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Abstract

Background: During human pregnancy, infection/inflammation represents an important factor that increases the
risk of developing preterm labor. The purpose of this study was to determine if pre-treatment with progesterone
has an immunomodulatory effect on human placenta production of endotoxin-induced inflammation and
degradation of extracellular matrix markers.

Methods: Placentas were obtained under sterile conditions from pregnancies delivered at term before the onset of
labor by cesarean section. Explants from central cotyledons of 10 human placentas were pre-treated with different
concentrations of progesterone (0.01, 01, 1.0 uM) and then stimulated with 1000 ng/mL of LPS of Escherichia coli.
Cytokines TNFa, IL-1B, IL-6, IL-8, MIP-1q, IL-10 concentrations in the culture medium were then measured by specific
ELISA. Secretion profile of MMP-9 was evaluated by ELISA and zymogram. Statistical differences were determined by
one-way ANOVA followed by the appropriate ad hoc test; P < 0.05 was considered statistically significant.

Results: In comparison to the explants incubated with vehicle, the LPS treatment led to a significant increase in the
level of all cytokines. In comparison to the explants treated only with LPS, pre-treatment with 0.01-1.0 uM
progesterone significantly blunted (73, 56, 56, 75, 25, 48 %) the secretion of TNF-q, IL-1(3, IL-6, IL-8, MIP-1q, IL-10,
respectively. The MMP-9 induced by LPS treatment was inhibited only with the highest concentration of
progesterone. Mifepristone (RU486) blocked the immunosuppressive effect of progesterone.

Conclusions: The present results support the concept that progesterone could be part of the compensatory
mechanism that limits the inflammation-induced cytotoxic effects associated with an infection process during
gestation.
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Background

The cervicovaginal/intrauterine infection process dur-
ing pregnancy represents a condition of extreme vul-
nerability for the mother and fetus. The immunologic
defense process induces a pro-inflammatory environ-
ment that jeopardizes/disrupts the immune privilege of
the intrauterine cavity.

There is evidence that almost 30 % of women with
preterm labor have microbial invasion or inflammation
of the amniotic cavity [1, 2]; this condition induces un-
controlled production and increase of Thl cytokines
such as interleukin (IL)-1B, tumor necrosis factor
(TNF)«, and IL-6 that alter the intra-amniotic milieu,
leading to disruption of fetal tolerance [3].

Evidence supports the existence of a strong relation
between the microorganisms that reach the amniotic
cavity from the vagina and bacteria identified in the fetal
circulation of premature neonates [4]. In this adverse
scenario, the placenta represents a physical barrier that
protects the product.

The placenta allows for the diffusion of nutrients and
oxygen from the maternal blood to the fetal blood;
therefore, this tissue is key in the immune-endocrine
relationship between mother and fetus, creating an
immune tolerance that permits their co-existence along
40 weeks.

From the 7th week of gestation, the placenta takes
over steroid production and becomes the main source of
steroid hormone until the end of pregnancy [5]. Proges-
terone (P4) is a steroid hormone that modulates/regu-
lates different biological processes in a broad range of
tissues, its action is essential in different reproductive
events, such as ovulation, uterine and mammary gland
development. Its function is essential during the estab-
lishment and maintenance of pregnancy and the onset
of labor.

Both clinical and experimental data support the con-
cept that normal pregnancy is a Th-2-like phenomenon.
It is now evident that the protection of the fetus against
a harmful maternal immune response is based on a
complicated mechanism, and the communication be-
tween the various steps in the cascade of events is ac-
complished via cytokines.

Cytokines have been shown to affect the outcome of
pregnancy, several pro-inflammatory cytokines, including
TNEF-a, IL-1pB, IL-6, have been implicated in the onset of
spontaneous preterm labor [6-9]. The biological signifi-
cance of this immunologic response includes deep alter-
ations in the maternal immune system, as well as the
establishment of a fetal inflammatory response syndrome
that has been described in preterm birth and is strongly
associated with an adverse perinatal outcome [10-12].

The toxic effects of inflammation lie in the well-
known fact that a strong cellular anti-fetal response is
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deleterious for pregnancy. Under these pathological
conditions, the maternal-fetal unit displays compensa-
tory mechanisms that limit partially the effects of pro-
inflammation and privilege the continuity of gestation.

Among its multiple functions, P4 elicits immune-
modulatory effects creating a suitable immune environ-
ment. Although the mechanism of action has not been
completely characterized, experimental and clinical evi-
dence indicates that P4 elicits anti-inflammatory proper-
ties. Likewise, there is evidence to support that prevention
of the pro-inflammatory process by this hormone may be
exerted through modulation of the host immune response
[13-15].

The present work was conducted to determine whether
P4 could modulate the secretion of TNF«, IL-1p, IL-6, IL-
8, IL-10, and matrix metalloproteinase (MMP)-9 in
explants of human placentas.

Methods

Reagents

Progesterone (4-pregnene-3, 20-dione), LPS (from Esche
richia coli 055:B5), and RU486 (mifepristone) were pur-
chased from Sigma (St Louis, MO, USA).

Biological samples

The present project was approved by both the Human Eth-
ical and Research Committees of the Instituto Nacional de
Perinatologia “Isidro Espinosa de los Reyes” (INPer IER-
212250-06161) in Mexico City.

Ten placentas were collected from healthy women,
21-35 years, with normal, uncomplicated, singleton
pregnancies, who underwent elective cesarean section at
term (37-39 weeks of pregnancy) with no evidence of
active labor, cervical dilatation or loss of mucus plug.

Written informed consents were obtained from all
participants, their care was provided at the obstetrics
outpatient service of the INPer IER. Patients with ante-
cedents of cervicovaginal infection, chronic hyperten-
sion, diabetes mellitus, cardiac or renal insufficiency, or
other systemic illnesses were no included in this study.

Immediately after delivery, microbial analyses were
conducted to preclude the presence of chorioamniotic
infection. Sterile swabs were randomly rolled across se-
lected areas of the placenta. The swabs were then rolled
onto Columbia agar with 5 % sheep blood, used as a
primary isolation medium for fastidious and non-
fastidious aerobic microorganisms. Appropriate selective
media were used to detect specific pathogens and only
infection-free membranes were used for this study.

Explants of the placenta were transported to the
laboratory in sterile Dulbecco’s Modified Eagle Medium
(DMEM; Gibco, Life Technologies, CA, USA) supple-
mented with 100 U/mL penicillin and 100 pg/mL
streptomycin (Gibco). Tissues were manipulated under
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sterile conditions. Two central cotyledons were dissected,
once the decidua of the chorion laeve had been removed,
3 explants of 1 cm® were cultured in each well of a 12-
well tissue culture plate with 2 mL of DMEM (GIBCO)
without phenol red and supplemented with heat-
inactivated and hormone-free 10 % fetal calf serum. Then,
1 mM sodium pyruvate and 1X antibiotic-antimycotic so-
lution (100 U/mL penicillin, 100 pg/mL streptomycin, and
2.5 ug/mL amphotericin) were added to each well. The ex-
plants were incubated under 5 % CO,/ 95 % air at 37 °C.

Validation of placenta explants culture

To warrant that the explants were metabolically active,
their viability was determined by a colorimetric assay
using tetrazolium salts added to the culture medium
(Boehringer Mannheim, Germany). The assay was per-
formed every 24 h of culture over 4 days (data not shown).
To explore the secretion profile of different analytes, a
time-response curve was also performed (data not shown)

Treatment of placenta explants

The first 24 h of culture, the explants were incubated in
absence (basal control plus vehicle [0.01 % ethanol]) and
presence of three different concentrations (1.0 pM,
0.1 uM, and 0.01 uM) of P4 for 24 h; after this time,
fresh medium was added including co-stimulations with
1000 ng/ml of LPS plus 0.01, 0.1, and 1 pM of P4. An-
other set of experiments was included, co-incubating the
explants with LPS plus the highest concentration of P4
and RU-486 (100 pM), controls with LPS, P4, or RU-486
were also included.

Cytokines quantitation by ELISA

The concentrations of TNF«, IL-1p, IL-6, IL-8, MIP1a,
IL-10, and MMP-9 (R&D Systems, Minneapolis, MN,
USA) present in cell culture supernatants were deter-
mined by sandwich ELISA, using human specific duo-set
kits according to manufacturer’s instructions.

To coat the plates, the following capture anti-human
antibodies (hAbs) were used: anti-human hAb TNFa
(4 pg/mL), anti-human hAb IL-1f (4 pg/mL), anti-
human hAb IL-6 (2 ug/mL), anti-human hAb IL-8
(0.5 pg/mL), anti-human hAb MIP-1a (0.4 pg/mL), anti-
human hAb IL-10 (2 pg/mL), anti MMP-9 (1 pg/mL).

For the TNF-a assay, a standard curve was developed
from 0.5 to 10 ng/mL with a sensitivity of 0.2 ng/mL; for
the IL-1B assay, from 3.00 to 250 pg/mL; for the IL-6
assay, the curve was linear from 0.5 to 10 ng/mL with a
sensitivity of 0.2 ng/mL; for IL-8, the curve was devel-
oped from 15.6 to 1000 pg/mL with sensitivity of 10 pg/
mL; for MIP-1q, the curve was developed from 7.4 to
1000 pg/mL; and for IL-10, from 31.25 to 2000 pg/mL
with a sensitivity of 10 pg/mL. The MMP-9 curve was
performed from 31.2 to 2500 pg/mL.
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Zymography

SDS-polyacrylamide gels (9 %) co-polymerized with por-
cine gelatin (1 mg/mL) were prepared according to the
standard methods previously described by [16]. Briefly,
5 pg of each supernatant and tissue lysate sample were
loaded into each well under non-denaturing conditions
and run under a constant current (10 mA) for 1.6 h;
then, gels were washed in 2.5 % Triton X-100 for 0.5 h
and incubated overnight at 37 °C in an activation buffer
(50 mM Tris pH 7.4, 0.15 M NaCl, 20 mM CaCl,, and
0.02 % NaNs). Gels were stained with 0.1 % R-250 bril-
liant blue (Boehringer Manheim, IN, USA); 1 ug of con-
ditioned medium from U-937 promyelocyte cells was
used in each gel as an indicator of activity.

Statistical analyses

Descriptive statistics (mean, standard deviation, standard
error, median, and range) were obtained for each vari-
able. Data distribution was tested for normality using
Kolmogorov-Smirnoff and Shapiro-Wilks tests. When
distribution was normal, Students t-test was used to
analyze for differences among groups. Man-Whitney’s U
test was used when data were not normally distributed;
a P < 0.05 was considered statistically significant.

Results

With the aim of standardizing our experimental model,
we decided to perform a viability assay to demonstrate
that the metabolic viability of the placenta explants
remained without significant changes along the four
days. Taking into account the results obtained from the
time-course curve, the LPS-induced cytokines secretion
was maximal at 24 h after stimulation (data not shown).

Once concluded the co-stimulations with LPS and P4,
we evaluated the secretion patterns of all analytes in the
culture medium. Data are presented as mean + SEM
from 10 separate experiments performed in triplicate.

Stimulation with LPS enhanced IL-1(B secretion 26-
times in comparison to basal level (53.0 +29.6 pg/g of
tissue) and the co-stimulation with 0.1 pmol/L P4
blunted by 56 % this level (606.2 + 110.9 pg/g of tissue).
This effect was reverted by adding the anti-progestin
RU486 (1710.85 + 193.35 pg/g of tissue) (Fig. 1).

In comparison to the basal level of TNFa (224.15 +
26.2 pg/g of tissue), the culture of placenta explants with
1000 ng/ml LPS induced a significant increase (1912.73 +
457.25 pgl/g of tissue) equivalent to 8-times. The co-
addition of P4 (0.01 uM) decreased TNF« by 73 %, an ef-
fect that was blocked with 100 pM RU486 (1961.7 +
351.92 pg/g of tissue) (Fig. 2).

Basal IL-6 level of the explants was 15,357 + 4118 pg/g
of tissue, stimulation with LPS increased it 4.8-times
(74,110 £ 10,154 pg/g of tissue), treatment with P4
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Fig. 1 In vitro secretion profile of IL-1(3 in human placental explants. IL-1 was measured by ELISA in the cultured medium in the basal condition
and with different treatments. Data represent 10 independent experiments + S.EM., performed in triplicate P < 0.05 * versus control; & versus
LPS treatment

inhibited the LPS-induced increase in 55.9 % (32,638 +  concentrations of P4 inhibited IL-8 (Fig. 4), however
16,336 pg/g of tissue) (Fig. 3). MIP-1a was only inhibited by 0.01 uM of P4 (Fig. 5).
After stimulation with the bacterial endotoxin, the The secretion pattern of IL-10 was also modified after
chemokines IL-8 and MIP1-a increased 7-fold (36,451 +  stimulation with LPS (381.5+60.21 pg/g of tissue),
2538.6 pg/g of tissue) and 5-fold (766.65 + 87.34 pg/g of  which represents 21-times the basal level (17.87 +
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Fig. 2 In vitro secretion profile of TNFa in human placental explants. TNFa was measured by ELISA in the cultured medium in the basal condition
and with different treatments. Data represent 10 independent experiments + S.EM.,, performed in triplicate P < 0.05 * versus control; & versus LPS
treatment; O versus 1 uM P4 treatment
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Fig. 3 In vitro secretion profile of IL-6 in human placental explants. IL-6 was measured by ELISA in the cultured medium in the basal condition
and with different treatments. Data represent 10 independent experiments + S.EM., performed in triplicate P <0.05 * versus control; § versus
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Fig. 5 In vitro secretion profile of MIP-1a in human placental explants. MIP-1a was measured by ELISA in the cultured medium in the basal condition
and with different treatments. Data represent 10 independent experiments + S.EM, performed in triplicate. P < 0.05 * versus control; § versus LPS
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inhibited in a significant way when the explants were
co-stimulated with 0.01 uM of P4 (197.33 +44.49 pg/g
of tissue) (Fig. 6).

In comparison to the level of MMP-9 when the same
explants were only stimulated with the endotoxin
(16,802.6 + 1672.0 pg/g of tissue), the co-stimulation of
explants with 1000 ng/mL of LPS and 0.1 uM of P4
blunted the level of MMP-9 (11,392 + 976 pg/g of tis-
sue), the equivalent to 1.3 times (Fig. 7a); the gelatinase
activity profile shown in the zymogram supports this
finding (Fig. 7b).

Discussion

Successful pregnancy is the result of different immune-
endocrine strategies that permit the co-existence of
mother and fetus. Based on clinical, experimental and
epidemiological evidence, the inflammation associated
with an infection process can be considered as one of the
most important causes of preterm labor. The mother-
fetus co-existence can be compromised if the maternal-
fetal milieu is modified by pro-inflammatory modulators
that can exert strong effects on the conceptus.

Under exceptional conditions, such as infection, the
maternal-fetal unit displays a set of compensatory mech-
anisms that could eventually limit —partially— damage,
and thereby privilege the continuity of pregnancy. One
of these mechanisms includes the immunomodulatory
effects of P4, considered a key factor in the regulation of

the Th1/Th2 balance required to maintain the immune
privilege.

On the other hand, an important body of evidence in-
dicates that the placenta is a source of proinflammatory
cytokines, such as IL-1B, TNFa, IL-6, which are secreted
under basal conditions and in response to different kind
of immunologic stimulus [17].

The present results indicate that the stimulation of ex-
plants of human villous placenta with LPS increased sig-
nificantly the level of IL-1pB, this cytokine by itself can
induce deep changes in the fetal-maternal unit creating
conditions incompatible with gestation continuity [18].
Our results are also supported by previous evidence in-
dicating that the chorion of fetal membranes, a region
rich in trophoblasts, is the principal source of IL-1p
when stimulated selectively with different pathogens as-
sociated with preterm labor, including E. coli [19], Group
B Streptococcus [20], and Gardnerella vaginalis [21].

In the human term and preterm placenta, IL-1f is se-
creted basally and after perfusion with LPS of epithelial
cells of the amnion, chorion, syncytiotrophoblasts, and
stromal cells of villous tissue and the decidua [22]. Fur-
thermore, evidence from animal models support that ele-
vation of IL-1p in the fetal-maternal environment may be
an important factor in the pathogenesis of preterm labor
associated with intra-amniotic infection [23, 24].

Herein, we demonstrated that pre-stimulation with P4
reduces the secretion of IL-1p induced by the LPS; these
results are concurrent with evidence generated in related
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tissues, such as the amnion epithelium [25], and in a
model of choriodecidual infection [26].

Studies done with lymphocytes isolated from women
with recurrent miscarriage indicate that dydrogesterone
inhibits the production of INF-Y, TNFaq, IL-4, and IL-6
modifying the Th1l/Th2 ratio [27]. Furthermore, at a
concentration similar to that found in umbilical cord
blood, P4 inhibits cytokine production by cord blood
mononuclear cells [28].

TNFa is a key cytokine in the proinflammatory re-
sponse of the fetal-placental unit under normal and
pathological conditions, its concentration has been
found elevated in the amniotic fluid of patients with
intra-amniotic infection and preterm labor [29].

There is evidence that TNFa is powerful enough to
potentiate other inflammatory modulators and to induce
preterm labor, fetal injury, and histological chorioamnio-
nitis in a nonhuman primate model [30]. As expected, in
our model, TNFa was secreted by explants after stimula-
tion with LPS, which has been previously reported in
different experimental models [23, 31].

On the other hand, P4 is able to inhibit the secretion
and toxic effects of infection-induced TNF-a in both
fetal mononuclear cells isolated from umbilical cord
blood and peripheral blood mononuclear cells (PBMCs)
from women with unexplained recurrent miscarriage
[27], as well as in human monocytes stimulated with
heat-killed Escherichia coli or Ureaplasma urealyticum

[32], and in human fetal membranes that are also sensi-
tive to the immunomodulatory effects of P4 [25, 26].

In this work, we also demonstrate that the inhibition
of TNF-a by P4 is blocked by RU-486, which suggests
that P4 could be acting through both the progesterone
receptor (PR) [33-35] and the glucocorticoid receptor
(GR) [36, 37], which are present in the human placenta.

Clinical and experimental evidence supports that ele-
vated early second-trimester amniotic fluid IL-6 levels
are associated with preterm delivery and can be used as
an intrauterine inflammation predictor [38, 39].

Stimulation of explants of placenta with LPS increased
IL-6 secretion, and pre-stimulation with P4 impacted
the placenta explants inhibiting this effect. The capacity
of P4 to limit the secretion of IL-6 has been reported in
reproductive tissues such as whole human fetal mem-
branes [26], amnion epithelium [25], myometrium [40],
and human uterine cervical fibroblasts [41].

To create a more competitive/effective immune re-
sponse in the fetal-placental unit undergoing an infec-
tious process, the secretion of chemokines, such as IL-8
and MIP-1aq, can attract immune cells that support and
enhance the response.

During chorioamnionitis, IL-8 is indispensable in the
process of neutrophil infiltration of the decidua [42].
Additional evidence supports that stimulation of human
placental multipotent mesenchymal stromal cells with
LPS induces the secretion of IL-8, which has been
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ascribed a potent role in both neutrophil chemotaxis
and reduction of neutrophil apoptosis [43].

Using an in vitro culture system in which human um-
bilical vein endothelial cells constitutively express hu-
man PR, Goddard et al. demonstrated that P4 can
inhibit the secretion of IL-6, IL-8, CXCL2/3, and CXCL1
induced by LPS [44].

Regarding MIP-1q, there is evidence indicating that
this chemokine is produced by trophoblast cells in hu-
man placenta [45]; however, it is undetectable in most
amniotic fluids from patients in the mid-trimester of
pregnancy and at term not in labor [46]. The concentra-
tion of MIP-1a correlates with IL-8 and both chemo-
kines increase in the amniotic fluid during microbial
invasion of the amniotic cavity [46] and in human fetal
membranes during labor [47].

Herein we report the induction of MIP-1a after stimu-
lation with LPS, which has been previously reported in
human PBMCs [48, 49]. On the other hand, although
there is no information about the effect of P4 on MIP-

la regulation; evidence from other experimental models
supports that MIP-1a secreted by CD8+ T lymphocytes
is blunted by this steroid hormone [50]. Additionally, it
has been reported that the expression of this chemokine
can be inhibited also by the treatment of human mono-
cytes and alveolar macrophages with corticosteroids [51].

A key mechanism that modulates the immune equilib-
rium during pregnancy is IL-10, a cytokine with anti-
inflammatory properties that plays pivotal roles in
immune recognition and maintenance of gestation, lim-
iting the harmful effects of proinflammatory modulators.
IL-10 is produced by immune cells such as T cells, B
cells, and macrophages [52-54], as well as by maternal
and fetal tissues including the human chorion, the de-
cidua, and the placenta [55-61].

The placenta is an essential tissue for IL-10’s contribu-
tion to the maternal-fetal unit, additionally to its role as
an immunomodulatory factor, IL-10 is also an important
mediator in placental growth and remodeling; changes
in its production profile have been associated with labor
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[62]. The capacity of IL-10 to limit the cytotoxic effects
of inflammation is evidenced by the diminution of its
concentration associated with labor [63].

The production of IL-10 can be modulated by different
stimuli, including proinflammatory cytokines and bacter-
ial products, as well as different pathogens associated
with intrauterine infections [64]. Experimental evidence
suggests that the choriodecidual region of the fetal
membranes is the principal source of this cytokine and
stimulation with E. coli increases IL-10 [19].

As expected, the present study demonstrates that LPS
stimulation induced a significant increase of IL-10,
which was dampened by the co-stimulation with P4.
The explanation for these results could be controversial.
A previous study demonstrated that P4 inhibits the LPS-
induced pro-inflammation in a model of choriodecidual
infection [26]; however, there is another study in which
co-stimulation of fetoplacental artery explants with P4
did not inhibit the LPS-induced IL-10 secretion [65].
These latter results agree with results published by Olmos-
Ortiz et al. [66], who demonstrated that IL-10 inhibits
placental antimicrobial peptides that, eventually, could
modify the entire innate response of the placenta [66].

Stimulation of PBMC from women with recurrent
miscarriage with P4 did not modify the secretion profile
of IL-10 [27]. These results are not concurrent with clin-
ical studies that demonstrate that dydrogesterone treat-
ment of patients with threatened preterm delivery
induces the increase of IL-10 in serum, which is associ-
ated with increased length of gestation [67]; in turn, sup-
porting the association between high levels of IL-10 and
successful pregnancy.

Once the inflammation modulators are secreted in re-
sponse to an immunological/infectious stimulus, cyto-
kines such as IL-1B, TNFa, and IL-6 induce the
synthesis and secretion of effector modulators, such as
MMP-9, which can degrade type IV collagen and gelatin,
which are essential in the structure of different tissues of
the fetal-placental unit [16, 68].

Many observations suggest that alteration of the equi-
librium between the synthesis and degradation of extra-
cellular matrix is a mechanism through which the
structural continuity and function are deeply modified
during labor under normal and pathological conditions.

In the present study, we demonstrated that the stimu-
lation of placenta explants with LPS induces the increase
of MMP-9, this finding is concurrent with evidence ob-
tained from human fetal membranes stimulated with dif-
ferent pathogens [69, 70], supporting that this enzyme is
part of the response against different pathogens includ-
ing Candida albicans. Additionally, clinical evidence
supports that MMP-9 is an enzyme that increases in the
amniotic fluid of women with preterm labor and sus-
pected intra-amniotic infection [71].
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Our results show that the pre-stimulation of explants
with the highest concentration of P4 inhibits the LPS-
induced MMP-9. This could be partially explained by the
evidence supporting that different proinflammatory cyto-
kines can induce expression of MMP-9, this cumulative
effect impacts the expression of this enzyme by the tissue
and a more potent stimulus with P4 than used for inhib-
ition of cytokines is required to induce its inhibition [72].

In this context, previous experimental evidence dem-
onstrated that P4 inhibits other MMPs in term decidual
cells, such as MMP-1 and MMP-3 [73] that are key ele-
ments during labor, and suppresses the production of
pro-MMP-9 induced by IL-1a in rabbit uterine cervical
fibroblasts [74].

Experimental and clinical evidence indicates that
microbial-induced preterm labor is mediated by an in-
flammatory process; microorganisms and their products
are sensed by pattern recognition receptors, such as
Toll-like receptors (TLRs), which induce the production
of chemokines (e.g, IL-8 and C-C motif ligand 2
[CCL”]), cytokines (e.g., IL-1B and TNEF), prostaglandins,
and proteases leading to activation of the common par-
turition pathway [75-77].

The anti-inflammatory effect of P4 might be exerted
through the modulation of immune innate factors, spe-
cifically the (TLR)-4, which is constitutively expressed by
the human placenta during gestation [78] and is critical
for a host inflammatory response to Gram-negative
organisms.

Reports from a murine experimental model support
that pre-treatment with MPA decreases the LPS-induced
up-regulation of TLR-4 mRNA in the cervix and pla-
centa [79]; additionally, stimulation of the human am-
nion with P4 blunts the inflammation induced by LPS
through the inhibition of expression and activation of
TLR-4/MyD88 [25]. A similar mechanism could be
exerted in the human placenta, however, more studies
are required to understand the complexity of signals
turned on by this tissue during a scenario complicated
by an infectious process.

The effect of P4 described herein supports the concept
that the immune-endocrine regulation is key in the main-
tenance of the immune privilege of the fetal-placental unit.
We propose that, under in vivo conditions, P4 can be a
mechanism that could limit —partially— the deleterious ef-
fects of inflammation. However, its therapeutic use can
only be attempted after finding equilibrium between the
“protective” anti-inflammatory action and a possible dele-
terious effect when a strong response against infection is
required.

Conclusion
In summary, results show that P4 reduces the secretion
of pro-inflammatory cytokines IL-1fB, TNF-a and IL-6,
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chemokines MIPla and IL-8, the anti-inflammatory IL-
10 as well as the MMP-9. These data suggest that P4 in
the placental-fetal unit can be part of an immunomodu-
latory mechanism that can limit —partially— the deleteri-
ous effects of these modulators.
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