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Abstract

Background: The aim of our study was to investigate the possible relationship between polymorphisms in
PTEN (the phosphatase and tensin homolog located on chromosome ten in humans) and POI (primary ovarian
insufficiency) in Chinese women.

Methods: Seven tag SNPs (single nucleotide polymorphisms) - rs1234219, rs1903858, rs2299939, rs35352882,
rs17107001, rs2299941 and rs12572106 - were chosen from the CHB (Han Chinese people in Beijing, China)
HapMap database. MALDI-TOF-MS (matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry)
was used to detect the genotype distribution of the seven SNPs among 148 POI patients and 230 controls.

Results: No statistically significant difference was found in an association analysis of the seven SNPs in the allele
frequencies, genotype frequencies, or haplotype distributions.

Conclusions: In summary, this study explored the relationship between polymorphisms in PTEN and POI in a
Han Chinese population and suggests that polymorphisms in PTEN may not be associated with a risk of POI.
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Background
POI (primary ovarian insufficiency) is characterised by
reduced ovarian function in women under 40 years of
age. It results from a decrease in the number of ovarian
follicles, follicle exhaustion or follicle insensitivity to go-
nadotropins [1]. It has been reported that approximately
1 % of women under 40 years of age with a normal
karyotype are affected by this disease [2]. In the vast ma-
jority of POI patients, its aetiology is unknown [3], but it
is thought to have a genetic basis [2].
In mammals, the initial number of primordial follicles

in the ovary is fixed early in life. Before puberty begins,
partial primordial follicles in dormancy are activated and
develop to the antral follicle stage. At the onset of pu-
berty, antral follicles either develop into mature follicles
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or become apoptotic. The remaining primordial follicles
remain in a dormant state and wait for further develop-
ment or undergo apoptosis directly from dormancy [4].
The gradual and natural reduction and ultimate deple-
tion in the number of primordial follicles leads to a
gradual deterioration of the ovary, after which the female
enters menopause [4]. How can primordial follicles
maintain such a long dormant state during a female’s en-
tire reproductive life? Previous studies have found that
some signal molecules, such as PTEN (the protein
encoded by the phosphatase and tensin homolog located
on chromosome ten in humans), are relevant to this
process [5]. Deletion of Pten in mouse oocytes results in
the premature activation and eventually exhaustion of
the global primordial follicles in early adulthood and
thus leads to premature ovarian insufficiency [5].
PTEN is a tumour suppressor that has dual-phosphatase

activity. Down-regulation of its expression or dysfunction
of the PTEN (the phosphatase and tensin homolog located
on chromosome ten in humans) is closely related to the
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occurrence of numerous human tumours [6]. PTEN can in-
fluence cell apoptosis, invasion and angiogenesis through
its down-regulation of the PI3K (phosphoinositide-3 kinase)
signal pathway, and it can therefore inhibit the survival and
invasion of tumour cells [6]. PTEN also plays an important
role in stabilising chromosomes and participates in control-
ling DSB (DNA double-strand break) repair [7].
Mutations of Pten in ES (embryonic stem) cells have a

negative influence on early embryonic differentiation in
mice and lead to early embryonic death [8]. This sug-
gests that Pten is essential for the development of mouse
embryos [8]. Pten-knockout mice consistently exhibit
higher levels of FSH and LH, reduced ovarian function
and female infertility [5]. Scientists have also cultured
ovaries from newborn mice in vitro in the presence of a
PTEN inhibitor and PI3K activator and found that prim-
ordial follicles were activated from dormancy [9]. They
subsequently cultured human ovarian cortical fragments
with the PTEN inhibitor; primordial follicles were acti-
vated and demonstrated the ability to develop into ma-
ture follicles [9].
Given the above findings, we suspected that functional

deficiency or dysfunction of PTEN in humans might re-
sult in damaged ovarian functions and lead to primary
ovarian insufficiency. We therefore explored a possible
relationship between polymorphisms of PTEN and POI
in Chinese women.
Methods
This study was approved by the institutional ethical
committee of Anhui Medical University. All participants
were informed of and consented to the experiment.
Subjects
In total, 378 Chinese women, including 148 POI patients
(mean age ± SD, 29.7 ± 6.1 years) (E2 96.1 ± 82.1 pmol/L,
FSH 74.1 ± 30.6 mIU/mL, LH 37.6 ± 19.3 mIU/mL) and
230 controls (mean age ± SD, 30.2 ± 3.7 years) (E2 187.3
± 92.5 pmol/L, FSH 6.5 ± 1.6 mIU/mL, LH 5.3 ± 3.1
mIU/mL), were recruited from the First Affiliated Hos-
pital, Anhui Medical University, China. We chose POI
patients who had had amenorrhea for more than
6 months and had normal diploid karyotypes and serum
FSH levels > 30 IU/L [10]. We excluded patients who
had undergone pelvic surgery, had been diagnosed with
an autoimmune disease, or had ever received chemo-
therapy or radiotherapy. All of the controls were healthy
Chinese women with natural menstrual cycles, normal
FSH values and no evidence of diseases affecting normal
ovarian function (including large ovarian or ovarian
endometriosis cysts, severe tubal lesions, hypothalamus
or pituitary tumours, obesity, abnormal adrenal function,
thyroid disease, etc.). The approval and consent of the
institutional ethics committee of Anhui Medical Univer-
sity was obtained for this experiment.
Considering the pathogenic mechanism of PTEN, the

POI patients were divided into several groups: those
with primary amenorrhea and secondary amenorrhea
and early amenorrhea (including 22 primary amenorrhea
patients and 4 patients with amenorrhea that only experi-
enced menarche, but developed amenorrhea immediately
after the initial menses) and late amenorrhea (secondary
amenorrhea, excluding 4 patients with amenorrhea that
only experienced menarche, but developed amenorrhea im-
mediately after the initial menses).

Methods and genetic analysis
A QIAamp DNA Blood Mini Kit (Qiagen, Germany)
was used for genomic DNA purification from peripheral
blood. Seven tag SNPs - rs1234219, rs1903858,
rs2299939, rs35352882, rs17107001, rs2299941 and
rs12572106 - were chosen from the CHB (Han Chinese
people in Beijing, China) HapMap database [11]. The
criteria for selection were tag SNPs with a MAF (minor
allele frequency) > 0.05 and r2 > 0.8. MALDI-TOF-MS
(matrix-assisted laser desorption/ionisation time-of-
flight mass spectrometry) (Illumina, US) was used to de-
tect the genotypes of the seven SNPs in the extracted
samples from the POI patients and controls. To control
the quality, we performed the detections repeatedly in
both standard samples and experimental samples.

Statistical analysis
Comparative analyses of the allele frequencies and geno-
type frequencies of rs1234219, rs1903858, rs2299939,
rs35352882, rs17107001, rs2299941 and rs12572106
between POI patients and controls were performed with
Pearson’s chi-squared tests using SPSS 13.0 software. We
used Fisher’s exact test if the expected count was less than
5 in any of the cells. Odds ratios (ORs) and their matching
95 % confidence intervals (CIs) were computed using logis-
tic regression analysis via SPSS 13.0 software. The HWE
(Hardy-Weinberg equilibrium) of each SNP polymorphism
in POI patients and controls was evaluated using Pearson’s
chi-squared tests, and we also applied Fisher’s exact test if
the expected count was less than 5 in any of the cells. LD
(Linkage disequilibrium), haplotype association analysis and
permutation tests were performed using HaploView 4.2
software. Haplotypes with frequencies less than 0.05 were
excluded. To avoid statistical errors, we performed multiple
comparisons using Bonferroni correction. Data with p-
values < 0.05 were considered statistically significant.

Results
The LD plot of the seven SNPs (single nucleotide poly-
morphisms) in the PTEN region is shown in Fig. 1. Only
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two SNPs (rs12572106 and rs2299941) were in strong
LD. The seven SNPs are located in the introns of PTEN.
The allele frequencies and association analysis of the

seven SNPs are shown in Table 1. In both POI patients
and controls, the seven SNPs of PTEN were all in an
HWE state. The allele frequencies of rs2299939 showed
a statistically significant difference (p <0.05) between
POI patients and controls. However, after Bonferroni
correction, no significant difference was found for any of
the SNPs.
The genotype frequencies of the seven SNPs are

shown in Table 2. There was no statistically significant
difference for any of the SNPs between POI patients and
controls in genotype frequencies.
The haplotype distributions of five SNPs are shown

in Table 3. Only two genotypes were found for two
SNPs (rs35352882 and rs17107001), and the MAF was
under 0.05. Because the inclusion of those two SNPs
could result in a considerable statistical error, we
analysed only the other five SNPs for haplotype
distributions. The p-value of T-T-A-A-T showed a
statistically significant difference (p < 0.05), but there
was no significant difference after 104 permutation
tests.
Fig. 1 Linkage disequilibrium LD plot of the seven SNPs (rs1234219, rs1903
the PTEN region are shown. Calculation of the r2 values, shown in each square,
two of the SNPs (rs12572106 and rs2299941) show a high LD, the other SNPs sh
the haplotype analyses and are therefore connected by a dotted line
There was no statistically significant difference in the
allelic and genotypic distributions between primary and
secondary amenorrhea, early and late amenorrhea and
the control groups after Bonferroni correction (Table 4,
Table 5).

Discussion
There are two mechanisms that are involved in the oc-
currence of POI: follicle dysfunction and follicle prema-
ture exhaustion [3]. Follicle premature exhaustion
indicates the accelerated apoptosis of primordial follicles
or premature activation of primordial follicles. There-
fore, the survival of primordial follicles is necessary for
normal ovarian function. Early researchers inferred that
there are inhibitory factors in intact ovarian tissue that
maintain the majority of primordial follicles in a dor-
mant state [12]. Previous studies have demonstrated that
the PI3K signal pathway is one of the crucial molecular
mechanisms that are involved in the survival, dormancy
and apoptosis of mammalian primordial follicles [13].
Multiple signal molecules of this pathway were recog-
nised as either stimulating factors (such as Ribosomal
protein S6) or inhibitory factors (such as tuberous scler-
osis complex 1 and tuberous sclerosis complex 2) in
858, rs2299939, rs35352882, rs17107001, rs2299941 and rs12572106) in
was based on data from 230 controls using HaploView 4.2 software. While
ow a low LD (r2 < 0.8). rs35352882 and rs17107001 were excluded from



Table 1 The allele frequencies of the seven SNPs in PTEN between POI patients and controls

SNP Alleles Associated
allele

HWE cases HWE
controls

MAF cases
(n = 148)

MAF controls
(n = 230)

OR 95 % CI Value p Bonferroni
correction

rs1234219 T/C C 0.95 0.72 0.084 0.084 1.010 0.596–1.711 0.001 0.971 1.000

rs1903858 C/T C 0.60 0.90 0.446 0.509 0.777 0.579–1.043 2.834 0.092 0.644

rs2299939 C/A C 0.45 0.16 0.146 0.206 0.661 0.445–0.982 4.230 0.040 0.280

rs35352882 T/C C 0.58 0.51 0.044 0.042 1.047 0.509–2.153 0.015 0.901 1.000

rs17107001 G/T T 0.64 0.63 0.037 0.031 1.208 0.541–2.697 0.212 0.645 1.000

rs2299941 A/G G 0.68 0.62 0.378 0.354 1.111 0.820–1.505 0.460 0.498 1.000

rs12572106 T/C C 0.74 0.44 0.443 0.389 1.245 0.925–1.676 2.091 0.148 1.000

The allele frequencies were performed with Pearson’s chi-squared test or Fisher’s exact test using SPSS 13.0 software. The allele frequencies of rs2299939 showed
no significant difference after Bonferroni correction between POI patients and the controls
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maintaining the balance of the activation and dormancy
of mammalian primordial follicles [13, 14]. PTEN down-
regulates the PI3K signal pathway [13]. The functional
deficiency or dysfunction of Pten leads to continuous
and excessive activation of the downstream signal path-
way and results in excessive activation and depletion of
primordial follicles, ultimately leading to ovarian failure
in mice [13, 14]. Before the complete depletion of
Table 2 The genotype frequencies of the seven SNPs in PTEN betw

SNP Genotypes, n

rs1234219 T/T T/C C/C Mis

Cases 124 23 1 0

Controls 191 34 2 3

rs1903858 C/C C/T T/T Mis

Cases 47 70 31 0

Controls 55 112 59 4

rs2299939 C/C C/A A/A Mis

Cases 106 39 2 1

Controls 146 67 13 4

rs35352882 T/T T/C C/C Mis

Cases 135 13 0 0

Controls 207 19 0 4

rs17107001 G/G G/T T/T Mis

Cases 137 11 0 0

Controls 212 14 0 4

rs2299941 A/A A/G G/G Mis

Cases 56 72 20 0

Controls 96 100 30 4

rs12572106 T/T/ T/C C/C Mis

Cases 47 71 30 0

Controls 87 102 37 4

The genotype frequencies were performed with Pearson’s chi-squared test or Fishe
between POI patients and the controls
primordial follicles, Pten mutant mice undergo normal
ovulation and generate normal offspring [15, 16].
In the present study, we sought to study the relation-

ship between seven SNPs (rs1234219, rs1903858,
rs2299939, rs35352882, rs17107001, rs2299941 and
rs12572106) in PTEN and POI in 148 POI patients and 230
controls. We performed an association analysis of the seven
SNPs with regard to their allele frequencies, genotype
een POI patients and controls

Value p OR (95 % CI)

sing

0.201 0.950 0.770 (0.069–8.584)

1.042 (0.586–1.852)

sing

2.889 0.236 1.367 (0.837–2.233)

0.841 (0.496–1.425)

sing

5.319 0.070 4.719 (1.043–21.353)

3.784 (0.811–17.651)

sing

0.016 0.899 1.049 (0.502–2.195)

sing

0.220 0.639 0.822 (0.363–1.864)

sing

0.854 0.652 1.080 (0.568–2.052)

0.875 (0.455–1.684)

sing

2.048 0.359 1.501 (0.825–2.730)

1.288 (0.808–2.054)

r’s exact test using SPSS 13.0 software. There was no significant difference



Table 3 The haplotype distributions of PTEN polymorphisms in POI patients and controls

Haplotype Total frequency Cases frequency Controls frequency p-value p-value from permutation

T-C-C-G-C 0.358 0.378 0.345 0.355 0.820

T-T-C-A-T 0.302 0.301 0.302 0.959 1.000

T-T-A-A-T 0.181 0.145 0.204 0.042 0.175

C-C-C-A-T 0.084 0.084 0.084 0.971 1.000

The haplotype association analysis was performed using the HaploView 4.2 software. The p-value of T-T-A-A-T showed a statistically significant difference, but
there was no significant difference after 104 permutation tests
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frequencies and haplotype distributions. Rs2299939 showed
a statistically significant difference in allele frequency, but
the difference disappeared after Bonferroni correction.
Haplotype T-T-A-A-T showed an association with POI, but
it too disappeared after 104 permutation tests.
Table 4 The association analysis of the seven SNPs among the prim

SNP Genotypes, n Value

rs1234219 T/T T/C C/C Missing

Primary amenorrhea 19 3 0 0 0.659

Secondary amenorrhea 105 20 1 0

Controls 191 34 2 3

rs1903858 C/C C/T T/T Missing

Primary amenorrhea 3 14 5 0 7.452

Secondary amenorrhea 44 56 26 0

Controls 55 112 59 4

rs2299939 C/C C/A A/A Missing

Primary amenorrhea 19 3 0 0 6.694

Secondary amenorrhea 87 36 2 1

Controls 146 67 13 4

rs35352882 T/T T/C C/C Missing

Primary amenorrhea 20 2 0 0 0.179

Secondary amenorrhea 115 11 0 0

Controls 207 19 0 4

rs17107001 G/G G/T T/T Missing

Primary amenorrhea 21 1 0 0 0.478

Secondary amenorrhea 116 10 0 0

Controls 212 14 0 4

rs2299941 A/A A/G G/G Missing

Primary amenorrhea 9 11 2 0 1.205

Secondary amenorrhea 47 61 18 0

Controls 96 100 30 4

rs12572106 T/T T/C C/C Missing

Primary amenorrhea 7 13 2 0 4.244

Secondary amenorrhea 40 58 28 0

Controls 87 102 37 4

The allele and genotype frequencies among the primary amenorrhea, secondary am
test or Fisher’s exact test using SPSS 13.0 software. There was no statistically signific
amenorrhea, secondary amenorrhea and control groups after Bonferroni correction
POI is a complex disease that involves multiple genes.
Although many genes have been confirmed as being in-
volved in the development of POI [2], the cause of most
cases remains unidentified. Therefore, many investiga-
tors have devoted their research to identifying the
ary amenorrhea, secondary amenorrhea and control groups

p Alleles Value P Bonferroni correction

T C

0.989 41 3 0.093 0.976 1.000

230 22

416 38

C T

0.114 20 24 4.883 0.087 0.609

144 108

222 230

C A

0.132 41 3 6.346 0.042 0.294

210 40

359 93

T C

1.000 42 2 0.180 0.956 1.000

241 11

433 19

G T

0.832 43 1 0.451 0.835 1.000

242 10

438 14

A G

0.886 29 15 0.774 0.679 1.000

155 97

292 160

T C

0.370 27 17 2.766 0.251 1.000

138 114

276 176

enorrhea and control groups were performed with Pearson’s chi-squared
ant difference in the allelic and genotypic distributions between the primary



Table 5 The association analysis of the seven SNPs among the early amenorrhea, late amenorrhea and control groups

SNP Genotype, n (%) Value p Alleles Value P Bonferroni correction

rs1234219 T/T T/C C/C Missing 0.945 T C 0.810 1.000

Early amenorrhea 23 3 0 0 0.820 49 3 0.418

Late amenorrhea 101 20 1 0 222 22

Controls 191 34 2 3 416 38

rs1903858 C/C C/T T/T Missing 0.195 C T 0.168 1.000

Early amenorrhea 5 16 5 0 6.057 26 26 3.572

Late amenorrhea 42 54 26 0 138 106

Controls 55 112 59 4 222 230

rs2299939 C/C C/A A/A Missing 0.143 C A 0.044 0.308

Early amenorrhea 22 4 0 0 6.515 48 4 6.267

Late amenorrhea 84 35 2 1 203 39

Controls 146 67 13 4 359 93

rs35352882 T/T T/C C/C Missing 0.955 T C 0.957 1.000

Early amenorrhea 24 2 0 0 0.101 50 2 0.095

Late amenorrhea 111 11 0 0 233 11

Controls 207 19 0 4 433 19

rs17107001 G/G G/T T/T Missing 0.704 G T 0.711 1.000

Early amenorrhea 25 1 0 0 0.679 51 1 0.840

Late amenorrhea 112 10 0 0 234 10

Controls 212 14 0 4 438 14

rs2299941 A/A A/G G/G Missing 0.731 A G 0.776 1.000

Early amenorrhea 9 15 2 0 2.056 33 19 0.506

Late amenorrhea 47 57 18 0 151 93

Controls 96 100 30 4 292 160

rs12572106 T/T T/C C/C Missing 0.527 T C 0.352 1.000

Early amenorrhea 7 15 4 0 3.189 29 23 2.091

Late amenorrhea 40 56 26 0 136 108

Controls 87 102 37 4 276 176

The allele and genotype frequencies among the early amenorrhea, late amenorrhea and control groups were performed with Pearson’s chi-squared test or Fisher’s
exact test using SPSS 13.0 software. There was no statistically significant difference in the allelic and genotypic distributions between the early amenorrhea, late
amenorrhea and control groups after Bonferroni correction
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aetiology of POI. Because previous studies have found
that the deletion of PTEN in oocytes leads to the failure
of ovarian function in mice [5], we sought to determine
whether PTEN is involved in the incidence and develop-
ment of human POI. We did not find an association be-
tween POI and any risk alleles, genotypes or haplotypes.
There are several possible explanations for these results.
First, PTEN has never been demonstrated to be associ-
ated with human POI. In addition, specific differences
between mice and humans may account for genetic dif-
ferences in the PTEN region. Although researchers have
found that compared to mice more primordial follicles
were activated in human ovarian cortical fragments after
treatment with a PTEN inhibitor [9], they did not ana-
lyse the statistical significance of the difference. In
addition, that study’s sample size may not have been suf-
ficiently large. In the previous study, the increased go-
nadotropin concentrations, morphological changes of
the ovary and the depletion of primordial follicles began
to appear 12 weeks postnatal in PTEN mutant mice. In
humans, the period from birth to puberty may last over
10 years. If the gene mutation or abnormal function of
PTEN occurs in the embryonic or early life, it is likely
that ovarian primordial follicles may be activated and
exhausted before puberty, which may present as primary
amenorrhea. If the gene mutation or abnormal function
of PTEN occurs after puberty, it behaves as secondary
amenorrhea. Therefore, we divided the cases into primary
and secondary amenorrhea and early and late amenorrhea
and compared the patients with the controls. If we obtained
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meaningful results, we could affirm the association between
PTEN and POI and could also infer the approximate time
of the PTEN mutation. Rs2299939 showed a statistically
significant difference between these groups in allele fre-
quency, but the difference disappeared after Bonferroni cor-
rection. The primary amenorrhea sample size was too
small. A larger sample size of primary amenorrhea POI pa-
tients may yield statistically significant results, especially
considering the promising rs2299939 allele and T-T-A-A-T
haplotype.
Researchers analysed the PCR products of the PTEN

encoding region via direct sequencing in 20 idiopathic
POI patients and 20 controls, but found no meaningful
mutation [17]. We hypothesise that a larger sample size
may improve results, and in population genetics, many
different results are due to the varied composition of the
studied populations. Chinese scientists had already per-
formed a mutation analysis of nine exons of PTEN in
161 Chinese women with POI but did not observe any
mutations or variants [18]. The sample size of their
study was similar to the sample size used in the present
study, and they researched PTEN from various angles,
performing mutational analysis of exons and conducting
an association study of intronic SNPs. The two studies
mutually remedy their respective defects and together
indicate that PTEN may not participate in the pathogen-
esis of POI. In addition, the POI patients in the two
studies were all secondary amenorrhea patients. Thus,
we need to confirm the results in a larger sample of pa-
tients with primary amenorrhea.

Conclusions
In summary, this study investigated the relationship be-
tween polymorphisms of PTEN and POI in a Chinese
Han population. Our findings suggest that PTEN may
not be a common pathogenic gene for POI in humans.
However, further studies in a larger sample size or func-
tional studies of PTEN are needed to verify these results.
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