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Abstract

Background: It is assumed that spermatozoa are target cells for estrogens however, the mechanism of their action
is not fully understood. The aim of this study was to investigate the influence of 173-estradiol (E2) on the human

spermatozoa mitochondrial function.

Methods: The effects on spermatozoa of E2 at final concentrations of 107'°, 10°® and 10°° M were studied
regarding the following phenomena: (1) kinetics of intracellular free calcium ions changes (using Fluo-3),

(2) mitochondrial membrane potential AY¥,, (using JC-1 fluorochrome), (3) production of superoxide anion
in mitochondria (using MitoSOX RED dye), (4) spermatozoa vitality (propidium iodide staining) and (5) phosphatidylserine
membrane translocation (staining with annexin V marked with fluorescein).

Results: E2 initiated rapid (within a few seconds) dose dependent increase of intracellular free calcium ions
concentration. E2 was changing the mitochondrial membrane potential: 1078 M initiated significant increase
of percentage of high A¥,, spermatozoa while the 107 M induced significant decrease of high AYm cells.
In spermatozoa stimulated with E2 107 M a significant increase of mitochondrial superoxide anion level was
observed. 2 h incubation of spermatozoa with E2 did not alter cells vitality nor stimulated phosphatidylserine

membrane translocation, for all three doses.

Conclusions: 17(3-estradiol affected the human spermatozoa mitochondrial function. E2 in low concentration
improved while in high concentration might deteriorate mitochondrial function.
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Abbreviations: AnV-FLUOS, Annexin-V labelled with fluorescein; DMSO, Dimethyl sulfoxide; E2, 17(3-estradiol;
ESR1, Estrogen receptor type 1; ESR2, Estrogen receptor type 2; ESRs, Estrogen receptors; Ex/Em, Excitation/
emission; Fluo-3, Fluorescence indicator of intracellular calcium; GPER, G protein coupled estrogen receptor;
JC-1, 5,5'6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimi-dazolylcarbocyanine iodide; MitoSOX™, Red mitochondrial
superoxide indicator; mtNOS, Mitochondrial nitric oxide synthase; Pl, Propidium iodide; PST, Phosphatidylserine
membrane translocation; ROS, Reactive oxygen species; SD, Standard deviation; WHO, World Health Organization;

AV, Mitochondrial membrane potential

Background

It has been shown that estrogens play important role in
the regulation of male reproductive system [1-3]. Pre-
vious studies revealed that human spermatozoa can be
considered target cells for estrogens. Impact of estrogens
comprises sperm capacitation, acrosome reaction, motility
and fertilizing ability [4-7].
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17B-estradiol (E2), the most powerful estrogen, affects
target cells via estrogen receptors (ESRs): ESR1 and ESR1.
Spermatozoa are transcriptionally inactive cells. E2 nonge-
nomic signal transduction using intracellular secondary
messengers is the only pathway possible [8, 9]. Nonge-
nomic E2 effects are mediated via either membrane bound
receptors or interaction with other membrane proteins
and/or lipids [10]. Classic nuclear ESR1 and ESR2 recep-
tors were described within cell membrane [11, 12]. How-
ever, considering absence of transmembrane domains in
both ESRs, post-translational ESRs modification or ESRs
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binding with other membrane proteins are suggested. Kim
et al. suspected that 45 and 66 kDa splicing ESRs variants,
lacking the A/B domain, are capable to act as integral
transmembrane proteins [13]. G protein coupled estrogen
receptor (GPER) representing alternative pathway for
rapid nongenomic answer was detected in human, boar
and stallion spermatozoa [14, 15].

Both subtypes of classical ESRs are expressed in ejacu-
lated spermatozoa however, the reports concerning their
localization are not unanimous [14, 16, 17]. In our own
unpublished study we observed strong expression of
ESR1 and ESR2 in the midpiece region of human sperm-
atozoa, supposing their presence in spermatozoal mito-
chondria. Our findings support the results obtained by
Solakidi et al. with MitoTracker Red CMXRos mitochon-
drial marker usage [17]. Also, the study by Guido et al,
exploiting the colloidal gold, indicated the presence of
ESRs in spermatozoal mitochondria obtained from fertile
men. The mitochondrial ESR2 expression was significantly
stronger than that of the ESR1. Moreover, in patients with
variocele, significant decrease of ESRs expression in the
midpiece regions and tail or sporadically no ESRs expres-
sion were observed [7]. Assuming the ESRs are present
in sperm mitochondria, their functions should be affected
by estrogens.

Estrogens can have an impact on mitochondrial function,
however the mechanism is not fully understood [18-20]. It
is known that due to high lipid content mitochondria are
reservoirs of cell estrogens [21]. It was indicated that be-
sides passive estrogen diffusion, the mechanism of rapid
estrogen transport to mitochondria is present within the
cell, probably via receptor mediated endocytosis [22].

ESRs presence was revealed in somatic cells mitochon-
dria. In most mitochondria the ESR2 seems to be the
dominant receptor type even if both types were detected.
Mitochondrial ESR2 mass analysis revealed various recep-
tor isoforms [23]. The mechanism controlling ESR trans-
port to mitochondria is poorly understood. It is suggested
that in mitochondria, similarly as in the nucleus, the ESRs
play the role of transcription factors [24]. It is postulated
that estrogens act on mitochondria, not only by affecting
the mitochondrial DNA. It was observed that they stimu-
late local, mitochondrial increase of free calcium ions
(Ca®*) concentration. It was suggested that estrogens
inhibit sodium dependent efflux of free calcium ions
from mitochondria [25].

As a consequence of the increase of mitochondrial free
calcium ions concentration, the increase of synthesis of
reactive oxygen species (ROS) such as superoxide anion
(O2*7), hydrogen peroxide (H,O,) and hydroxyl radical
(OH") occurs. This indicates that estrogen induced in-
crease of mitochondrial Ca®* concentration stimulates the
activity of mitochondrial nitric oxide synthase (mtNOS),
leading to inhibition of cytochrome c oxidase activity [26].
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The aim of present study was to investigate the influ-
ence of 17fB-estradiol on human spermatozoa mitochon-
drial function, based on the analysis of mitochondrial
membrane potential changes and detection of mitochon-
drial superoxide anion.

Methods

Semen of 10 normozoospermic men (according to WHO
2010 criteria) was analyzed. Material was obtained after
sexual abstinence of 3-5 days. Spermatozoa with high
motility were isolated by the swim-up technique. Ham’s
F-10 medium was used as sperm cell extender.

Isolated cells were incubated with E2 in final concentra-
tions of 107'°, 1078 and 10" M. Spermatozoa stimulated
by Ham’s F-10 medium were used as controls.

Spermatozoa mitochondrial membrane potential (AY,,)
was noted at 5, 10, 15, 20, 25, 30 and 120 min after
exposure to E2.

Changes of Ca®" level were examined throughout 400 s
after exposure to E2, every 10 s.

Sperm vitality, phosphatidylserine membrane transloca-
tion and mitochondrial superoxide anion level were exam-
ined at 2 h after exposure to E2.

Changes in intracellular free calcium ions level

Fluo-3 (Molecular Probes; Ex/Em = 488/526 nm) was used
to study changes in free calcium ions level in human
sperm. Spermatozoa (1 x10° cells/mL) were incubated
with 4 uM Fluo-3 for 45 min at 37 °C according to the
manufacturer’s protocol. For confocal microscopy, sperm-
atozoa were immobilized in 1 % (w/v) agarose and then
treated with E2. Microscopic images were used for gating
single sperm cells in which fluorescence changes were
recorded. Forty images were collected (every 10 s) and
used to study the kinetics of intracellular free calcium
ions changes. Spermatozoa were observed using LSM
510 confocal microscope (Zeiss, Jena, Germany) equipped
with a Plan Apochromat 63x/1.4 Oil DIC objective. Sperm
cells stimulated with Ham’s F-10 medium were used as a
control for fluorescence intensity changes.

Detection of mitochondrial membrane potential

To evaluate spermatozoa mitochondrial membrane poten-
tial (A¥,,) the 5,5',6,6 -tetrachloro-1,1",3,3’-tetraethylben-
zimidazolocarbocyanine iodide (JC-1; Molecular Probes)
was used. This is a lipophilic cationic compound that
has the unique ability to label spermatozoa depending
on either low or high mitochondrial potential. In the
case of spermatozoa with high mitochondrial mem-
brane potential (A¥,,>80-100 mV), the JC-1 forms
aggregates emitting red to orange fluorescence (wave-
length of 590 nm). In spermatozoa with low mitochon-
drial potential (AW, <80-100 mV), the JC-1 forms
monomers emitting green fluorescence (wavelength of
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525 to 530 nm). In both cases the excitation wavelength
was 488 nm. JC-1 was diluted in DMSO (dimethyl sulf-
oxide) and added to cell suspension at a final concen-
tration of 1 uM. The cells were incubated in darkness
for 30 min in temperature of 37 °C. Afterwards the cell
suspension was washed twice (5 min x 2400 rpm) with
the use of Ham’s F-10 medium. JC-1 fluorescence emis-
sions in spermatozoa treated with valinomycin (100 nM)
was used as a control that prevents JC-1 aggregation.
Valinomycin permeabilizes the mitochondrial membrane
for K" ions, and thus, dissipates the mitochondrial electro-
chemical potential.

The results were expressed as the percentage of cells
exhibiting high mitochondrial membrane potential.

Detection of mitochondrial superoxide anion

In order to estimate the amount of superoxide anion
produced in spermatozoal mitochondria, we used Mito-
SOX Red fluorochrome (Molecular Probes). The analysis
was performed according to the method described by
Koppers et al. [27] with the use of confocal microscope
and flow cytometer. MitoSOX Red stock solution (5 mM
diluted in DMSO) was added to cell suspension (20 x 10°
cells per mL) to give the final concentration of 2 uM. Cells
were incubated for 15 min in darkness at 37 °C and after-
wards washed twice with F-10 medium (5 min at 600 x g).
Microscopic observation was made under LSM 510 con-
focal microscope (Carl Zeiss GmbH, Germany). MitoSOX
Red fluorescence was measured using flow cytometer
FACSCalibur (Becton—Dickinson, USA). The results were
expressed as the percentage of MitoSOX positive cells and
as mean fluorescence intensity of MitoSOX positive cells.

Sperm vitality and phosphatidylserine membrane
translocation

To determine phosphatidylserine membrane transloca-
tion (PST) from the inner to the outer layer of the
plasma membrane, the annexin-V labeled with fluorescein
(AnV-FLUOS) (Roche Molecular Diagnostics, Darmstadt,
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Germany) was used. Simultaneously, to distinguish be-
tween viable and dead spermatozoa the propidium iod-
ide (PI) staining was used, in the final concentration of
0.125 pg/L (Sigma-Aldrich, St. Louis, MO). Double
staining was conducted according to manufacturer’s
recommendations.

Flow cytometry

The fluorescence signals of labeled spermatozoa were
analyzed by flow cytometer FACSCalibur. 10 000 cells
were examined for each experiment. The fluorescence of
An-V-FLUOS and PI was excitated by argon laser (488 nm)
and emission of An-V-FLUOS was measured in the FL1
channel (515-545 nm), while the red fluorescence of
PI was detected in the FL3 channel (650 nm). The
fluorescence of MitoSOX Red was analyzed in the FL2
channel (561-603 nm). The emission of JC-1 mono-
mers and aggregates was measured in the FL1 channel
(515-545 nm) and FL2 channel (561-603 nm), respect-
ively. All data was collected and analyzed using Cell-
Quest Pro software (v.5.2.1) (Becton—Dickinson).

Statistical analysis

The analysis was performed using Statistica 10 software
(StatSoft Inc., Tulsa, OK, USA). Nonparametric Kruskal-
Wallis test with Dunn’s post hoc test were applied. Data
were presented as mean + SD and considered statistically
significant at P < 0.05.

Results

Intracellular free calcium ions level changes

In most viable spermatozoa, the highest concentration
of intracellular free calcium ions was observed within
the midpiece and distal part of head (Fig. 1a). E2 caused
a rapid, transient increase of intracellular free calcium
level. The reaction was observed at 10 s after stimulation
and lasted a few minutes. The kinetics of the reaction
were dose depended (Fig. 1b).
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Fig. 1 Kinetics of intracellular free calcium ions concentration changes in human spermatozoa after E2 stimulation. a Spermatozoa stained with
Fluo-3 reveal high concentration of free calcium ions in midpiece. b Representative reaction after stimulation with 17@-estradiol in 107'° M, 1078 M or
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Mitochondrial membrane potential

The percentage of cells with high membrane potential
revealed from 60 to 92 %. No significant changes of
membrane potential were observed in controls during 2 h
incubation. Stimulation of human sperm cells with E2
caused significant changes of AW ,,. The 2 h incubation of
sperm cells with E2 at a final concentration of 107'° M
did not result in statistically significant changes of AY,,
(P >0.05), while E2 at a final concentrations of 10 M
and 10°® M caused a significant increase (P =0.004) or a
significant decrease (P =0.04) of the percentage of sperm
cells with high AY,,, respectively (Fig. 2 and Fig. 3). E2
induced AY,, changes at final concentration of 10 M
were observed at 5 min while the changes at final concen-
tration of 10™® M were observed at 1 min after stimulation.

Detection of mitochondrial superoxide anion

The swim-up isolated fraction contained two cells sub-
populations: MitoSOX and MitoSOX" (Fig. 4). The per-
centage of MitoSOX positive cells ranged from 6.7 to
42 %. The 2 h incubation of sperm cells with E2 did not
reveal significant change of the percentage of MitoSOX
positive cells, for any of the concentrations used (P > 0.05)
(Fig. 5a). However, a significant increase of MitoSOX
fluorescence intensity was observed in cells stimulated
with E2 at concentration of 10°® M (P< 0.01) (Fig. 5b
and Fig. 6).

Effects of 17B-estradiol on sperm vitality
Flow cytometry analyses identified four fractions of
spermatozoa: (1) An-V7/PI” viable sperm without PST,
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(2) An-V*/PI" viable sperm with PST, (3) An-V7/PI"
dead sperm without PST and (4) An-V*/PI" dead sperm
with PST. The sperm cells percentage of each fraction
was 81.2+6.1 %, 04 +0.3 %, 15.9+5.5 % and 2.4 + 1.4 %,
respectively. It did not change after 2 h incubation with
E2, for all concentrations used.

Discussion

In this study the effect of E2 on mitochondrial mem-
brane potential and mitochondrial superoxide level was
examined. At the same time the effect of E2 on sperm
vitality as well as changes of intracellular free calcium
ions concentration were investigated.

E2 caused significant changes of mitochondrial mem-
brane potential. When stimulating cells with E2 107'° M,
changes were not relevant. Concentration of 107 M
caused distinct increase of percentage of high A¥m
spermatozoa however, concentration of 10™° M induced
significant decrease of percentage of high AYm sperm-
atozoa. A¥Ym is an indicator of mitochondrion energetic
potential. High AYm denotes a functionally undisturbed
mitochondrion. Positive correlation between decreased
effectiveness of mitochondria and both poor sperm motil-
ity and poor capacity to fertilize the egg was described
[28]. It is postulated that changes of A¥m can be used as
an efficient tool estimating the fertilizing potential of
spermatozoa devoted to in vitro fertilization [28, 29].

AW¥m changes observed in the present study suggest
that low estrogen concentration favorably influenced
mitochondrial function, which, in turn, can be associated
with positive impact on the vitality and motility of sperm
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(See figure on previous page.)

Fig. 3 Changes of percentage of spermatozoa with high and low mitochondrial membrane potential after E2 stimulation. R2 and R3 gates represent
cells with high (JC-1 aggregates emitting red to orange fluorescence) and low (JC-1 monomers emitting green fluorescence) mitochondrial membrane
potential after E2 stimulation, respectively. Representative reactions: a-c increase of percentage of high AY spermatozoa after 10 M E2 stimulation;
e-g-decrease of percentage of high AW spermatozoa after 107° M E2 stimulation. d, h-controls after 120 min stimulation

cells. Several studies reported estrogen effects in mature
spermatozoa [4-7]. Ded et al. [5] postulated significant
differences in the response to tested estrogens at differ-
ent capacitation time and among individual animals. It
cannot be excluded that the observed calcium ions
increase and the A¥m increase after E2 10*° M stimu-
lation are both the elements of the ongoing capacitation
process. Observations regarding increase of sperm mito-
chondrial membrane potential under capacitation condi-
tions have been previously made [30].

A sharp decline of AY,, after stimulation with higher
E2 concentration appears to be an interesting finding,
especially when taking into consideration the common
exposure of contemporary men to xenoestrogens and their
probable synergistic action with endogenous estrogens.
Studies conducted on somatic cells indicate that mitochon-
drial estrogen’s effect largely depends on hormone dose
and cell type. It was shown that estrogens influence the
transportation of calcium ions to mitochondria [31, 32].
It is suggested that estrogen induced increase of free
calcium ions concentration, caused by estrogens, could
activate protein phosphatase which leads to dephosphory-
lation of cytochrome c oxidase. This, in turn, would influ-
ence the increase of membrane mitochondrial potential
and production of reactive oxygen species [33]. It is pro-
posed that estrogens can modulate AW, by influencing
the phosphorylation of protein complexes of the respira-
tory chain [33].

It can be assumed that 17p-estradiol induced changes
of AY,, in spermatozoa could be a consequence of the
influx of free calcium ions into the mitochondria. It is
important to notice that the spermatozoa, in contrast to
the somatic cells, present small capacities of calcium
ions buffering within intracellular organelle. Calcium ions
storage occurs mainly within mitochondria, as well as in

acrosome and posterior part of the nucleus however, a
long lasting increased calcium ions concentration may
trigger pathological pathways leading to apoptosis. Ex-
cessive increase of mitochondrial concentration of free
calcium ions is connected to the significant decrease in
membrane mitochondrial potential. This, in turn, acti-
vates megachannels and in consequence causes release
of cytochrome c to cytoplasm [25]. It is that estradiol
induces apoptosis of rat’s spermatogenic cells by lowering
the hyperpolarization of mitochondrial membrane [34].
Our study demonstrated, that sperm cells stimulated
with high E2 concentrations presented decline of AV,
accompanied by increased mitochondrial superoxide anion
level. Changes of mitochondrial AW, are closely related to
the issue of the oxidative stress and its influence on cell
functions, the situation, when the antioxidant defensive
systems fail and when the level of enzymatic and nonenzy-
matic molecules presenting antioxidant properties is
low. It is suggested that oxidative stress is an etiological
factor in various disorders, such as cardiovascular dis-
ease, neoplasms, diabetes, nervous system degenerative
diseases, male and female infertility [27, 35]. To be no-
ticed, spermatozoa are the first cells in which potential
susceptibility to oxidative damages was proven. Sperm
cells are very sensitive to oxidative stress mainly because
of their structure. Among other, they contain polyunsatur-
ated fatty acids (in particular docosahexaenoic acid),
including six double bonds per molecule, which makes
spermatozoa specific aggregates of electrons, susceptible
to oxidation and other structural modifications. These
modifications affect mostly cell membrane and are con-
nected with its disturbed liquidity. This, in turn, leads to
decreased motility, disturbances in acrosome reaction or
in spermatozoon-oocyte fusion [35, 36]. Moreover, sperm-
atozoa are exposed to oxidative stress because of their
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specific size, localization of intracellular antioxidative
enzymes and limited ability of DNA repair [27, 35].

In context of the studies reporting relation between
the PST and the AWm decrease [37, 38] one could expect
that the observed AY,, decline and the simultaneous
increase of mitochondrial superoxide anion level in
sperm stimulated with high E2 concentrations shall be
accompanied with presence of sperm apoptosis markers.
However, we did not observed significant increase of PST
positive cells or of alive cells percentage. We speculate on
the impact of the swim-up because this technique isolates
spermatozoa with propoer motility and morphology as well
as eliminates the spermatozoa with PST [39]. Nonapoptotic
human spermatozoa with intact plasma membrane reveal

the highest fertilizing potential [40]. We speculate that
for this fraction the AW, decrease and oxidative stress
after 120 min E2 incubation did not resulted in PST.
On the other hand, Grunewald et al. indicates possibil-
ity of interaction of the capacitation and apoptosis sig-
naling systems that enables the capacitation process by
prevention of apoptosis [41]. E2 involvement in capaci-
tation could be the reason why apoptosis markers were
not observed.

Both the expression of ESR in the mitochondrial loca-
tion and the observation that E2 regulates the move-
ment of spermatozoa [7] suggest that estrogens may be
involved in the metabolism of mitochondria. Mitochon-
dria take part in fundamental cell processes such as
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(1) cellular respiration, (2) oxidative phosphorylation,
(3) apoptosis, (4) synthesis of lipids, heme, amino acids,
nucleotides, steroid hormones and (5) ions homeosta-
sis. It is suggested that mitochondria are reservoirs for
estrogens. Furthermore, in mitochondria of various som-
atic cells both the ESR1 and ESR2 have been localized.
According to up to date literature it can be assumed that
estrogens take part in the regulation of mitochondrial
functions. In somatic cells estrogens cause increase of
mitochondrial mRNA level of mtDNA encoded proteins.
That indicates that estrogens can influence the level of
gene expression [18, 42].

In regular conditions mitochondria produce small
amounts of ROS that can be easily neutralized by cell
antioxidants. Due to low concentration the mitochon-
drial ROS can play role of signal molecules. Previously,
estrogens were considered only as antioxidants protect-
ing for example from neurodegenerative diseases. Some
studies indicate that 17p-estradiol protects mitochon-
dria from oxidative stress in somatic cells [43, 44]. The
presented results indicate that in case of sperm cells
the effect of estrogen is dependent on the hormone
concentration.

It is said that the presence of estrogens may lead to
increase of the level of reactive oxygen species in mito-
chondria by induction of nitric oxide synthase or by
inhibiting cytochrome c oxidase. Also the increase of
mitochondrial level of Ca** promotes ROS formation.
Bennetts et al. observed that some metabolites of estra-
diol and xenoestrogens cause oxidative stress in human
spermatozoa. An intense reaction was observed after
stimulation with, for example, diethylstilbestrol or cat-
echol estrogen derivatives. In case of genistein the effect
was observed only in case of high doses of substrate used.
No significant changes were observed under the influence
of either 17p-estradiol, nonyphenol or bisphenol A [33].

Intracellular increase of free calcium ions level observed
after E2 stimulation, suggests it is an important second
messenger in nongenomic estrogen action.

Conclusion

In conclusion, 17B-estradiol affects the human sperm-
atozoa mitochondrial function. Results obtained in this
study, in which spermatozoa were stimulated with high
17pB-estradiol concentration suggest, that excessive ex-
position of spermatozoa on this type of may negatively
affect the biology of sperm cells. This can be assumed
because of observed decrease of mitochondrial mem-
brane potential and increase of the concentration of
mitochondrial superoxide anion. Consequently, it can
be one of mechanisms by which the long lasting expos-
ition of men to xenoestrogens decreases fertility poten-
tial of male gametes.

Page 8 of 9

Acknowledgements
Not applicable.

Funding
The National Research Centre grant NN 401 077037 funds were received in
support of this work.

Availability of data and materials
The information of all chemicals used in the study is available in the
PubChem Substance Database.

Authors’ contributions

KM conceived the study, participated in its design and coordination,
participated in the results analysis, performed the statistical analysis, and
drafted the manuscript. Sl carried out the molecular studies, participated in
the results analysis and drafted the manuscript. JM carried out the molecular
studies. JP participated in study design and helped to draft the manuscript.
All authors read and approved the final manuscript.

Competing interest
The authors declare that they have no competing interests.

Consent for publication
Not applicable.

Ethics approval and consent to participate

The study protocol was approved by the Institutional Review Board of the
Poznan University of Medical Sciences (No 119/09). All the involved patients
provided written informed consent.

Author details

'Department of Cell Biology, Faculty of Health Sciences, Poznan University of
Medical Sciences, Rokietnicka 5D, 60-806 Poznan, Poland. “Division of
Infertility and Reproductive Endocrinology, Faculty of Medicine |, Poznan
University of Medical Sciences, Polna 33, 60-535 Poznan, Poland.

Received: 15 March 2016 Accepted: 19 August 2016
Published online: 26 August 2016

References

1. Carreau S, Bouraima-Lelong H, Delalande C. Estrogens: new players in
spermatogenesis. Reprod Biol Society for Biology of Reproduction.
2011;11:174-93.

2. Vincenzo R, Bruno M, Cesare C, Chiara D, Lucia Z, Daniele S. Estrogens and
male reproduction. South Dartmouth: Endotext. MDText.com, Inc; 2013.

3. Akingbemi BT. Estrogen regulation of testicular function. Reprod Biol
Endocrinol. 2005;3:51.

4. Adeoya-Osiguwa S, Markoulaki S, Pocock V, Milligan SR, Fraser LR.
17beta-Estradiol and environmental estrogens significantly affect
mammalian sperm function. Hum Reprod. 2003;18:100-7.

5. Ded L, Dostalova P, Dorosh A, Dvorakova-Hortova K, Peknicova J. Effect of
estrogens on boar sperm capacitation in vitro. Reprod Biol Endocrinol.
2010,8:87.

6.  Filannino A, Stout TA, Gadella BM, Sostaric E, Pizzi F, Colenbrander B, et al.
Dose-response effects of estrogenic mycotoxins (zearalenone, alpha-and
beta-zearalenol) on motility, hyperactivation and the acrosome reaction of
stallion sperm. Reprod Biol Endocrinol BioMed Central Ltd. 2011;9:134.

7. Guido C, Perrotta |, Panza S, Middea E, Avena P, Santoro M, et al. Human
sperm physiology: Estrogen receptor alpha (ERa) and estrogen receptor
beta (ERB) influence sperm metabolism and may be involved in the
pathophysiology of varicocele-associated male infertility. J Cell Physiol.
2011;226:3403-12.

8. Losel RM, Falkenstein E, Feuring M, Schultz A, Tillmann H-C, Rossol-Haseroth K,
et al. Nongenomic steroid action: controversies, questions, and answers.
Physiol Rev. 2003,83:965-1016.

9. Wehling M, Losel R. Non-genomic steroid hormone effects: Membrane or
intracellular receptors? J Steroid Biochem Mol Biol. 2006;102:180-3.

10. Levin ER. Plasma membrane estrogen receptors. Trends Endocrinol Metab.
2009,20:477-82.

11. Boonyaratanakomkit V. Scaffolding proteins mediating membrane-initiated
extra-nuclear actions of estrogen receptor. Steroids Elsevier Inc. 2011;76:877-84.



Kotwicka et al. Reproductive Biology and Endocrinology (2016) 14:50

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33.

34.

35.

Levin ER. Minireview: Extranuclear steroid receptors: roles in modulation of
cell functions. Mol Endocrinol. 2011,25:377-84.

Kim HP, Lee JY, Jeong JK, Bae SW, Lee HK, Jo I. Nongenomic stimulation of
nitric oxide release by estrogen is mediated by estrogen receptor alpha
localized in caveolae. Biochem Biophys Res Commun. 1999,263:257-62.
Rago V, Giordano F, Brunelli E, Zito D, Aquila S, Carpino A. Identification
of G protein-coupled estrogen receptor in human and pig spermatozoa.
J Anat. 2014,224:732-6.

Arkoun B, Gautier C, Delalande C, Barrier-Battut |, Guenon I, Goux D, et al.
Stallion spermatozoa: Putative target of estrogens; presence of the estrogen
receptors ESR1, ESR2 and identification of the estrogen-membrane receptor
GPER. Gen Comp Endocrinol Elsevier Inc. 2014;200:35-43.

Aquila S, Sisci D, Gentile M, Middea E, Catalano S, Carpino A, et al. Estrogen
receptor (ER)a and ERB are both expressed in human ejaculated
spermatozoa: Evidence of their direct interaction with phosphatidylinositol-
3-OH kinase/Akt pathway. J Clin Endocrinol Metab. 2004;89:1443-51.
Solakidi S, Psarra A-MG, Nikolaropoulos S, Sekeris CE. Estrogen receptors
alpha and beta (ERalpha and ERbeta) and androgen receptor (AR) in human
sperm: localization of ERbeta and AR in mitochondria of the midpiece. Hum
Reprod. 2005;20:3481-7.

Gavrilova-Jordan LP, Price TM. Actions of steroids in mitochondria. Semin
Reprod Med. 2007,25:154-64.

Tavares RS, Martins FC, Oliveira PJ, Ramalho-Santos J, Peixoto FP. Parabens
in male infertility-Is there a mitochondrial connection? Reprod Toxicol.
2009;27:1-7.

Rajender S, Rahul P, Mahdi AA. Mitochondria, spermatogenesis and male
infertility. Mitochondrion. 2010;10:419-28.

Felty Q, Roy D. Estrogen, mitochondria, and growth of cancer and non-cancer
cells. J Carcinog. 2005;4:1.

Chen JQ, Eshete M, Alworth WL, Yager JD. Binding of MCF-7 cell mitochondrial
proteins and recombinant human estrogen receptors alpha and beta to human
mitochondrial DNA estrogen response elements. J Cell Biochem. 2004;93:358-73.
Psarra AMG, Sekeris CE. Nuclear receptors and other nuclear transcription
factors in mitochondria: Regulatory molecules in a new environment.
Biochim Biophys Acta-Mol Cell Res. 2008;1783:1-11.

Chen JQ, Delannoy M, Cooke C, Yager JD. Mitochondrial localization of
ERalpha and ERbeta in human MCF7 cells. Am J Physiol Endocrinol Metab.
2004;286:E1011-22.

Breitbart H, Rubinstein S, Gruberger M. Calcium efflux mechanism in sperm
mitochondria. Biochim. Biophys. Acta-Mol. Cell Res. 1996;1312:79-84.
Tatoyan A, Giulivi C. Purification and characterization of a nitric-oxide
synthase from rat liver mitochondria. J Biol Chem. 1998,273:11044-8.
Koppers AJ, De Iuliis GN, Finnie JM, McLaughlin EA, Aitken RJ. Significance
of Mitochondrial Reactive Oxygen Species in the Generation of Oxidative
Stress in Spermatozoa. J Clin Endocrinol Metab. 2008;93:3199-207.

Paoli D, Gallo M, Rizzo F, Baldi E, Francavilla S, Lenzi A, et al. Mitochondrial
membrane potential profile and its correlation with increasing sperm
motility. Fertil Steril. 2011,95:2315-9.

Marchetti P, Ballot C, Jouy N, Thomas P, Marchetti C. Influence of
mitochondrial membrane potential of spermatozoa on in vitro fertilisation
outcome. Andrologia. 2012;44:136-41.

Paventi G, Lessard C, Bailey JL, Passarella S. In boar sperm capacitation
|-lactate and succinate, but not pyruvate and citrate, contribute to the
mitochondrial membrane potential increase as monitored via safranine O
fluorescence. Biochem Biophys Res Commun. 2015,462:257-62.

Horvat A, Nikezi¢ G, Petrovi¢ S, Kanazir DT, Nikezie G, Petrovic S, et al.
Binding of estradiol to synaptosomal mitochondria: physiological
significance. Cell Mol Life Sci. 2001;58:636-44.

Petrovi¢ S, Demajo M, Horvat A. Estradiol affects calcium transport across
mitochondrial membrane in different brain regions. Ann N'Y Acad Sci.
2005;1048:341-3.

Bennetts LE, De luliis GN, Nixon B, Kime M, Zelski K, McVicar CM, et al.
Impact of estrogenic compounds on DNA integrity in human spermatozoa:
Evidence for cross-linking and redox cycling activities. Mutat Res-Fundam
Mol Mech Mutagen. 2008;641:1-11.

Mishra DP, Shaha C. Estrogen-induced spermatogenic cell apoptosis occurs
via the mitochondrial pathway: role of superoxide and nitric oxide. J Biol
Chem. 2005;280:6181-96.

Gharagozloo P, Aitken RJ. The role of sperm oxidative stress in male
infertility and the significance of oral antioxidant therapy. Hum Reprod.
2011;26:1628-40.

36.

37.

38.

39.

40.

41.

42.

43.

44,

Page 9 of 9

Kim SH, Yu DH, Kim YJ. Apoptosis-like change, ROS, and DNA status in
cryopreserved canine sperm recovered by glass wool filtration and Percoll
gradient centrifugation techniques. Anim Reprod Sci. 2010;119:106-14.
Aitken RJ, Gibb Z, Baker MA, Drevet J, Gharagozloo P. Causes and
consequences of oxidative stress in spermatozoa. Reprod Fertil Dev.
2015;28:1-10.

Kotwicka M, Filipiak K, Jedrzejczak P, Warchol JB. Caspase-3 activation and
phosphatidylserine membrane translocation in human spermatozoa: is there
a relationship? Reprod Biomed Online. 2008;16:657-63.

Kotwicka M, Jendraszak M, Skibinska I, Jedrzejczak P, Pawelczyk L.
Decreased motility of human spermatozoa presenting phosphatidylserine
membrane translocation-cells selection with the swim-up technique. Hum
Cell. 2013;26:28-34.

Grunewald S, Baumann T, Paasch U, Glander HJ. Capacitation and
acrosome reaction in nonapoptotic human spermatozoa. Ann N Y

Acad Sci. 2006;1090:138-46.

Grunewald S, Kriegel C, Baumann T, Glander HJ, Paasch U. Interactions
between apoptotic signal transduction and capacitation in human
spermatozoa. Hum Reprod. 2009;24:2071-8.

Psarra AMG, Solakidi S, Sekeris CE. The mitochondrion as a primary site of
action of steroid and thyroid hormones: Presence and action of steroid and
thyroid hormone receptors in mitochondria of animal cells. Mol Cell
Endocrinol. 2006;246:21-33.

Lu A, Frink M, Choudhry M, Schwacha MG, Hubbard WJ, Rue LW, et al.
Mitochondria play an important role in 17beta-estradiol attenuation of H (2)
O (2)-induced rat endothelial cell apoptosis. Am J Physiol Endocrinol Metab.
2007;292:E585-93.

Wang J, Green PS, Simpkins JW. Estradiol protects against ATP depletion,
mitochondrial membrane potential decline and the generation of reactive
oxygen species induced by 3-nitroproprionic acid in SK-N-SH human
neuroblastoma cells. J Neurochem. 2001;77:804-11.

Submit your next manuscript to BioMed Central
and we will help you at every step:

* We accept pre-submission inquiries

e Our selector tool helps you to find the most relevant journal

* We provide round the clock customer support

e Convenient online submission

e Thorough peer review

e Inclusion in PubMed and all major indexing services

e Maximum visibility for your research

Submit your manuscript at

www.biomedcentral.com/submit ( BioMed Central




	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Changes in intracellular free calcium ions level
	Detection of mitochondrial membrane potential
	Detection of mitochondrial superoxide anion
	Sperm vitality and phosphatidylserine membrane translocation
	Flow cytometry
	Statistical analysis

	Results
	Intracellular free calcium ions level changes
	Mitochondrial membrane potential
	Detection of mitochondrial superoxide anion
	Effects of 17β-estradiol on sperm vitality

	Discussion
	Conclusion
	Acknowledgements
	Funding
	Availability of data and materials
	Authors’ contributions
	Competing interest
	Consent for publication
	Ethics approval and consent to participate
	Author details
	References

