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ACTH-induced stress in weaned sows @
impairs LH receptor expression and
steroidogenesis capacity in the ovary
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Abstract

Background: Stress has been proved to impair the porcine reproduction soundly. Endocrine disruption, which is
closely related to the persistent follicles, is possibly one of the results of stress, although the mechanism is unclear.
Since the expression of luteinizing hormone receptor (LHR) in ovarian follicular wall and concentrations of steroid
hormone in follicular fluid are related to the development of persistent follicles, this study is designed to evaluate
the effect of administered adrenocorticotrophic hormone (ACTH) to weaned pigs on their ovarian steroidogenesis
capacity and LHR expression.

Methods: Ten multiparous sows were weaned and randomly divided into two groups (n =5 each). Sows received
1 1U/kg ACTH (ACTH group) or saline (control group) every 8 h from days 3-9 after jugular vein intubation. Blood
samples were collected throughout the experiment, and ovaries were collected after slaughter on day 10. Follicular
fluid (FF) was used to determine the steroid hormone concentrations. The ovarian follicle wall was obtained and
stored in liquid nitrogen to detect mRNA levels.

Results: The plasma cortisol concentration was significantly (P < 0.01) elevated after ACTH injection. The estradiol
(E5) and androstenedione (ASD) concentrations in FF were significantly lower (P < 0.05) in the ACTH group than in
the control group. The LHR, 33-hydroxysteroid dehydrogenase (33-HSD), cytochrome P450 aromatase (P450arom),
and cytochrome P450 17a-hydroxylase (P450c17) mRNA levels were significantly (P < 0.05) reduced in the ACTH
group. The steroidogenic acute regulatory protein (StAR) level and cytochrome P450 side-chain cleavage (P450scc)
was lower in the ACTH group than in the control group, but the difference was not statistically significant (P> 0.05).
Immunostaining results revealed 33-HSD,P450c17, and LHR expression in theca cells, and P450arom expression in
granulosa cells. Immunohistochemical staining showed significant differences in the distribution of 33-HSD,
P450c17, LHR, and P450arom between the two groups.

Conclusions: These findings indicated that ACTH significantly diminished the LHR expression and steroidogenesis
capacity of the ovaries of weaned sows.
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Background

Stress is a well-known factor influencing reproductive per-
formance in animals [1] Stressors come in various forms,
and events such as weaning, grouping, and transportation
have all been shown to influence reproduction in pigs and
the pigs’ response to each of these stressors is different [2].
Responses to stress vary in response to factors such as type
of stressor, duration, intensity, and individual variation
between pigs [1-3]. It is difficult to compare and evaluate
the different stressors that affect pig reproduction, particu-
larly in long-term situations. A previous study found that
ovarian cysts are an important disorder for sows, which
accounted for 10% of reproductive problems in pigs [4].
However, little is known about ovarian cysts, because it
may happen without the performance of reproduction con-
fusion [4]. Although it is difficult to diagnose ovarian cysts,
it is established that endocrine disruption is associated with
ovarian cysts [5]. The confusion of endocrinological mecha-
nisms plays a role in infertility by altering the physiology of
gonadal tissues [5]. Stress results in alterations in hormonal
events along with the immediate endocrine; some studies
have reported that endocrine imbalance is the primary rea-
son for the occurrence of ovarian cysts [6, 7]. Although
stress-inducing practices such as sow crating and tethering
have been gradually replaced by group penning to improve
animal welfare, group penning can also give rise to stress
among pigs due to animals pushing, riding, and biting one
another [8]. Thus, stress is inevitable and difficult to evalu-
ate. In pig production, many events can potentially cause
stress and it is difficult to assess the precise relationship
between stress and reproduction due to the varied number
and type of stressors.

A series of studies have shown that reproduction in pigs
is always impaired by stress through the neuroendocrine
system [1, 9—-11]. Without exception, various types of stress
can activate the hypothalamic-pituitary-adrenal (HPA) axis,
affecting hormone release and ovarian function [12]. Acti-
vation of the HPA axis suppresses gonadotropin secre-
tion and influences ovarian activity by increasing the
production of glucocorticoids [12]. The HPA axis is ac-
tivated in response to stress, triggering the release of
corticotrophin-releasing hormone (CRH) and vasopres-
sin by the hypothalamus. Increased levels of CRH lead
to increased ACTH release from the anterior lobe of
the pituitary [2, 5]. ACTH acts on the adrenal cortex,
stimulating the release of glucocorticoid hormones
(e.g., cortisol in pigs) and influencing the physiological
state of the sexual organs and steroid hormone path-
ways [13]. Exogenous ACTH administration has been
shown to affect not only the adrenal glands but also the
reproductive organs and several hormonal pathways either
directly or by alterations in the cortisol level [14]. At ovu-
lation, increased estradiol-17f (E,) and decreased proges-
terone (P,) concentrations in the plasma lead to increase
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in the frequency of GnRH secretion, contributing to the
preovulatory LH surge [10]. Steroid hormones play a
role in ovarian structures remote from the luteal or fol-
licular cells where they are produced, and the process is
realized by endocrine mechanisms [5, 15]. Decrease in
the levels of steroid hormone can influence follicular
development and even ovulation [16-18]. In general,
androgens are secreted in granulosa cells and converted
to E, by P450arom; androgen levels are higher when
the expression of the aromatase is suppressed, and this
contributes to the formation of ovarian cysts [19]. In-
creased plasma cortisol levels lead to a decrease in the
expression of steroidogenic enzymes and impair the
synthesis capacity of E, [20]. When the plasma E, con-
centration is reduced, the positive feedback effect on
GnRH/LH secretion is weakened and the preovulatory
LH surge is then suppressed, ultimately affecting the
success of ovulation [21].

ACTH administration did not significantly alter the
plasma E, and LH concentrations compared to the con-
trol group [13]. A review reported that no significant dif-
ferences were found in the LH levels between control
animals and experimental animals injected with ACTH,
but the interval of the LH peak to ovulation showed a
significant difference. The time from LH peak to ovula-
tion was longer in the ACTH group than in the control
group [12]. LH functions by binding to its receptors, and
the LHR is the primary medium by which LH affects fol-
licle development and maturation by stimulating the
synthesis and secretion of steroid hormones [22].

Therefore, we aimed to study the effect of ACTH in-
jection on the development and function of ovarian folli-
cles; androstenedione levels; progesterone and E, levels
in follicular fluid (FF); LH receptor expression; and the
expression of steroidogenic enzymes such as P450scc,
P450c17, P450arom, StAR, and 3p-hydroxysteroid de-
hydrogenase (3B-HSD) in granulosa and theca cells of
the ovarian follicle. To this end, we induced long-term
stress in weaned sows by ACTH administration for
7 days.

Methods

Animals

Ten multiparous Suhuai sows at parity 3—4 and weaning
at 28 d were selected for the experiment. The average
weight of the tested sows was 175+ 25 kg. The animals
were housed in individual pens, fed twice a day, and pro-
vided with water ad libitum.

Experimental design

Grouping and jugular vein catheter

The jugular vein was cannulated on the weaning day
and defined as day 1 of the experiment. Sows were fixed
to a test bench after they were sedated with thiopentone
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sodium. A cannula was passed into the exposed jugular
vein, while the free end of the cannula was passed sub-
cutaneously and fixed behind the ear with adhesive ban-
dage. After the surgery, the sows were randomly divided
into two groups: an ACTH group and a control group
(n =5 per group). From days 2-8 after the surgery, ani-
mals in the ACTH group received 1 IU ACTH/kg body
weight every 8 h. The ACTH was obtained from porcine
pituitary glands (A6303, Sigma, USA). Sows in the con-
trol group received the same dosage of saline (0.09%) on
the same schedule as the ACTH group. The cannula
was filled with heparinized saline (0.09%) to prevent
coagulation.

Blood sampling

Blood samples were collected every 3 h starting from
9:00 am on day 2 until pro-estrus. After the start of es-
trus, blood samples were then collected every 1 h. The
blood samples (10 mL) were collected into a heparinized
vacuum blood tubes, centrifuged for 10 min at 1000 g,
and stored at —20 °C until analysis.

Collections of FF and follicle tissues

Porcine ovaries were collected within 10 min of slaughter
of weaned sows. Follicles were then stripped from the
ovary using sterile scissors and placed on ice. FF without
blood was collected from each single follicle, and then
stored at —80 °C for Py, E,, and androstendione (ASD) as-
says. Meanwhile, follicular tissues were stripped from the
follicles using sterile scissors, and the tissues were then
stored at —80 °C for extraction and analysis of mRNA.

Detection of cortisol, P4, E,, and ASD levels in FF

The P4, E,, and ASD levels in follicular fluid were deter-
mined by ELISA assay kits (HO89 and H102, Jiancheng,
Nanjing, China; and 33-33720, TIANDZ, Beijing, China re-
spectively) and the plasma cortisol level was evaluated by
the same method (ANG-E31032P, Aoqing, Nanjing, China).
All FF and plasma samples were centrifuged at 3000 rpm
for 20 min at 4 °C. After centrifugation, all samples were di-
luted 1:5 in sample diluents and detected at 450 nm using a
multimode reader (Infinite 200 PRO; Tecan, Geneva,
Switzerland). The E,:P, ratio was calculated after the E,
and P, levels were detected in follicular fluid.

Fluorescence quantitative real-time PCR

Total RNA was isolated using TRIzol reagent (Trizol-
RNAiso Plus reagent, D9108A, Takara, China), and re-
verse transcription was carried out using Transcript
Moloney murine leukemia virus kit (Invitrogen, Shang-
hai, China). For total RNA collection, 100 mg of follicle
tissue was homogenized with 1 mL RNA extraction buf-
fer (TRIzol; Takara Biotechnology, co., Ltd.) in a Super
Fine Homogenizer (623003, Fluko, Germany). Once the
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total RNA was extracted, its concentration was deter-
mined by measuring absorbance in a spectrophotometer
(M200PRO; Tecan, Austria) at 260 nm. The sequences
of the lhr, star, p450scc, p450arom, p450c17, 3B-hsd were
obtained from the National Center for Biotechnology In-
formation Genbank. Table 1 presents the sequences and
sizes of the [hr, star, p450scc, p450arom, p450cl7, and
3B-hsd genes.

Immunohistochemical staining

Ovaries of the tested sows were obtained within 10 min of
slaughter. They were then fixed in 4% formalin solution
buffer (pH 7.4) for 24 h, and embedded in paraffin. Serial
5-um-thick sections of ovarian follicles were cut and the
sections were mounted onto 3-aminopropyltriethoxysilane
(APES)-coated slides.

Sections were deparaffinized in xylene and dehydrated
in an ascending ethanol series, and washed three times
in PBS for 3 min each time. Antigen retrieval was
carried out in 0.01 M sodium citrate buffer (pH 6.0) in a
microwave oven, and the sections were rinsed three
times with PBS for 3 min each time. The sections were
then immersed in 3% hydrogen peroxide for 10 min to
inactivate the endogenous peroxidase at room
temperature. After inactivation, antigen retrieval was
carried out in a microwave oven and nonspecific bind-
ing was blocked with 5% BSA. The following primary
antibodies were used: anti-CYP19A1 (1:100, A1336,
ABclonal Technology, Wuhan, China), anti-CYP17A1
(1:100, A1373, ABclonal Technology, Wuhan, China),
anti-3pHSD (1:100, sc-30820, Santa Cruz Biotechnol-
ogy, CA, USA), and anti-LHR (1:100, K-15, Santa Cruz
Biotechnology, CA, USA). For the negative controls, 1%
bovine serum albumin was used instead of the primary
antibody. Next, sections were incubated with horserad-
ish peroxidase (HRP)-conjugated goat anti-rabbit lgG
(H+L; 1:150 dilution, IH-0011; Dingguo, Beijing,
China) for 1 h at 37 °C. The reactions were visualized
by treatment with diaminobenzidine (DAB) (AR1022,
Boster, Wuhan, China) for 15 s.

Image-Pro Plus 6.0 software was used to evaluate the
staining intensity by the average optical density (AOD).
Ten typical fields were selected to estimate the percent-
age of immunopositive cells, and each field was exam-
ined twice by three authors.

Statistical analysis

Data of the ACTH and control groups were analyzed by
independent sample ¢ test using Statistical Package for
Social Science software (SPSS version 20.0 for Win-
dows). All data are represented as the mean + standard
deviation (SD) and a P value of <0.05 was considered
statistically significant.
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Table 1 Sequences and sizes of all tested genes

Gene Reference Primer sequence (5-3)) Size
sequence
LHR NM-214449.1 sense GCTCACCCAAGACACTCC 190
antisense CACATGAGGAAACGAGGC
StAR NM-213755.2 sense GGCAAGGCTCTTCTAACT 99
antisense TAGACACGAAAGGGCTCA
P450scc NM-214427.11  sense CCAGCATTACCAGAAGCC 92
antisense GAGCCATTACCTCCGTGT
P450arom  NM-214429.1 sense AAGAAGGGTCACAACAAG 165
antisense AAGAAAGCCAGTGAGCAG
P450c17  NM-214428.1 sense ATGATCCAAGCCAAGACG 140
antisense TTTACCACAGAGGCAGAAG
3B-HSD  NM-001004049.1  sense CCTGGCAAGTATTTCTCGG 107
antisense CCAGCAACAAGTGGACGAT
B-actin NM-001167795.1  sense CTCCATCATGAAGTGCGACGT 114
antisense GTGATCTCCTTCTGCATCCT
GTC
Results
Plasma cortisol concentrations in the ACTH and control
groups

We evaluated the plasma cortisol levels in sows in the
ACTH and control groups at four different time
points in order to evaluate their stress levels (Fig. 1).
The plasma cortisol levels were significantly elevated
(P<0.01) in the ACTH group than in the control
group at 16, 88, and 160 h after ACTH injection. The
cortisol level in the ACTH group was the highest at the
second tested time point (16 h) compared to the other
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Fig. 1 Plasma cortisol concentrations at four time points in sows of

the control and ACTH groups. Plasma cortisol concentrations at four

different time point (0, 16, 88, and 160 h) in the ACTH and control

groups. After ACTH injection, the cortisol concentrations showed a

significant increase (P < 0.01). **Values were statistically different at p

<0.01 compared to the control group
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time points in the ACTH group (0, 88, and 160 h), and
this difference was significant (P<0.01). The cortisol
concentration in the ACTH group declined sharply at
88 h. Thereafter, the cortisol concentration remained
stable (from 88-160 h) and remained higher than the
corresponding levels in the control group. The results
revealed that plasma cortisol levels were maintained at a
high level in the ACTH group, indicating successful stress
induction in the ACTH model group.

Steroid hormone levels in follicular fluid

Figure 2 shows the concentrations of steroid hormones
such as E,, ASD, and P, in the ovarian follicular fluid of
sows treated with ACTH for 7 days and control sows.
The results revealed that the E, and ASD levels had sig-
nificantly decreased in the ovarian follicular fluid of the
ACTH group (90.6 ng/L and 14.8 nmol/L, respectively;
P <0.05) compared to the corresponding levels in the
control group (177.8 ng/L and 17.9 nmol/L, respect-
ively). The P4 concentration of the ACTH group did not
significantly decrease from that of the control group
(71.5 vs. 80.2 ng/mL, respectively; P> 0.05). Although
the E,/P,4 ratios in both groups were >1, it was lower in
the ACTH group than in the control group (Fig. 2d).

Relative mRNA transcription levels of steroidogenic
enzymes and LHR

We then analyzed the corresponding mRNA tran-
scription levels such as cypllal, cypl7al, cypl9al,
3B-hsd, star, and lhr by real-time quantitative poly-
merase chain reaction (RT-PCR). The transcription
levels were normalized to the corresponding S-actin
levels (Fig. 3). All the tested genes were associated
with steroidogenic enzymes showed a lower transcrip-
tion levels. The results revealed that the transcription
levels of lhr, 3B-hsd, cypl7al, and cypl9al were sig-
nificantly decreased (P<0.05) in the ACTH group.
The cypllal and star mRNA levels showed a similar
trend; however, there was no significant reduction in
their levels between the two groups (P >0.05).

Immunohistochemical staining

Figure 4 shows the distributions of CYP17A1, CYP19Al,
and 3B-HSD in the follicular wall of sow ovaries in both
the groups. Immunohistochemical staining revealed that
3B-HSD and CYP17Al are primarily localized in the
theca cells. Meanwhile, positive staining of CYP19A1 is
detected in granulosa cells, while some weak signals are
observed in theca cells. Positive staining for LHR is ob-
served in the ovarian theca cells in both the groups.

Immuno-expression level
Based on the AOD, the immunoreactivities of 33-HSD,
CYP19A1, CYP17A1, and LHR are significantly reduced
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Fig. 2 Changes in steroid hormone concentrations in ovarian follicular fluid Changes in the concentrations of (a) androstenedione (SD), (b)
progesterone (P,), (¢) estradiol (E,), and (d) the E/P, ratio in the follicular fluid of weaned sows with and without ACTH. After ACTH injection, the ASD,
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in the theca cells of the ACTH group compared to those
of the control group (P<0.05; Fig. 5). The AODs of
3B-HSD and CYP19A1 are higher than those of CYP17A1
and LHR.

Discussion
Although it is commonly known that stress induces disor-
ders in follicular development and ovulation, the underlying
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Fig. 3 mRNA levels of steroidogenic enzymes and LHR Effect of
ACTH treatment on the transcription levels of star, p450scc,
p450arom, p450c17, 3B-hsd, and Ihr relative to the B-actin
transcription level in the follicular wall of the control and ACTH
groups. *Differences in values were statistically significant at p < 0.05
compared to the control group

mechanism remains unclear. ACTH administration has
been reported to simulate the stress response, which is
reflected by the plasma cortisol response, and influenced
reproduction in pigs [8, 9, 11, 13, 23, 24]. In the present
study, we administered sows with repeated ACTH injec-
tions to mimic stress; this resulted in an increase in the
plasma cortisol concentration in the sows that were treated
with ACTH but not in the untreated control sows, indicat-
ing successful establishment of a stress model. Previous
studies mainly focus on the changes in the hormone levels
in plasma, but hormone levels were not obviously affected
by ACTH administration [8, 13]. Therefore, in our study
we investigated changes in the steroid hormone levels in
follicular fluid and LHR expression in the ovarian follicular
wall in the stress model.

Cortisol is a sensitive indicator of stress, and our study
found that sows with ACTH-induced stress had much
higher plasma cortisol concentrations than control sows;
our findings are in agreement with those reported previ-
ously [2, 25]. In addition to the higher plasma cortisol
concentration, sows in the ACTH group also showed re-
duced E, and ASD levels in FF and lower E,/P, ratio
compared to the corresponding values in the control
group. Interestingly, the P, concentration in FF did not
significantly differ between the two groups. Ovarian ste-
roidogenesis is known to be a multistep process involv-
ing many key enzymes [26]. The above results indicate
that ACTH may not significantly affect the transcription



Zhu et al. Reproductive Biology and Endocrinology (2016) 14:80

Page 6 of 9

Control group

T o
- FBTHID. S

\4 ﬂ,,
. \ :\3\ \se

control group

ACTH group

Fig. 4 Localization of 33-HSD, CYP17A1, CYP19A1, and LHR in sow ovaries Immunohistochemical staining of sow ovaries. Samples are counterstained with
Mayer's hematoxylin. Bars = 50 um. The immunolocalization of 33-HSD (a, b), CYP17A1 (d, ), CYP19A1 (G, H), and LHR (j, k) in the follicular walls of sows
during the control and ACTH groups. The column on the right illustrates the immunohistochemical staining of the respective negative controls: (c) 33~
HSD, (f) CYP17A1, (i) CYP19A1, and (I) LHR. The expression levels of 33-HSD (a, b), CYP17A1 (d, e), and LHR (j, k) were intense in theca cell layers (—) of
both the control and ACTH-treated sows. Note the intense reactivity for CYP19A1 (g, h) in the granular cell layers (V) of both the groups. ACTH group:
After 7 days of ACTH treatment, the expression level of 33-HSD (B), CYP17A1 (e), LHR (k), and CYP19A1 (h) were significantly reduced compared to the
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Fig. 5 Changes in the average optical density of 33-HSD, CYP19A1,
CYP17A1, and LHR in the follicular wall After ACTH treatment for

7 days, weaker CYP17A1, CYP19A1, 33-HSD, and LHR signals were
detected in the follicular wall, and these signals were significantly
decreased in the ACTH group than in the control group (P < 0.05).
*Differences in values were statistically significant at a p value of
<0.05 compared to the control group

3B-HSD

of certain key enzymes. Cortisol, which is released by
adrenal glands due to exogenous ACTH, is capable of
damaging ovarian function [2, 27, 28]. ACTH, which is
secreted from the pituitary gland, can induce cortisol se-
cretion by acting on the adrenal gland [10, 25]. Increase
in the plasma cortisol concentration would initiate the
negative feedback of E,, which would then suppress the
frequency or amplitude of GnRH, reducing the secretion
of gonadotrophin [28]. At the hypothalamo-pituitary
level, gonadotrophin inhibition influences ovulation and
triggers the formation of small ovarian cysts [24, 29]. Hor-
monal interaction of the HPA and hypothalamic-pituitary-
gonadal (HPG) axes contributes to reproductive problems
in female pigs [5]. Increased cortisol concentrations can
suppress the synthesis of steroid hormones and can even
impair the preovulatory LH surge, resulting in ovulation
failure [27, 28]. Suppression of the LH surge can impair
follicle development and estrogen synthesis as well as
increase the formation of follicular atresia [17]. Steroid
hormone release is controlled by endocrine mechanisms,
and changes in the concentrations of steroid hormones
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will influence reproductive function [5]. Steroid hormones
are important factors affecting ovarian follicle growth and
ovulation in weaning sows. As paracrine/autocrine agents,
these hormones can play roles on or within the cells
where they were produced [15].

Ovarian steroidogenesis is a multistep process involving
several key enzymes [26]. Enhanced E, biosynthesis ability
is always accompanied by upregulation of LHR and some
steroidogenic genes [30]. In the present study, the follicu-
lar fluid of the ACTH group had reduced E, and ASD
concentrations. Accordingly, the lhr, 38-hsd, cyp19al, and
c¢ypl7al mRNA levels were also reduced in the ACTH
group compared to the control group; this reduction may
be associated with the high plasma cortisol levels induced
by ACTH. The frequency or amplitude of GnRH could be
suppressed with the increased in the plasma cortisol level
[28]. In addition, treatment with a GnRH receptor antag-
onist has been shown to decrease LH secretion and reduce
the lhr, cyp19al, and cypl7al mRNA levels [31]. Com-
pared to the control group, the ACTH group had a lower
E,/P, ratio, and the lhr, cyp19al, and cypl7al levels were
lower in estrogen-inactive follicles than in estrogen-active
follicles [32]. The mRNA and protein levels of these
enzymes were related to the biosynthesis and transfer of
androgens. In previous literature, 33-HSD was shown to
convert pregnenolone into P, and transfer this hormone
outside the mitochondria, while P450c17 was shown to
produce ASD via 17-hydroxylation of P4 [33]. The results
of the immunohistochemical staining in our study re-
vealed positive signals of P450c17 and 33-HSD distributed
in theca cells, and these positive signals were reduced in
the ACTH group compared to the control group. When
the 3B-HSD expression level is reduced, it interferes with
the ability of P, transfer, resulting in ASD biosynthesis
and reduced P, concentration. Similarly, the suppression
of P450c17 reduces the 17-hydroxylation activity of this
enzyme, consequently affecting ASD biosynthesis [18].
Except for aromatization, which occurs in granulosa cells,
all other processes of steroidogenesis occur in theca cells.
P450arom is expressed in granulosa cells and is the last
key enzyme that plays a role in the formation of estrogens
from androgens [34]. Disruption of ovarian steroid synthe-
sis in sows may be associated with defects in the aroma-
tase complex, which influences hormone conversion in
peripheral fat tissue [10]. Suppression of P450arom activ-
ity can reduce the E, concentration in FF [35, 36]. In a
study on women with polycystic ovary syndrome (PCOS),
the P450arom expression levels in granulosa cells were
very low and undetectable, indicating that the process of
conversion of androgens into estrogens was disturbed,
affecting the development of the ovarian follicle [37].

Estrogens can regulate the development of ovarian fol-
licles by stimulating the proliferation of granulosa cells
[38]. Decrease in the estrogen levels could influence the
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LH surge [39] and the LHR expression in the ovary [22].
LHR expression is a vital mediator for the various func-
tions of LH in sows, in including ovulation. LH can
influence the P, and ASD production and induce ovula-
tion by binding to the LH receptor [40]. A previous
study reported that inactivation of LHR by gene muta-
tion affected follicular development at all stages [41].
Glucocorticoids have been shown to influence the re-
sponsiveness of gonadal to LH and the expressions of
LHR [42]. LHR production increases with follicle devel-
opment and matures before ovulation [43] while the
expression would be influenced by many elements such
as the circulating LH levels [31]. The cortisol that is pro-
duced in response to stress suppresses GnRH secretion
and decreases the LH level [28]. The ACTH-induced in-
crease in the plasma cortisol level affects the LHR
expression in ovarian follicular walls. In addition, LHR
expression is related to estrogen activity, and LHR
expression has been found to be lower in estrogen-
inactive follicles than in estrogen-active follicles [32].

Conclusions

The present study demonstrated that higher cortisol
levels, induced in response to stress, affected the growth
and ovulation of follicles. ACTH injection over long-
term increased the plasma cortisol concentration, which
reduced the steroidogenic hormone levels and LHR
expression in the ovaries of weaned sows.
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MRNA: Messenger ribose nucleic acid; P4: Progesterone; P450arom: Cytochrome
P450 aromatase; P450c17: Cytochrome P450 17a-hydroxylase;

P450scc: Cytochrome P450 side-chain cleavage; PBS: Phosphate buffer saline;
StAR: Steroidogenic acute regulatory protein.
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