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Abstract

Background: It has been reported that calf oocytes are less developmentally competent than oocytes obtained
from adult cows. Bone morphogenetic protein 15 (BMP15) and growth and differentiation factor 9 (GDF9) play
critical roles in folliculogenesis, follicular development and ovulation in mammalian ovaries. In the present study,
we attempted to compare the expression patterns of BMP15 and GDF9 in the cells of calf and cow ovaries to
determine a relationship between the level of these genes and the low developmental competence of calf
oocytes.

Methods: Bovine tissues were collected from 9-11 months-old calves and from 4-6 years-old cows. We
characterized the gene expression of BMP15 and GDF9 in calf and adult bovine oocytes and cumulus cells using
quantitative real-time reverse transcriptase polymerase chain reaction (QPCR) and in situ hybridization.
Immunohistochemical analysis was also performed.

Results: The expression of BMP15 and GDF9 in cumulus cells of adult ovaries was significantly higher than that in
calf ovaries, as revealed by QPCR. GDF9 expression in the oocytes of calf ovaries was significantly higher than in
those of the adult ovaries. In contrast, BMP15 expression in the oocytes of calf and adult ovaries was not
significantly different. The localization of gene expression and protein were ascertained by histochemistry.

Conclusions: Our result showed for the first time BMP15 and GDF9 expression in bovine cumulus cells. BMP15 and
GDF9 mRNA expression in oocytes and cumulus cells was different in calves and cows.

Background
Growth and differentiation factor 9 (GDF9) and GDF9B,
also known as BMP15, are members of the TGFb super-
family [1-6]. In rodent species, BMP15 and GDF9 play a
crucial role in ovarian follicular development. The two
factors are thought to affect granulosa cell proliferation
independently or synergistically [2,4,7] and to regulate
cumulus cell function in the periovulatory period [8-10].
BMP15 inhibits FSH-induced granulosa cell differentia-
tion through down-regulation of FSH receptor (FSHR)
expression in rat granulosa cells [11]. GDF9 homozygous

knockout (GDF9-/-) female mice are sterile due to the
abolishment of folliculogenesis beyond the primary folli-
cle stage [12,13]. However, such a dramatic effect is not
observed in BMP15 homozygous knockout (BMP15-/-)
mice [14]. The functionality of BMP15 and GDF9 in
ruminants was mainly reported in sheep. Some sheep
breeds, having mutation in the BMP15 and GDF9 signal-
ing systems, have been established as valuable genetic
resources for sheep farming because of their prolificacy
phenotype. These breeds have a higher ovulation quota
and produce more offspring than other conventional
breeds [15-17].
It was reported that BMP15 and GDF9 expressed only

in oocytes in rodents, but expressed in cumulus and
mural granulosa cells as well as in oocytes in goats and
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pigs [1,3,5]. In bovine oocytes, although it has been
reported that BMP15 and GDF9 mRNAs were expressed
from respective primary and primordial follicles, and
that the expression lasted to the 8-cell stage after fertili-
zation [18], there is not enough information about the
detailed expression profiles of BMP15 and GDF9.
Recently, Hussein et al. reported that the addition of
exogenous GDF9 and BMP15 to maturing cumulus-
oocyte complexes (COCs) dramatically increased the
yield of blastocysts [19]. They also reported that the
addition of GDF9 and/or BMP15 antagonist to maturing
COCs significantly decreased blastocyst yields, compared
to untreated COCs [19].
In the bovine ovary, antral follicles appeared for the

first time in the fetuses with a head-rear length of
70-80 cm (7-8 months pregnant) [20]. The use of new-
borns and prepubertal calves as oocyte donors for IVP
shortens the interval between generations and prolongs
the reproduction period. However, it is known that pre-
pubertal calf oocytes are less developmentally competent
than oocytes obtained from cows. Although the rates of
fertilization and cleavage in prepubertal calf oocytes
compared favorably with those in cow oocytes, their
capacity to develop to the blastocyst stage is relatively
lower [21-23]. It would seem that embryos from calf
oocytes are less capable of establishing pregnancies [24].
Calf oocytes were found to be more sensitive to freezing
injury than cow oocytes [25]. Calf oocytes showed a
delay in organelle migration, mainly cortical granules,
following in vitro maturation, as well as abnormal chro-
matin and microtubule configurations [26]. It is an
important to analyze the genes that are related to the
development of calf oocytes.
In this study, we characterized the gene expression of

BMP15 and GDF9 in calf and adult bovine ovaries using
quantitative real-time reverse transcriptase polymerase
chain reaction (QPCR) and in situ hybridization. In
addition, we also characterized the gene expression of
FSHR in cumulus cells of calf and adult ovaries.

Methods
Animals and tissues
Protocols for the use of animals were approved by the
Animal Care Committee of the National Institute of
Agrobiological Sciences and the National Institute of
Livestock and Grassland Science, Japan. Bovine tissues
were collected from 9-11 months-old calves and from
4-6 years-old cows, born, grown and slaughtered at the
National Institute of Livestock and Grassland Science
less than 10 min after slaughtering. Tissues intended for
PCR experiments were snap-frozen in liquid nitrogen
and stored at -80°C. Ovaries were brought to the labora-
tory in PBS at 4°C and COCs were aspirated, separated
into oocytes and cumulus cells and snap-frozen less

than 60 min after slaughtering. Ovaries intended for his-
tological studies were fixed with 10% formaldehyde PBS,
pH 7.4 less than 10 min after slaughtering, and subse-
quently dehydrated, embedded in paraffin wax, and
stored at 4°C.
Aspirated COCs from follicles 2-5 mm in diameter

were classified according to a previous report [27].
Briefly, class A COCs have a thick cumulus layer; class
B COCs have a thin cumulus layer, class C are naked
oocytes, and COCs of class D have expanded cumulus
cells. Oocytes, cumulus cells and mural granulosa cells
from class A and B COCs were used as materials for
reverse transcriptase polymerase chain reaction
(RT-PCR). For RT-PCR, COCs were separated from the
ovaries of calves (n = 4 animals) and cows (n = 4 ani-
mals). For in situ hybridization, ovaries were recovered
from calves (n = 3 animals) and cows (n = 3 animals).

RT-PCR
Liver, kidney, heart, spleen, lung, ovary and pituitary
tissues were collected from the same cows. Oocytes with
zona pellucida and cumulus cells in COCs were sepa-
rated by vortexing and/or repeated aspiration with a
narrow-bore Pasteur pipette. After collection, all cells
were treated with ISOGEN (Nippon Gene, Toyama,
Japan) and stored at -80°C until RNA extraction.
Total RNA extraction and reverse transcription

were performed as previously reported [28]. RT-PCR
was performed using two sets of primers, BMP15 (5’-
CAAGCAGGCAGTATTGCATCTGAA-3’ and 5 ’-
TCACCTACATGTGCAGGACTGGGC-3’), and GDF9
(5’- AGAAGCTGCTGAGGGTGTAAGATT-3’ and 5’-
AAGCAATTGAGCCATCAGGC-3’) that generated
377- and 401-bp fragments, respectively. The GenBank
accession numbers of bovine BMP15 and GDF9 for
PCR analysis are AY572412 and AB058416. All primers
were commercially synthesized (Tsukuba Oligo Service,
Ibaraki, Japan). The program comprised an initial
denaturation step at 95°C for 30 sec, annealing at 58°C
for 30 sec, and extension at 72°C for 1 min. Each PCR
was performed for 30 cycles for each sample. PCR pro-
ducts were analyzed using agarose gel electrophoresis
and visualized with Gel Star Nucleic Acid Gel Stain
(Cambrex Bio Science Rockland, Inc, USA). Bovine
glyceraldehyde-3-phosphate dehydrogenase (GAPDH)
was used as a control for PCR. To clarify the contami-
nation of oocytes, PCR analysis of germ cell markers
VASA and ZAR1 was performed in a cDNA template
of cumulus and mural granulosa cells. Primer
sequences of VASA (5’- CAATTCGACAAATAGTA-
CAAGG-3’ and 5’- CAAGAACTGGGCACTTTCC-3’)
and ZAR1 (5’- GGAGCTGGGCAAGGAGCG-3’ and
5’- TTTGAAGCTGAAAGTGCTGTCAC-3’) were used
from a previous report [18].
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QPCR
QPCR analyses for the gene expression of BMP15,
GDF9 and FSHR in ovarian cells were carried out by
the SYBR Green assay as previously reported [29,30].
The thermal cycling conditions included initial sample
incubation at 50°C for 2 min and at 95°C for 10 min,
followed by 40 cycles at 95°C for 15 sec and at 60°C
for 1 min. The cycle threshold values (CT) indicated
the quantity of the target gene in each sample, and the
sequence of the target gene was determined in real
time using an Mx3000P QPCR system (Stratagene, La
Jolla, CA, USA). Standard curves were generated for
each gene by serial dilution of pGEM-cloning vectors
containing BMP15, GDF9, and GAPDH cDNAs to
quantify the amplified products. Real-time RT-PCR
was performed using primers (BMP15: 5’-ATCATGC-
CATCATCCAGAACC-3’ and 5’- TAAGGGACACAG-
GAAGGCTGA = 3 ’, GDF9: 5 ’- AGCGCCCTCACT
GCTTCTATAT-3’ and 5’- TTCCTTTTAGGGTG-
GAGGGAA-3’, FSHR: 5’-AATCTACCTGCTGCTCA-
TAGCCTC-3’ and 5’- TTTGCCAGTCGATGGCAT
AG-3’) that generated 72-, 80- and 76-bp fragments.
The GenBank accession number of bovine FSHR is
NM174061.

In situ hybridization
Digoxigenin (DIG)-labeled bovine BMP15 and GDF9
sense- and antisense-complementary RNA probes were
synthesized as described in a previous study [31]. The
PCR products of BMP15 and GDF9 in the previous RT-
PCR section were used as the templates for the RNA
probe. Embedded ovaries were sectioned into 7-μm
thick slices. In situ hybridization was performed using
an automated processing machine (Ventana HX System
Discovery) with RiboMapKit, BlueMapKit, and Amp-
MapKit (Ventana, Tucson, AZ, USA) according to the
manufacturer’s instructions. The sections were fixed
and treated with protease after deparaffinization.
DIG-labeled probes diluted in RiboHybe hybridization
solution (Ventana) were added to each section and
hybridized at 61°C for 6 hr. Following hybridization, the
sections were washed three times in RiboWash (Ven-
tana) at 65°C for 6 min and post-fixed in RiboFix (Ven-
tana) at 37°C for 10 min. To detect the hybridization
signals, the sections were incubated with polyclonal rab-
bit-anti-DIG/HRP conjugate (Dako Cytomation,
Glostrup, Denmark) at 37°C for 30 min. AmpMapKit
(Ventana) was used to sensitize the hybridization signals.
BlueMapKit (Ventana) with NBT/BCIP was used to
color the hybridized signals blue. Counterstaining was
performed with Nuclear Fast Red (Ventana). After pre-
paration, the sections were mounted and observed with
a Nikon ECLIPSE E800 photomicroscope (Nikon,
Tokyo, Japan).

Production of bovine BMP15 and GDF9 antibody
Recombinant BMP15 and GDF9 were expressed by
using a cell-free system (Rapid Translation Systems,
Roche Diagnostics, Basel, Switzerland). Bovine cDNAs
encoding the mature protein regions of BMP15 and
GDF9 were cloned by RT-PCR with high-fidelity DNA
polymerase (Pfu polymerase, Stratagene, La Jolla, CA,
US). Amino termini of mature protein regions were pre-
dicted based on the consensus motif R-X-X-R as a tar-
get of subtilisin-like proteases.
Cloned sequences were subcloned to the pIVEX 2.4d

expression vector (Roche). Protein expression was car-
ried out using E.coli lysate reagent (RTS Proteomaster
HY Kit, Roche) according to the manufacturer’s instruc-
tions. The RTS reaction chamber used in the present
study contained 1 ml of reaction mixture and 11 ml of
feeding solution. After 24 hr of incubation, 1 ml of
reaction mixture was harvested from the chamber, solu-
bilized with 4 ml of 8 M urea solution, and centrifuged
at 22000 × g for 10 min at 4°C to collect the superna-
tant. Recombinant proteins were purified from the
supernatant using a nickel sepharose affinity gel (GE
Healthcare, Buckinghamshire, UK) in the presence of
6 M urea, based on the chromatography. Anti-BMP15
and GDF9 antisera were generated in rabbits. The rab-
bits were bled prior to immunization to obtain preim-
munoserum. They were initially inoculated with 300 μg
of the antigen in Freund’s complete adjuvant. Three
weeks after initial immunization, the rabbits were
further inoculated with 150 μg of the antigen in
Freund’s incomplete adjuvant. Animals were given three
booster injections at two-week intervals. The titer of
antiserum was monitored by ELISA. Two weeks after
the third booster injection, animals were exsanguinated
to collect antiserum.

Western blot analysis
To confirm the immunoreactive property of custom
anti-BMP15 and GDF9 antisera, recombinant BMP15
and GDF9 were used for Western Blot analysis. Samples
(100ng each) were separated by sodium dodecyl sulfate-
polyacrylamide electrophoresis and electrophoretically
transferred onto a polyvinylidene difluoride membrane
[32]. Western blotting was performed using the method
of Towbin et al. in Tris-buffered saline (TBS) [33]. The
membrane was blocked in 10% skim milk overnight,
incubated with either anti-BMP15 or -GDF9 antisera in
1% skim milk in TBS for 1 hr at room temperature and
then washed with TBS containing 0.05% Tween20
(TBST). It was then incubated with anti-rabbit IgG con-
jugated with alkaline phosphatase (Sigma, diluted
1:3000) for 1 hr at room temperature and then washed
with TBST. Immunopositive bands were detected using
AP substrate kit (BioRad, Hercules, CA, USA).
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Immunohistochemistry
Immunohistochemistry was performed using an auto-
mated processing machine with the RiboMapKit and
DABMapKit reagents (Ventana). The sections were
incubated with antiserum or pre-immunoserum at a
dilution of 1:100 in Ab Diluent (Ventana) for 2 hr. For
the first antibody, not only custom antibody, but also
commercial antibody; anti-humanBMP15 antibody
(Abjent, CA, US) and anti-mouse GDF9 antibody (Santa
Cruz CA, USA) were used. The sections were then
washed and incubated with anti-rabbit IgG-Biotin
(Sigma) for 1 hr. Immunoreactive signals were detected
using streptavidin-HRP and diaminobenzidine (DAB-
MapKit, Ventana). After preparation, the sections were
observed with a Nikon ECLIPSE E800 photomicroscope
(Nikon, Tokyo, Japan).

Statistical analysis
Rates of antral follicles and COCs were analyzed by a
Chi-square test. A t-test was used to compare the
results of QPCR quantification. The experiments were
carried out in at least three replicates. The results quan-
tifying copy numbers of BMP15 and GDF9 mRNA are
expressed as the mean of the ratio of BMP15 or GDF9
to GAPDH. Statistical significance was set at P < 0.05.

Results
BMP15 transcripts were detected in ovarian tissues, but
were not detected in any other tissues examined by
RT-PCR. In contrast, GDF9 transcripts were detected
not only in the ovarian tissues but also in the pituitary
tissues, but were not detected in the liver, kidney, heart,
spleen or lung tissues (Figure 1). In both oocytes and
cumulus cells collected from adult cows, BMP15 and
GDF9 transcripts were detected (Figure 2).
The amount of class A and B COCs collected from

calf ovaries (59.3%, n = 59) was significant less than that
from adult ovaries (77.0%, n = 87) (P < 0.05). The germ
cell marker VASA and ZAR1 transcripts were detected

in the cDNA template of the oocytes, but not in the
cDNA template of cumulus cells (data not shown).
Therefore, it was confirmed that the cDNA template of
cumulus cells were not contaminated with the cDNA
template of oocytes. QPCR detected significantly higher
expression of BMP15 and GDF9 in cumulus cells of
adult ovaries than in calf ovaries (Figure 3). GDF9
expression in the oocytes of calf ovaries was significantly
higher than in adult ovaries. In contrast, BMP15 expres-
sion in the oocytes of calf and adult ovaries was not sig-
nificantly different. These results were also ascertained
by in situ hybridization (Figure 4). RNA probes, DIG-
labeled BMP15 and GDF9 anti-sense RNAs specifically
detected the mRNA transcript in calf and adult ovaries
(Figure 3A, C, E and 3G), while the sense probe
detected no significant signal (Figure 3B, D, F and 3H).
In the antral follicles of calf ovaries, BMP15 and GDF9
mRNAs were strongly detected in the oocytes (Figure
3A and 3E) and were weakly detected in the cumulus
cells. In the antral follicles of adult ovaries, BMP15 and
GDF9 mRNAs were detected in the cumulus cells as
well as in the oocytes of antral follicles (Figure 3C and
3G). GDF9 mRNA was also detected in some mural
granulosa cells and in a few theca cells (Figure 3G). The
BMP15 and GDF9 recombinant proteins with 6xHis tag
were produced by using a cell free system as approxi-
mately 15 and 18 kDa. Subsequently generated antisera
against either BMP15 or GDF9 reacted with immunized
antigens in Western blot analysis (Figure 5). BMP15 and
GDF9 localization was determined by immunohisto-
chemistry using both custom and commercial antisera
in calf and cow ovaries (Figure 6). Immunopositive sig-
nals of BMP15 and GDF9 were detected in the oocytes
and cumulus cells of follicles in both calf (Figure 6A
and 6C) and cow (Figure 6B and 6D) ovaries. There was
no difference in the localization of immunopositive sig-
nals in sections incubated with either commercial or in
house antisera. The localization of BMP15 and GDF9
protein coincided with that of BMP15 and GDF9
mRNA. In contrast, the additions of pre-immuno sera,
instead of BMP15 and GDF9 antisera, made no immu-
noreactive signals (Figure 6E and 6F) in the follicles.

BMP15

Li   Kid   He  Sp  Lu  Ova  Pit

GAPDH

GDF9

Figure 1 mRNA expression of BMP15 and GDF9 in bovine
tissues by RT-PCR. Total RNAs were extracted from liver (Li), kidney
(Kid), heart (He), spleen (Sp), lung, (Lu) ovarian (Ov), and pituitary
(Pit) tissues. Signal produced by BMP15 primers (377-bp) was only
detected in the ovarian tissues. Signals produced by GDF9 primers
(401-bp) were detected in the ovarian and pituitary tissues.

BMP15

GAPDH

GDF9

O C
Figure 2 mRNA expression of BMP15 and GDF9 in follicles by
RT-PCR. Total RNAs were extracted from oocytes (O) and cumulus
cells (C). Signal produced by BMP15 primers (377-bp) and GDF9
primers (401-bp) were detected in the oocytes and cumulus cells.
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QPCR revealed that the intensity of FSHR in the
cumulus cells of calf and adult ovaries was not signifi-
cantly different (Figure 7).

Discussion
In this research, our data showed the existence of
bovine BMP15 and GDF9 mRNA and protein expres-
sion, not only in the oocytes but also in follicular
somatic cells. Also we showed new differences in
mRNA expression patterns of BMP15 and GDF9 in
oocytes and cumulus cells between calf and cow ovaries.
There was no difference in the amount of intra oocyte

BMP15 mRNA between calf and cow, and was smaller
in calf cumulus cells than in cow cumulus cells. Thus, it
is predicted that the amount of BMP15 in follicles is
greater in cows than in calves. The lower developmental
competence of calf oocytes may be partially explained
by a deficiency of BMP15 in cumulus cells. It was
showed the possibility which additional BMP15 in IVM
improve the developmental competence of calf oocytes.
GDF9 mRNA expression in cumulus cells was

detected by QPCR and in situ hybridization even though
at a low level. In previous reports, GDF9 mRNA expres-
sion was detected in oocytes, but not in bovine cumulus
and mural granulosa cells by RT-PCR [34] or by in situ
hybridization [35]. Our results differ from these previous
reports. This difference in expression may be related to
the status of follicle atresia or to the estrous cycle. The
amount of GDF9 gene expression was smaller in calf
cumulus cells than in cow cumulus cells, same as the
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Figure 3 QPCR analysis of BMP15 and GDF9 mRNA in the cells
of ovaries derived from calves or cows. Total RNA was extracted
from oocytes, cumulus cells and mural granulosa cells. The
expression of these mRNAs was normalized to the expression of
GAPDH measured in the same RNA preparation. Results of three
independent experiments are summarized and expressed as the
mean ± SEM. Different letters above the bars indicate significant
differences (P < 0.05).

BMP15

GDF9

Cow follicleCalf follicle
senseantisense sense antisense

A B C D

E F G H

Figure 4 Localization of BMP15 and GDF9 mRNA in antral follicles. BMP15 (A-D) and GDF9 (E-H) mRNA were detected using in situ
hybridization. Positive cells are stained blue. The sections of calf (A, B, E, F) and adult (C, D, G, H) ovaries were individually hybridized with DIG-
labeled anti-sense (A, C, E, G) and sense (negative control; B, D, F, H) RNA probes. The scale bar is 100 μm.
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amount of BMP15. The two factors are thought to have
synergistic effect to proliferate or regulate granulosa
cells [2,7,8]. There is a possibility that the smaller
expression of both BMP15 and GDF9 in cumulus cells
of calves affect function of granulosa cells. The amount
of GDF9 gene expression was greater in calf oocytes,
than in cow oocytes, unlike in the cumulus cells. It is
required further study to clarify relationship between
the low developmental competence of calves and GDF9.

BMP15 inhibits FSH-induced granulosa cell differen-
tiation through down-regulation of FSH receptor
(FSHR) expression in rat granulosa cells [11]. In our
results, although QPCR revealed that the intensity of
BMP15 expression in the cumulus cells of adult ovaries
was significantly higher than that of calf ovaries, the
intensity of FSHR in cumulus cells of calf and adult
ovaries was not significantly different. In mutant sheep,
the FSHR binding assay showed no difference in FSH
responsiveness in granulosa cells between animals het-
erozygous for BMP15 mutation, whose phenotype is a
higher ovulation rate, and wild-type [36]. Whether rumi-
nant BMP15 inhibits FSHR gene expression and FSHR
activity needs further investigation. Previously, we
reported that FSHR mRNA expression was greater in
bovine largest (10.7+/-0.7mm) and healthy follicles than
in second-largest (7.8+/-0.2 mm) and atretic follicles
[30]. However, our results could not clarify the relation-
ship between the developmental competence of oocytes
and FSHR mRNA expression in the cumulus cells.
When comparing rodents with an incomplete estrus

cycle (mice, rats) to other animals with a complete
estrous cycle (humans, goats pigs and cows), GDF9 and
BMP15 appear in different tissues. In rodents, BMP15
and GDF9 expressed exclusively in oocytes [1,13,37,38].
However, in other species, including humans [39], goats
[5], pigs [3] and cows (this study), BMP15 and GDF9
were expressed in cumulus cells as well as in oocytes.
BMP15 and GDF9 have somewhat different roles
between rodents and ruminants: for example, in the
phenotypes of null mutations [12,14,16] and the ability
to regulate ovulation rates [12,14,16,40-42]. It was
speculated that these species-specific functional differ-
ences between monoovulatory human and sheep and

kd

18

15

BMP15 GDF9
Figure 5 Western blot analysis of recombinant His-tag fusion
bBMP15 and GDF9 protein. Recombinant proteins were loaded
onto separate lanes and separated by SDS-PAGE. Specific proteins
were detected by using custom BMP15 and GDF9 antibody.
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Figure 6 Localization of BMP15 and GDF9 in calf and cow
follicles. BMP15 and GDF9 immunoreactivity found in oocyte and
cumulus cells of calf (A, C) and cow (B, D) follicles. BMP15 and GDF9
proteins were staining brown by immunostain using BMP15 and
GDF9 antibody (A,B and C,D) or preimmuno serum with diluent
(negative control; E, F). The scale bar is 100 μm.
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Figure 7 QPCR analysis of FSHR mRNA in the cells of ovaries
derived from calves or cows. Total RNA was extracted from
cumulus cells and mural granulosa cells. The expression of these
mRNAs was normalized to the expression of GAPDH measured in the
same RNA preparation. Results of three independent experiments are
summarized and expressed as the mean ± SEM. Different letters
above the bars indicate significant differences (P < 0.05).
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polyovulatory mouse were attributable to the timing of
processing of the BMP15 proprotein into a functionally
mature BMP15 [43]. Although the biological significance
of BMP15 expression in follicular somatic cells has not
been fully elucidated, previous reports and the results of
the present study indicate the possibility that BMP15 in
somatic cells as well as in oocytes may regulate the
selection of follicle and/or ovulation in species with a
complete estrus cycle.
Differences in BMP15 expression between rodents and

cows were also detected in the pituitary. In mice,
BMP15 is expressed in the pituitary [44,45]. It was
hypothesized that BMP15 could play a physiological role
in the monotropic rise of FSH secretion by the pituitary
during the estrous and menstrual cycle [45]. However,
BMP15 was not expressed in the bovine pituitary
(Figure 1). In contrast, GDF9 was detected in rodents
and human pituitary [46]. Our results also revealed that
GDF9 mRNA was expressed in the bovine pituitary
(Figure 1). The physiological role of bovine GDF9 in the
pituitary remains to be determined.
In conclusion, this study demonstrated, for the first

time, that the intensity of expression of transcripts
encoding GDF9 and BMP15 differed between calf and
adult ovaries. Our results suggest that the lower devel-
opmental competence in calf oocytes is associated with
immature expression of BMP15/GDF9 in an intrafollicu-
lar environment.

Conclusions
We characterized the gene expression of BMP15 and
GDF9 in calf and adult bovine oocytes and cumulus
cells using QPCR and in situ hybridization. The expres-
sion of BMP15 and GDF9 in cumulus cells of adult
ovaries was significantly higher than that in calf ovaries.
GDF9 expression in the oocytes of calf ovaries was sig-
nificantly higher than that of the adult ovaries. The loca-
lization of gene and protein expression was ascertained
by in situ hybridization and immunohistochemintry. We
suggest the possibility that the lower developmental
competence of calf oocytes when compared to that of
cow oocytes, is related to the different expression of
BMP15 and/or GDF9 in oocyte and cumulus cells.
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