are fully fertilizable [26]. It has been also sug-
gested that the maturation period is crucial for normal
zygote formation and embryonic growth in the preimplan-
tation stage [27]. Although in vitro culture (IVC) systems
are applied to mimic in vivo conditions, the proportion of
fully mature and fertilizable oocytes after IVC in numer-
ous mammalian species is still unsatisfactory [28].
Recently, several studies aimed to find new molecular
markers of oocyte maturation ability in order to improve
IVC models and increase the number of fully mature gam-
etes [29-33]. Therefore, in this study we performed gene
expression analysis in porcine oocytes before and after

-

BMP signaling pathway

FST

CHRDL1

SMAD4

{
{

TGFBR3

ID1

before IVM
before IVM
before IVM
after IVM
after IVM
after IVM

Fig. 1 Heat map representing differentially expressed genes belonging
to the “BMP signaling pathway” - functional category from DAVID
GEOTERM BP database. Arbitrary signal intensity acquired from
microarray analysis is represented by colors (green — higher, red - lower
expression). Log2 signal intensity values for any single gene were resized
to Row Z-Score scale (from —2 - the lowest expression to +2 - the highest
expression for single gene)

IVM in order to define new molecular markers of female
gamete maturation capability. Using microarray analysis,
we selected genes related to the BMP family that
were significantly up-regulated before IVM as com-
pared to after IVM.

Chordin-like 1 (CHRDL1), also known as ventroptin
(VOPT), is a protein involved in retina and tectum de-
velopment, is crucial for topographic retinotectal projec-
tion, and is a known BMP4 antagonist [34]. Recent
findings by Webb et al. [35] showed the expression of
ventroptin in the developing human cornea and neural
retina as early as week 7 of gestation. Additionally, they
observed ventroptin expression in fetal organs such as
the cerebellum as well as the prefrontal and occipital
neocortex. These data suggest that CHRDL1 may belong
to proteins involved in morphogenesis and organogen-
esis in mammals. The results from our experiments indi-
cated CHRDL1 was significantly up-regulated before
IVM as compared to oocytes analyzed after IVM. Since
CHRDLI is a secreted protein expressed mostly in

Table 2 Fold changes and adjusted p-values of differentially
expressed genes

Gene symbol  Gene name Fold change  Adj. p value

CHRDL1 chordin-like 1 -7.18 0,00005

TGFBR3 transforming growth -509 0,00041
factor, beta receptor lI

FST follistatin —4,45 000036

D1 Inhibitor of DN binding 1,  —2,98 0,00397
dominant negative
helix-loop-helix protein

SMAD4 SMAD family member 4 -2,72 0,00124

Fold changes and adjusted p-values of differentially expressed genes belonging
to the “BMP signaling pathway” functional category from DAVID GEOTERM BP
database. Symbols and names of the selected genes are also shown
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Table 3 Top five GO categories formed by differentially expressed
genes

Biological Process (GO)

Pathway ID Pathway Description Count in gene set
GO: 0030509 BMP signaling pathway 4
GO: 0071772 Response to BMP 4
GO: 0071773 Cellular response to BMP 4
stimulus
GO: 0007178 Transmembrane receptor 4
protein serine/threonine
kinase signaling pathway
GO: 0090092 Regulation of transmembrane 4

receptor protein serine/threonine
kinase signaling pathway

Top five GO categories formed by differentially expressed genes belonging to
the “BMP signaling pathway” ontology group. GO categories were generated
in STRING software. GO ID (pathway ID), GO term description (pathway description),
number of the genes belonging to appropriate category (count in gene
set) are shown

mesenchymal tissue during morphogenesis and organo-
genesis [36], its expression may be possibly related to
embryos as opposed to mature oocytes. Moreover,
higher expression of CHRDL1 in porcine oocytes before
IVM let us assume that BMP-related morphogenesis
may be significantly associated with early folliculogenesis
in immature oocytes. Bachiller et al. [37], found that
CHRDLI (-/-) mice died during embryogenesis or peri-
natelly, what let us assume that this morphogenesis—re-
lated gene expression is more likely associated with
embryo growth and development than with achievement
of maturation capability in porcine oocytes.

A significant role of the TGF signaling pathway
during early morphogenesis and organogenesis has
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also been determined [38]. In this study, we observed
that induction of the BMP signaling pathway can be
also associated with up-regulated gene expression of
TGF family member follistatin (FST) and genes re-
lated to TGF signaling, such as transforming growth
factor-beta receptor-type III (TGFBR3). Additionally,
altered expression of the mother against decapenta-
plegic homolog 4 (SMAD4) transcript, known as the
main mediator of TGF-beta (TGFP) and BMP1 signal
transduction, was also observed.

Recently, Inman et al. [39] reported that TGFP recep-
tor (TGEBR) activity is required for nuclear SMAD
activation, which regulates induction of TGF(R tran-
scription. This bi-directional transport of SMADs/
TGEBR between the nucleus and cytoplasm provides the
information regarding signaling pathways and events
leading to the transcriptional activation of target genes.
It has been suggested that activing- and activing
receptor-related systems are involved in regulatory
processes responsible for the maturational capability of
oocytes [40].

The results of our microarray experiments clearly
demonstrated up-regulation of all three members of
TGF family: FST, TGFPR3, and SMAD4 in porcine
oocytes before IVM compared to those analyzed after
IVM. We therefore hypothesize that FST, TGFBR3, and
SMAD4 could be involved in oocyte maturational com-
petence, as well as induction of the TGF/TGER signaling
pathway. The latter could significantly improve the
oocyte-follicular cell bi-directional shuttling. Our results
may indicate that expression and likely release of FST
out of the oocyte improve follicular cell growth and dif-
ferentiation. Similar to Wang and Ge [41], we observed

10.0
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0.0 H

-2.0 E
-4.0
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Relative abundance of mRNA

CHRDL1 FST

@ before IVM RT-qPCR ® before IVM microarray
Oafter IVM RT-qPCR B after IVM microarray
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TGFBR3 SMAD4 ID1

Fig. 2 Validation of microarray data by RT-qgPCR. Comparison of gene expression analysis of oocytes before IVM and after IVM using microarray
assay and RT-gqPCR. RT-gPCR analysis was normalized to the expression of three housekeeping genes (PBGD, -actin, 185 rRNA). Error bars represent
the standard error of the mean (SEM) for groups of oocytes. Statistically significant differences are presented as: *p < 0.05, **p < 001, and ***p < 0.001
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TGFB-related genes are up-regulated in oocytes before
compared to after IVM gametes. Al-Edani et al., also ob-
served up-regulated expression of TGFPR3 gene in hu-
man cumulus cells, supposedly as the result of enhanced
angiogenesis, playing essential role in late stages of folli-
culogenesis [42]. Furthermore, Rodriques et al., found
TGER, TGEPR I and R II mRNA in oocytes of all follicle
stages as well as in granulosa cells of primary and sec-
ondary follicles in caprine [43]. That is why, we cannot
exclude the existence of a TGF/TGFB/TGEPR signaling
cascade between oocytes and follicular cells, which
maintains significantly higher activity at early stages of
oogenesis and folliculogenesis.

It is likely that activation of the TGF signaling pathway
in both oocytes and follicular cells is necessary for
proper growth, development, and maintenance of proper
maturational capability of porcine oocytes [44]. Results
obtained by Guéripel et al. can confirm this hypothesis,
since they observed increased expression of TGEFp
signaling pathway genes and proteins in mice exposed to
FSH an LH treatment. Significant expression of TGFR I
and R II in theca interna, whereas much lower expres-
sion in GCs was found. The Smads exhibited strong
expression in oocytes, GCs, and luteal cells but lower ex-
pression in the theca interna. Among the Smads, Smad4
had the highest expression [45].

It was well defined that oocyte maturational competence
is significantly regulated by bi-directional shuttling of oo-
cytes and somatic cumulus cells [46]. The transport of
molecules between these cells improves the metabolic sta-
tus and significantly regulates the maturation ability of oo-
cytes. Moreover, our recent studies clearly demonstrated
that oocyte-cumulus cross-talk supports somatic cell pro-
liferation and differentiation in vitro [47]. Although the
important role of CCs surrounding oocytes in gametes
maturational competence achievement is widely known
[48], there is relatively little data indicating the molecular
basis of this process. Indeed, Salhab et al. used microarray
assays to identify a transcriptomic profile in bovine CCs.
Among 472 differentially expressed transcripts in CCs,
TGEP signaling GO was up-regulated, whereas MAP ki-
nases pathway GO was down-regulated. Additionally, the
protein assays showed an increased abundance of Smad4
in CCs after oocyte’s IVM. The phosphorylation status of
SMAD2, MAPK3/1, and MAPK14, but not MAPKS, was
higher in the cells after IVM as compared to immature
complexes. They concluded that in vitro maturation leads
to increased activity of the TGFp and MAPK signaling
pathways, simultaneous with decreased oocyte quality [49].

Contrary to these results, the current study observes
significantly lower expression of TGF/TGEp signaling re-
lated genes. Thus, we suspect an important role of this
ontological group in the early stages of folliculogenesis
and oogenesis, likely leading to maturational competence
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of oocytes in pigs. Although, the function of Smad4 as the
mediator of early embryogenesis is not entirely known,
the role of SMAD4 as a regulator of SMAD2/3- and
SMAD1/5/8 signaling pathways activation and FST ex-
pression was recently documented in cattle oocytes by Lee
et al. Contrary to our observations, they found that Smad4
mRNA was significantly higher during oocyte’s IVM with
a maximum at 2-cell stage embryos and 8-cell stage to the
lower level at blastocyst, concluding SMAD4 may be rec-
ognized as the main factor required for normal embryo-
genesis in cattle at 8-cell, 16-cell, and blastocyst stage [50].
Taking into account also our observations, it is possible
that SMAD4 is an important component of the TGEB
signaling pathway responsible for regulation of proper
oogenesis and embryogenesis as well as achievement
and maintenance of normal maturational status in
both pigs and cattle.

It was well recognized in several species of mammals
that the proper achievement of oocyte maturational cap-
ability is significantly orchestrated by cumulus cell pro-
liferation and differentiation both in vivo and in vitro.
Hogg et al. [51], examined ovine ovary, and found ID
1-4 expression in granulosa and theca cells in ovarian
follicles during their development. Finally, they hypothe-
sized that ID proteins may play a key role in steroido-
genic cells’ regulation of growth and differentiation. This
observation together with ID1 known functions of prolif-
eration maintenance and differentiation inhibition [14],
may indicate that ID1 can be involved in transcriptional
regulation essential for normal folliculogenesis. Although
the role of ID1 as an important transcriptional activating
factor in the mediation of cellular growth, development,
proliferation, and differentiation is well known [14], there
exists only one description regarding an ID1 expression
profile and oocyte maturation. Similarly to us, Blaha et al.
using microarray assay investigated the effect of FSH
administration on gene expression patterns in porcine cu-
mulus cells. They found that FSH administration led to in-
creased expression of genes encoding transcription factors
including ID1. Finally, they concluded that FSH-induced
expression of genes is responsible for regulation of cumu-
lus cell differentiation and the events leading to successful
oocytes in vitro maturation [52].

Conclusions

Higher expression of CHRDL1, FST, TGEBR3, SMAD4,
and ID1 genes before IVM, as compared to oocytes ana-
lyzed after IVM, points these genes may be potential me-
diators of fully maturational competent gamete formation
both in the nucleus and cytoplasm. We hypothesize that
BMP signaling pathway genes influence regulatory pro-
cesses at early stages of porcine oogenesis, however sig-
nificance of this finding needs further investigation with a
use of protein assays.
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