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Abstract

Background: Potassium channels play critical roles in the regulation of cell membrane potential, which is central
to the excitability of myometrium. The ATP-sensitive potassium (KATP) channel is one of the most abundant
potassium channels in myometrium. The objectives of this study were to investigate the protein expression of
KATP channel in human myometrium and determine the levels of KATP channel in lower and upper segmental
myometrium before and after onset of labour.

Methods: Both lower segmental (LS) and upper segmental (US) myometrial biopsies were collected at cesarean section
from pregnant women not-in-labour (TNL) or in-labour (TL) at term. Protein expression level and cellular localization of
four KATP channel subunits in US and LS myometrium were determined by Western blot analysis and
immunohistochemistry, respectively. The contractile activity of myometrial strip was measured under isometric conditions.

Results: Four KATP channel subunits, namely Kir6.1, Kir6.2, SUR1 and SUR2B were identified in pregnant
myometrium. While found in vascular myocytes, these subunits appear to be preferentially expressed in myometrial
myocytes. Diazoxide, a KATP channel opener, inhibited the spontaneous contractility of pregnant myometrium,
suggesting that the KATP channels are functional in human pregnant myometrium. Diazoxide was less potent in
TL strips than that in TNL strips. Interestingly, expression of SUR1 was greater in TL than TNL tissues, although no
differences were found for SUR2B in these two tissues. For both lower and upper segmental myometrium, Kir6.1
and Kir6.2 were less in TL compared with TNL tissues.

Conclusions: Functional KATP channels are expressed in human pregnant myometrium. Down-regulation of Kir6.1
and Kir6.2 expression in myometrium may contribute to the enhanced uterine contractility associated with the
onset of labour.

Background
Human myometrium undergoes dramatic physiological
and biochemical changes during pregnancy and parturi-
tion. Myometrium remains in a relatively quiescent state
during most time of pregnancy, but it develops the highly
organized and powerful contraction with onset of labour
[1]. The molecular mechanisms underlying the transit of
myometrium from a state of relative quiescence to the
activated and contractile state are not fully understood.
However, it has been proposed that this process is asso-
ciated with coordinated expression of various proteins
including the receptors of uterotonic and uterorelaxant
factors, GAP junction and ion channels [1-3].

Potassium channels play critical roles in the regulation
of cell membrane potential, which is central to the excit-
ability and contractility of myometrium [4,5]. The open-
ing of these channels results in K+ efflux, causing the
membrane potential to closer to K+ equilibrium poten-
tial, and thereby reducing excitability and contractility of
the smooth muscle cells. Thus, the changes in the expres-
sion or activity of K+ channels can translate into a change
in excitability and contractility of myometrium.
The ATP-sensitive potassium (KATP) channel is one of

the most abundant potassium channels and likely contri-
butes to the resting membrane potential in smooth mus-
cle tissues [6]. The channel comprises heteromultimers
of an inwardly rectifying K+ channel (Kir) and a modula-
tory sulphonylurea receptor subunit (SUR) which is
responsible for the ATP sensitivity and pharmacological
properties [7-10]. Functional studies indicated that KATP
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channel plays a role in the regulation of myometrial
activity during pregnancy [11-13]. The KATP channel
mRNA has been identified in pregnant myometrium.
Chien et al [14] had shown the transcripts of KATP chan-
nel subunits in pregnant rat myometrium. Curley and
coworkers detected the mRNA expression of Kir 6.1, Kir
6.2, SUR1 and SUR2B in human pregnant myometrium
and demonstrated that Kir6.1/SUR2B may be the predo-
minant isoform of KATP channel in human myometrium
[15]. However, no information is available on the protein
expression of KATP channel subunits in myometrium.
It seems that there is a functional regionalization in

human myometrium during pregnancy and labour. The
upper segment (US) region of the uterus maintains a
relaxatory phenotype to accommodate the growing fetus
throughout most of gestation and then at labour con-
tracts to cause expulsion of the fetus, while the lower
segment (LS) region is supposed to display a contractile
phenotype during most time of pregnancy and at onset
of labour transforms into a relaxatory phenotype,
thereby allowing passage of fetus [16]. Current studies
regarding the expression of KATP channel in human
myometrium are restricted to LS [15]. There is a lack of
literature addressing the changes in the expression of
KATP channel in the different region of uterus during
pregnancy and labour. Exploring this issue will expand
our knowledge regarding the mechanisms controlling
human parturition.
The objectives of study are to confirm the expression

of KATP channel subunits at protein level in human
pregnant myometrium and examine whether the expres-
sion of these proteins in different region of uterus is
changed during labour.

Methods
Tissue collection
The lower uterine segmental myometrial tissues from
pregnant women were collected in Changhai Hospital,
the affiliated hospital of Second Military Medical
University. Upper uterine segmental myometrial tissues
from pregnant women were collected in Navy General
Hospital, the teaching hospital of Second Military Medi-
cal University. Approval of this study was granted by
human ethic committee of Changhai Hospital, Navy
General Hospital as well as human ethic committee of
Second Military Medical University. Written informed
consent was obtained from each participant.
LS myometrial biopsies were collected at cesarean

section from the pregnant women at term pregnancy
(37-42 wk) prior to the onset of labour (TNL, n = 13)
or during labour (TL, n = 13). Paired US and LS tissues
were collected from the pregnant women at term preg-
nancy (37-42 wk) before the onset of labour (TNL, n =
7) or during labour (TL, n = 4). Labour was defined as

regular contractions (< 5 min apart) and cervical dila-
tion (> 3 cm) without oxytocin or prostaglandin admin-
istration. Indications for cesarean section included
breech presentation, placenta previa, previous cesarean
section, cephalopelvic disproportion, failure of labour to
progress, fetal distress, or maternal request. Women
who had the evidence of underlying disease, such as
hypertension, diabetes, preeclampsia, intrauterine
growth restriction, etc, were not included in this study.
LS uterine samples were removed from the upper mar-
gin of the uterine incision after delivery of the fetus and
placenta. US samples were taken just below the fundus
through the upper incision by using biopsy forceps. Col-
lected samples were then frozen immediately in liquid
nitrogen and stored at -80°C. For immunohistochemical
analysis, the biopsies were placed in 10% phosphate buf-
fered formalin. Tissues for contractility study were
immediately placed in phosphate-buffered saline on ice
and transported to the laboratory.

Immunohistochemistry
Immunohistochemistry was carried out as described pre-
viously [17,18]. Briefly, paraffin sections (5 μm) were cut,
rehydrated and microwaved in citric acid buffer to retrieve
antigens. Immunohistochemistry were performed with
the Histostain-SP kit (Zymed, San Franscisco, CA), which
uses a biotinylated second antibody, a horseradish peroxi-
dase-streptavidin conjugate, and a substrate-chormogen
mixture to demonstrate antigen in the tissue. The specific
antibodies for Kir 6.1 (sc-11224), Kir 6.2 (sc-11228), SUR1
(sc-5789) and SUR2B (sc-5793) were purchased from
Santa Cruz Biotechnology (Santa Cruz Biotechnology, Inc.
Santa Cruz, CA). The tissue sections were incubated with
3% H2O2 to inhibit endogenous peroxidases and then
incubated with 10% rabbit serum for 30 min to block non-
specific antibody binding. The tissue sections were then
incubated with the specific antibodies (1:500) for 24 hr at
4 C. The bound antibodies were detected with the biotin-
streptavidin-peroxidase system (UltraSensitive-SP-kit,
MaiXin Biotechnology, Fuzhou, China) using diaminoben-
zidine (Sigma-Aldrich) as chromogen. Counterstaining
was performed with hemalum. Mouse antihuman smooth
muscle a-actin-specific monoclonal antibody (Dako Inc.
Carpinteria, CA) was used to stained the smooth muscle
cells. Negative controls were performed by substituting
primary antibody with a normal serum in same dilution as
well as preabsorption of the primary antibody with a ten-
fold excess of the blocking peptides (Kir 6.1: sc-11224 P;
kir6.2:sc-11228 P; SUR1: sc-5789 P; SUR2B: sc-5793 P).

Isometric recording of myometrium contraction
The myometrium tissues (about 3 × 3 × 10 mm pieces)
were mounted on parallel wires and placed in a 30 ml
organ bath filled with Krebs solution maintained
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at 37°C, bubbled with a gas mixture (95% O2-5% CO2).
The contractile activity was measured isometrically by a
tension transducer, followed by computerized recording
and processing (MedLab, Nanjing, China). Each strip of
myometrium was set up under an initial tension of 1 g
and allowed to equilibrate for 90 min, and the Kreb’s
solution was changed every 30 min. After the regular
contractions (regular in frequency and strength) were
established, diazoxide (Sigma-Aldrich, St. Louis,MO)
was added in a cumulative manner to the bath at
30 min intervals. Appropriate controls (incubation with
solvents) were run under similar experimental conditions
in rings of uterus obtained from the same woman. Only
one concentration-response curve was performed in each
uterine strip. The responses were quantified by the
amplitude and frequency of the contractions as well as
integration of the area under each contractile record
(AUC) using software written specifically for this pur-
pose. The AUC was measured from the basal tension
over a 10-min period after each stimulus. The effects
were evaluated by comparing the experimental responses
with the controls (set as 100%). The data of contractility
were presented as percentage of control (% of control).

Western Blot Analysis
Approximately 50 mg of human myometrial tissue was
homogenized in ice-cold lysis buffer consisting of 60 mM
Tris-HCl, 2% sodium dodecyl sulfate (SDS), 10% sucrose,
2 mM phenylmethylsulfonyl fluoride (Merck, Darmstadt,
Germany), 1 mM sodium orthovanadate, 10 μg/ml apro-
tinin (Bayer, Leverkusen, Germany). Lysates were then
quickly ultrasonicated in ice bath, boiled 5 min at 95 C
and centrifuged. The supernatants were collected and
stored at -80 C. Protein concentrations were measured
using a modified Bradford assay. The samples were
diluted in sample buffer (250 mM Tris-HCl (pH 6.8),
containing 4% SDS, 10% glycerol, 2% b-mercaptoethanol,
and 0.002% bromophenol blue) and boiled for another
5 min. Aliquots of proteins were separated by SDS-PAGE
(10%) and subsequently transferred to nitrocellulose
membranes by electroblotting. The membrane was
blocked in 5% skim milk powder in 0.1% Tris-buffered
saline/Tween 20 (TBST) at room temperature for 2 h,
and then was incubated with antibodies raised against
Kir 6.1, Kir6.2, SUR1 and SUR2B (1:500) at 4 C over-
night. After another three washes with TBST, the filters
were incubated with a secondary horseradish peroxidase-
conjugated IgG (1:1000) for 1 h at room temperature and
further washed for 30 min with TBST. Immunoreactive
proteins were visualized using the enhanced chemilumi-
nescence Western blotting detection system (Santa
Cruz). The light-emitting bands were detected with X-ray
film. To control sampling errors, the expression of
b-actin was also detected. The resulting band intensities

were quantitated by using an image scanning densit-
ometer (Furi Technology, Shanghai, China). Peak count
values were expressed as densitometric units. The ratio
of band intensities to b-actin was obtained to quantify
the relative protein expression level of Kir 6.1, Kir6.2,
SUR1 or SUR2B.

Statistical analysis
The data are presented as mean ± SEM. All data were
tested for homogeneity of variance by Bartlett’s test. The
results indicated that the data were normally distributed.
Individual comparisons were made by one-way ANOVA
followed by LSD-t test. P-value of <0.05 was considered
to be significant.

Results
Expression and localization of KATP channel subunits in
pregnant human myometrium
Immunohistochemistry revealed that positive immunor-
eactivity for Kir6.1, Kir6.2, SUR1 and SUR2B subunit
was identified in human pregnant myometrium. These
subunits of KATP channel were localized to uterine myo-
cytes. Smooth muscle cells lining blood vessel were also
positively stained for these proteins. Immunoreactivity
was abolished when the antibody was preabsorbed with
excess peptide, thereby confirming the specificity of the
antibodies (Figure 1).

The effect of KATP channel opener on spontaneous
contractility of myometrium strip
To confirm the KATP channel activity in pregnant myo-
metrium, we examined the effect of diazoxide, an opener
of KATP channels, on spontaneous contractility of LS
strips that were obtained from pregnant women who
were undergoing labour or not undergoing labour at
term. As shown in Figure 2A &2B, treatment of strips
with a cumulative increase in concentrations of diazoxide
inhibited the phasic contractions. At 10-4 mol/L, diazox-
ide completely suppressed the spontaneous contractions.
We then compared the effects of diazoxide in nonla-

bouring and laboring myometrial strips. As shown in
Figure 2C-D, the effects of diazoxide on contractility were
decreased in TL strips compared with that in TNL strips.
The IC50 values of diazoxide in TL group were signifi-
cantly different from that in TNL group (1.80 × 10-4 ±
5.46 × 10-6 mol/L versus 1.06 × 10-4 ± 4.37 × 10-5 mol/L
for amplitude, P < 0.05, n = 3; 3.24 × 10-5 ± 2.68 ×
10-5 mol/L versus 6.83 × 10-6 ± 1.27 × 10-6 mol/L for
frequency, P < 0.05; n = 3).

The expression of KATP channel subunits in pregnant
myometrium before and during labour
Western blotting analysis detected a band of 51 kDa for
Kir6.1, 40 kDa for Kir6.2, 150 kDa for SUR1 and 150 kDa
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for SUR2B in pregnant human myometrium. To give an
overall expression profile in the US and LS, the paired
expression values from all the patients were combined.
When the overall expression level of each protein was
compared in the pregnant US and LS samples, there were
no significant differences in the levels of each protein
between US and LS myometrium (Figure 3).
In lower segmental myometrium samples, the level of

Kir6.1 was significantly decreased in TL group compared
with TNL group (TL versus TNL, P < 0.01). Kir6.2
expression was also significantly down-regulated during
labour (TL versus TNL, P < 0.05). The expression of
SUR1 was increased in TL group compared with TNL
group (P < 0.01). No marked difference in SUR2B level
was observed between TNL and TL groups (Figure 4).
In upper segmental biopsies, both of Kir6.1 and Kir6.2

expression were significantly down-regulated in TL
group compared with TNL group (TL versus TNL, P <
0.05; Figure 5). No significant difference in SUR1 and
SUR2B levels was observed between TNL and TL
groups.

Discussion
Some functional studies suggest the KATP channel activ-
ity in human myometrium by using the opener and
blockers of KATP channels [19-22]. The KATP channels
have been identified in human myometrium, but at
mRNA level [15]. Considering the fact that not all
mRNA is translated to protein due to mRNA instability,
it is important to know the protein expression of KATP

subunits during pregnancy and labour. The present
study demonstrated, for the first time, the protein
expression of Kir6.1, Kir6.2, SUR1 and SUR2B subunits
of KATP channels in human myometrium and showed
the localization of these four subunits in myometrium.
The KATP channel subunits were also identified in

smooth muscle layer of uterine vasculature in the preg-
nant myometrium. Because the proportion of vascula-
ture smooth muscle is very small in the myometrial
samples, the protein level of KATP channel subunits can
reflect the expression of this channel in uterine smooth
muscle.
Different combinations of Kir and SUR isoforms/var-

iants yield tissue-specific KATP channel subtypes with dif-
ferent features and distinct functional properties. For
instance, SUR1-Kir6.2 forms the pancreatic b-cell KATP

channel [23,24], and SUR2A-Kir6.2 forms the cardiac
KATP channel [25]. Two types of smooth muscle-type
KATP channels have been cloned and identified, namely
Kir6.2-SUR2B channels and Kir6.1-SUR2B channels
[10,26]. Some studies have demonstrated the presence of
SUR1 subunit in smooth muscle tissues including pig

Figure 1 The expression of KATP channel subunits was identified
by immunohistochemistry in pregnant human myometrium.
A, representative section immunostained with the specific antibody
against Kir6.1. B, negative control. The primary antibody was
substituted by Kir6.1 preabsorption antibody. C, representative
section of positive staining for Kir6.2. D, negative control section. The
primary antibody was substituted by Kir6.2 preabsorption antibody.
E, representative section stained with the specific antibody against
SUR1. F, negative control section. The primary antibody substituted
by SUR1 preabsorption antibody. G, the section immunostaied with
SUR2B antibody. H, negative control section. The primary antibody
was substituted by SUR2B preabsorption antibody. I, the section
stained with a-actin antibody. J, negative control. The primary
antibody was substituted by normal serum. Arrow: positive staining
in myometrium smooth muscle cells. Original magnification ×400.
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urethra, rat and human myometrium [15,27-29]. Curley
and coworkers’ study indicated that Kir6.1/SUR2B is the
predominant isoforms of KATP channel in human myo-
metrium although they detected the transcript of Kir6.2
and SUR1 [15]. Our present study also found the protein

expression of Kir6.1, Kir6.2, SUR1 and SUR2B subunits
in human pregnant myometrium. Diazoxide, a KATP

opener, is known to activate KATP channels containing
SUR1 or SUR2B but not those containing SUR2A [8,10]
and has been shown to be able to inhibit the contractility

Figure 3 Expression of KATP subunits in pregnant US and LS
myometrium. Paired US and LS biopsies were obtained from
pregnant women at term. The expression level of Kir6.1, Kir6.2, SUR1
and SUR2B were determined by Western blotting as described in
Materials and Methods. The values of these subunits from all paired
US and LS samples (n = 11) was combined to given an expression
profile in the US and LS. A & B, representative protein bands for
Kir6.1, SUR1, Kir6.2 and SUR2B. C, cumulative data showing the levels
of KATP channel subunits. Data were expressed as mean ± SEM.

Figure 4 Semiquantitation of Western blot signals of KATP

channel subunits in lower segmental myometrium. Myometrial
tissues were obtained from pregnant women at term before the onset
of labour (n = 17) or during active labour (n = 14). A & B, representative
protein bands for Kir6.1, SUR1, Kir6.2 and SUR2B. C, cumulative data
showing the levels of KATP channel subunits in TNL and TL groups. Data
were expressed as mean ± SEM. **P < 0.01 (TL vs TNL).

Figure 2 Effects of diazoxide on spontaneous contractions of human pregnant myometrium. LS strips were obtained from pregnant
women who were not undergoing labour or undergoing labour at term. Myometrial strips were treated with a cumulative increase in
concentrations of diazoxide. A&B, representative traces showing the suppressive effect of diazoxide on the spontaneous contractions of TNL strip
(A) and TL strip (B). C,D&E, cumulative data of amplitude (C), and frequency (D) and AUC (E) showing the effect of diazoxide on the spontaneous
contractility of TNL and TL myometrium.
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of human myometrium [30]. In the present study, we also
found that diazoxide inhibits the spontaneous contracti-
lity of human pregnant myometrium. Taken together,
our data suggest that subtypes of KATP channel in preg-
nant human myometrium might be Kir6.1-SUR1, Kir6.1-
SUR2B, Kir6.2-SUR2B and Kir6.2-SUR1.
Longo et al [31] reported that a KATP opener inhibited

oxytocin-induced contractions in pregnant human
myometrium. Sawada et al [32] demonstrated that over-
expression of KATP subunits Kir.6.1 and SUR2B contri-
butes to an inhibition of oxytocin-induced uterus con-
tractions in late pregnant rats. The present study found
that the relaxatory effects of KATP channel opener were
decreased in TL strip compared with TNL myometrium.
Thus, it is suggested that a decrease in the expression of
KATP channels may facilitate enhanced contractility of
the myometrium after onset of parturition.
A number of studies have demonstrated differential

expression of contraction-associated proteins (CAPs)
such as connexin-43 and prostaglandin receptors in US
and LS myometrium after onset of labour [33-35]. How-
ever, some studies reported that the expression pattern
of some CAPs in US and LS during labour are similar
[34,36,37]. Prior studies have shown no differences in
contractility between US and LS myometrium [38],
which is supported by our own results on the BK chan-
nel [17]. In the present study, we found that the modu-
latory receptor subunit SUR1 was up-regulated in LS,

but not in US, after onset of labour, suggesting that the
KATP function may differ between LS and US with the
onset of labour.

Conclusions
Our results indicate that KATP channel subunit Kir6.1,
Kir6.2, SUR1 and SUR2B are predominately localized to
myometrial cells in human pregnant uterus. The down-
regulation of KATP channel subunit Kir6.1, Kir6.2
expression in myometrium may contribute to the
enhanced uterine contractility associated with onset of
labour.
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