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Abstract

Background: In human pregnancy, a correct placentation depends on trophoblast proliferation, differentiation,
migration and invasion. These processes are highly regulated by placental hormones, growth factors and cytokines.
Recently, we have shown that adiponectin, an adipokine, has anti-proliferative effects on trophoblastic cells. Here,
we complete this study by demonstrating that adiponectin modulates BeWo and human villous cytotrophoblast
cell differentiation.

Results: We showed that hCG secretion was up-regulated by adiponectin treatment in both BeWo cells and
human cytotrophoblasts from very early placentas (5-6 weeks). The expression of two trophoblast differentiation
markers, leptin and syncytin 2, was also up-regulated by adiponectin in BeWo cells. Moreover, adiponectin
treatment induced a loss of E-cadherin staining in these cells. In parallel, we demonstrated that AdipoR1 and
AdipoR2 are up-regulated during forskolin induced BeWo cell differentiation, reinforcing the role of adiponectin in
trophoblast syncytialization. SiRNA mediated down-regulation of AdipoR1 and AdipoR2 was used to demonstrate
that adiponectin effects on differentiation were essentially mediated by these receptors. Finally, using a specific
inhibitor, we demonstrated that the PKA signalling pathway could be one pathway involved in adiponectin effects
on trophoblast differentiation.

Conclusion: Adiponectin enhances the differentiation process of trophoblast cells and could thus be involved in
functional syncytiotrophoblast formation.

Background
In human pregnancy, trophoblast cells play an essential
role in embryo implantation and placental development.
These cells differentiate according to one of two distinct
pathways. In the extravillous pathway, cytotrophoblasts
(CT) proliferate, differentiate into an invasive phenotype,
and penetrate into the maternal decidua and myome-
trium [1,2]. In the villous pathway, mononuclear CT
fuse to form a specialized multinuclear syncytium called
syncytiotrophoblast (ST) on the outer layer of placental
villi [1]. ST formation plays an important role in human
placentation. This process might be affected in some
pathological pregnancy situations. For example, altered
ST formation was observed in human preeclampsia [2].

The ST layer is the site of many placental functions
necessary for foetal growth and development, including
nutrient, gas exchanges, and synthesis of steroid and
peptide hormones [2]. Characteristics related to tropho-
blast differentiation include the production of hormones
like human chorionic gonadotropin (hCG), human pla-
cental lactogen, and leptin [3]. However, morphological
changes, which involve fusion of CT to form the ST
layer represent a hallmark of this differentiation. Studies
have highlighted the impact of adhesion molecules such
as cadherins in trophoblast differentiation. Among these,
E-cadherin is localized at the membrane of the isolated
CT and disappears when the CT fuse into ST [4,5].
Very recently, studies have demonstrated the role of for-
mer envelope viral proteins derived from human endo-
genous retrovirus (HERVs) in trophoblast cell fusion, of
which syncytin-1 [6] and syncytin-2 [7] seem to be of
high importance. Moreover, syncytin-2 mRNA and pro-
tein are particularly expressed in the ST [7,8].
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Different in vitro studies have shown that the villous
CT differentiation could be modulated by hormones and
by soluble factors. For example, epidermal growth factor
(EGF) [9], 17b-estradiol [10], granulocyte macrophage-
colony stimulating factor (GM-CSF) [11], glucocorti-
coids [12], and hCG [13] induce differentiation, whereas
tumor necrosis factor a (TNFa) [2,14] and tumor
growth factor b1 (TGFb1) [15] impair this process. Adi-
pokines such as leptin and adiponectin have recently
been shown to affect the reproductive system through
central effects on the hypothalamus and/or peripheral
effects on the ovary, endometrium, or directly on the
embryo and placenta developments [16-21]. Indeed, lep-
tin is specifically expressed in the ST [18], and is consid-
ered as a new placental hormone [18,22]. Adiponectin is
a cytokine, predominantly produced by adipose tissue,
and present at high concentrations in human circulation
(5-15 μg/ml) [23]. This adipokine is described as an
insulin sensitizing hormone [24-26], and has been
shown to have anti-inflammatory, anti-angiogenic, anti-
atherosclerotic and anti-proliferative roles in various cell
types [25]. Adiponectin is a 30 kDa protein that is
assembled into an array of complexes composed of adi-
ponectin multimers. Adiponectin subunits assemble into
trimers called low molecular weight complexes (LMW),
hewamers or middle molecular weight forms (MMW),
or more elaborate high molecular weight complexes
(HMW) composed of 9 hewamers. The HMW form is
predominant in human circulation [27]. Two specific
adiponectin receptors, AdipoR1 and AdipoR2 have been
identified [28]. Both receptors contain seven transmem-
brane domains but are structurally and functionally dis-
tinct from G-protein coupled receptors. AdipoR1 and
AdipoR2 are both expressed in human endometrium
and placenta [19,29,30]. However, adiponectin is only
produced by endometrial cells at the foetal-maternal
interface [19]. An additional receptor for adiponectin,
T-cadherin, has recently been described [31] but is not
expressed in human trophoblast [30]. AdipoR1 and Adi-
poR2 activate different signal transduction pathways
such as the AMPK, PKA, PI3K and P38/P42/P44 MAPK
pathways [16,25,28,32]. Recently, we have shown that
adiponectin exerts anti-proliferative effects on tropho-
blastic cell lines (JEG-3 and BeWo) and also on human
trophoblasts [30]. Moreover, it has been shown that adi-
ponectin serum concentrations are deregulated in some
placental pathologies as gestational diabetes mellitus
[33], and preeclampsia [34,35]. However, to date, there
are no data concerning the direct impact of adiponectin
in trophoblast differentiation.
To study adiponectin effects on trophoblast differentia-

tion, the widely used trophoblast differentiation model
BeWo choriocarcinoma cell line was chosen [36,37].
These cells have indeed a high degree of similarity to

normal placental trophoblasts and can morphologically
and functionally differentiate in vitro into ST. In particu-
lar, BeWo differentiation can be strongly induced by
cAMP analogs or forskolin, an adenylate cyclase activator
[37,38]. Thus, the effects of adiponectin on differentiation
in both BeWo cells and in villous cytotrophoblasts were
tested by measuring hCG secretion and expression of
various differentiation markers (leptin, syncytin-2 and
E-cadherin) to evaluate the associated morphological and
biochemical changes.

Methods
Materials
The culture medium DMEM/F12, penicillin, streptomy-
cin, forskolin, Compound C, H89, and bovine serum
albumine (BSA) were purchased from Sigma Chemical
Co. (St Louis, Mo, USA). Fetal Calf Serum (FCS) was
purchased from Gibco (Invitrogen, Carlsbad, Ca, USA).
Recombinant human adiponectin was provided by R&D
Systems Europe Ltd (Abingdon, UK), Superscript II
Rnase H- RT by Invitrogen corporation (Carlsbad, Ca,
USA), hCG by Organon (Puteaux, France), and RNA-
guard by Pharmacia Biotechnology (Uppsala, Sweden).
Trypsin was provided by Difco Laboratories (Detroit,
Mi, USA). The origin of the different antibodies used
are described in the following paragraphs.

BeWo cell culture
The human choriocarcinoma cell line BeWo was
obtained from American Type Collection of Cell (Mana-
ssas, Va, USA). Cells were maintained at 37°C under 5%
CO2, 95% air atmosphere in phenol-red free DMEM/
F12 medium with 15% FCS, streptomycin (10 μg/ml)
and penicillin (100 U/ml). On the day following plating,
BeWo cells were cultured in DMEM/F12 medium with
1% FCS in the presence of various agents such as for-
skolin (50 μM), adiponectin (25 ng/ml or 250 ng/ml
or 500 ng/ml), 17b-estradiol (0.1 μM), progesterone
(0.1 μM) and H89 (10 μM).

Isolation of villous cytotrophoblasts
This study was approved by the local ethical committee
(CCP) and informed consent was obtained from each
donor before clinical sampling.
First trimester human placental tissues (5-11 week

gestational age) were obtained from healthy pregnant
women aged between 16 and 36 when undergoing legal
abortions. Human placental villous cells were prepared
from tips of placental villi as previously described [39].
Placental villi were incubated in HBSS containing
0.125% trypsin, 4.2 mM MgSO4, 25 mM Hepes, and 50
U/ml Dnase type IV at 37°C without agitation. The first
15 min trypsin digestion containing a mix of extravillous
and villous CT was discarded. The chorionic villi were

Benaitreau et al. Reproductive Biology and Endocrinology 2010, 8:128
http://www.rbej.com/content/8/1/128

Page 2 of 12



then incubated in the same trypsin solution for 15 min
at 37°C (three times) and finally washed four times with
warm HBSS. Each time, the supernatant containing vil-
lous CT was collected after tissue sedimentation, filtered
through 100 μm nylon screen, and centrifuged at 200 g
for 10 min. Cells were washed twice and then filtered
through 40 μm nylon screen. The cell supension was
layered over a discontinuous Percoll gradient and centri-
fuged for 25 min at 1000 g. The layer corresponding to
40-45% percoll containing villous CT was washed twice
in DMEM/F12 medium supplemented with 10% FCS.
Cells were seeded in 24 well culture plates containing
DMEM/F12 medium with 10% FCS, streptomycin (100
μg/ml), penicillin (100 U/ml), and gentamycin (5 μg/ml).
Purified villous CT cultures were characterized by posi-
tive staining for cytokeratin 7 (CK7) (95% positive cells)
and by the observation of cell aggregates and syncytio-
trophoblasts from 48 to 72 h. In vitro, purified mono-
nuclear CT spontaneously differentiate to form a
multinucleated syncytium after 3 days in culture [39].

DNA quantification
BeWo cell and villous CT pellets were resuspended in a
PBS buffer. DNA content was quantified using an Insta-
Gene Matrix Reagent (Biorad, Hercules, Ca, USA)
according to the manufacturer’s instructions.

hCG and cAMP secretions
BeWo cells and villous CT were cultured in DMEM/F12
medium supplemented with 1% FCS with or without
adiponectin (250 ng/ml) or forskolin (50 μM) during 24,
48, and 72 h. The culture media were changed every 24
h. The hCG concentrations were measured in the cul-
ture medium using an automated immuno-chemilumi-
nescence analyser Architect (Abbott, Rungis, France). In
order to compare the secretion of hCG in supernatants,
results were normalized to 1 μg of DNA. cAMP concen-
trations were measured in the culture medium using a
cAMP [3H] assay system, code TRK432 (GE healthcare,
Orsay, France), according to the manufacturer’s
instructions.

RT-PCR
BeWo cells or villous CT were seeded in a 12 well cul-
ture plate (1.5×105 cells per well for BeWo cells and
3×104 cells per well for villous CT) and were cultured in
DMEM/F12 medium suplemented with 1% FCS with or
without adiponectin (25 or 250 ng/ml) or forskolin (50
μM) or 17b-estradiol (0.1 μM) or progesterone (0.1 μM)
for 24 or 48 h. Total RNA (0.1 μg) was extracted and
reverse transcribed as previously described [40]. Quanti-
tative PCR was performed using a LightCycler480®
instrument from Roche Diagnostics (Basel, Switzerland)
using primer sets indicated in table 1. The Second

Derivative Maximum Method was used to automatically
determine the crossing point (Cp) for individual sam-
ples. The two reference genes TBP and b-2-microglobu-
lin were chosen as previously described [30]. For each
sample, the concentration ratio (target/both reference
mRNAs) was calculated using the RelQuant Roche soft-
ware and expressed in arbitrary units. The data were
expressed as percentages of control situation. Calibra-
tion curves were log-linear over the quantification range
with correlation coefficient (r2) > 0.99 and efficiency
ranging from 1.8 to 2. The intra-assay variability of
duplicate crossing point (Cp) values never exceeded 0.2
cycle and the inter-assay variability (CV value) ranged
from 1.9 to 4.1% CV values for the 8 or 10 runs of each
transcript.

Immunocytochemistry
BeWo cells (4×104 cells/well), or villous CT (2×105 cells/
well), were plated in a labtech culture device (BD bios-
ciences, San Jose, Ca, USA) and cultured in DMEM/F12
medium supplemented with 1% FCS with or without adi-
ponectin (250 ng/ml) or forskolin (50 μM). After 24, 48
and 72 h treatment, cells were washed three times in PBS
buffer and fixed in methanol for 10 min at 4°C. Non-
specific IgG binding was blocked by incubation in PBS
with 3% BSA for 1 h. Samples were then incubated with
primary monoclonal mouse anti-human E-cadherin anti-
body (Ref: 610181, BD biosciences; San Jose, Ca, USA)
(1:200 dilution in PBS BSA 3%) overnight at 4°C. The
slides were then rinsed with PBS buffer and incubated
with FITC conjugated goat anti-mouse secondary anti-
body (Ref: SC-2010, Santa Cruz Biotechnology, Inc; Santa
Cruz, CA, USA) (1:200 dilution in PBS BSA 3%) for 1 h

Table 1 Primers used for PCR

Primer sets Sequence PCR product
(bp)

AdipoR1
Sense
Antisense

5’ TTC TTC CTC ATG GCT GTG ATG T3’
5’AAG AAG CGC TCA GGA ATT CG 3’

71

AdipoR2
Sense
Antisense

5’ ATA GGG CAG ATA GGC TGG TTG A 3’
5’ GGA TCC GGG CAG CAT ACA 3’

76

Syncytin-2
Sense
Antisense

5’ TCG GAT ACC TTC CCT AGT GC 3’
5’ GTA TTC CGG AGC TGA GGT TG 3’

126

Leptin
Sense
Antisense

5’ CCA AGA TGG ACC AGA CAC TG 3’
5’ GCC ACC ACC TCT GTG GAG TA 3’

220

TBP
Sense
Antisense

5’ TGC ACA GGA GCC AAG AGT GAA 3’
5’ CAC ATC ACA GCT CCC CAC CA 3’

132

B-2-
microglobulin
Sense
Antisense

5’ TGC TGT CTC CAT GTT TGA TGT ATC T 3’
5’ TCT CTG CTC CCC ACC TCT AAG T 3’

86
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at room temperature. Cell nuclei were counterstained
with DAPI. Syncytium formation was measured by obser-
ving the distribution of E-cadherin and nuclei in cells.
Control studies were performed using the above
described methods using mouse non-specific serum
instead of primary antibody.

RNA interference for AdipoR
Two pairs of small-interfering RNAs (siRNAs) corre-
sponding to different regions of each receptor gene were
chemically synthesized by Qiagen (Courtaboeuf, France).
The sequences of the sense siRNAs were: for human
AdipoR1: AAG GAC AAC GAC TAT CTG CTA and
CTG GCT AAA GGA CAA CGA CTA and for human
AdipoR2: ACC AAT TTA AGT GAA CAT TTA and
CGG CTC TCC TTG AAT AAG AAA. A fluorescently
labeled, non-silencing control siRNA was useful for the
optimization of transfection conditions and as a control
for non-specific silencing effects. For the knockdown
experiments, BeWo cells were plated in 24-well dishes
at 1×105 cells/well and cultured for 24 h in medium
without antibiotics. Cells were transfected with siRNAs
(5 nM/well) using a Lipofectamine RNAiMAX transfec-
tion reagent from Invitrogen (Carlsbad, CA, USA)
according to the manufacturer’s instructions. Adiponec-
tin (500 ng/ml) was added 24 h after transfection. After
72 h of culture, the mRNA expression was analyzed as
described above.

Statistics
Statistical analysis was performed using the raw data
from 6 to 10 separate experiments. The non-parametric
paired Wilcoxon test was applied to compare one adipo-
nectin concentration effect versus the control situation
(without adiponectin) for a given time exposure.

Results
Adiponectin effects on biochemical trophoblast
differentiation
Effects of adiponectin on hCG production in BeWo cells and
human villous CT
Production of hCG by the ST is a marker of biochem-
ical CT differentiation [13]. We measured hCG produc-
tion in BeWo cells after 24, 48 and 72 h exposure to
adiponectin (250 ng/ml). The medium was changed
every 24 h. Data presented in Figure 1A show a signifi-
cant positive effect of adiponectin on hCG production
after 48 h exposure (2.05 ± 0.24 fold change), which is
even more pronounced after 72 h (3.90 ± 0.42 fold
change). A significant positive effect was also observed
in the presence of forskolin (50 μM) used as a positive
control after 24, 48 and 72 h (Figure 1A). Then, we
tested effects of various concentrations of adiponectin
(25, 250, 500 ng/ml) after 48 h exposure in BeWo cells.

Results in Figure 1B revealed that adiponectin effects on
hCG production were already significant at 25 ng/ml
(1.47 ± 0.24 fold change) with a maximal effect at 500
ng/ml (2.26 ± 0.22 fold change).
In parallel, we investigated adiponectin effects on CT

cells purified from very early first-trimester human pla-
centas (5-6 week gestational age) or early first-trimester
human placentas (10-11 week gestational age). In villous
CT purified from very early placentas, we observed an
increase of hCG production in the presence of adipo-
nectin that was only significant at the maximum con-
centration (500 ng/ml) (Figure 1C). By contrast, in cells
purified from later placentas, adiponectin (250 and 500
ng/ml) reduced hCG production (Figure 1D).
Effects of adiponectin on leptin mRNA expression in BeWo
cells and human villous CT
It is well established that leptin is produced by ST and
can be considered as a marker of biochemical tropho-
blast differentiation [18]. Accordingly, we investigated
the effects of adiponectin on leptin mRNA expression in
BeWo cells and CT cells.
As shown in Figure 2A, maximal stimulation of leptin

mRNA expression was observed in BeWo cells after 24
h exposure to 250 ng/ml adiponectin (1.91 ± 0.19 fold
change). Moreover, this effect was maintained after 48 h
(1.53 ± 0.34 fold change) and still persisted up to 72 h
exposure (1.27 ± 0.23 fold change). Forskolin (50 μM),
which was used as a positive control, induced a very sig-
nificant up-regulation of leptin gene expression (× 6
after 24 h exposure and up to × 35 after 72 h exposure).
As can be seen in Figure 2B, adiponectin at 25 ng/ml

and at 250 ng/ml stimulates leptin mRNA expression in
CT cells after 48 h exposure (1.73 ± 0.45 and 2.14 ±
0.45 fold change, respectively).
Effects of adiponectin on syncytin-2 mRNA expression in
BeWo cells and human villous CT
Syncytin-2, which is up-regulated in ST, has been
described as a fusogenic protein involved in trophoblast
syncytialization [7,8]. We therefore investigated the
influence of adiponectin on syncytin-2 mRNA expres-
sion. As shown in Figure 3, exposure to adiponectin
(250 ng/ml) significantly increased syncytin-2 mRNA
expression in BeWo cells after 24 h exposure (1.16 ±
0.03 fold change). This effect was maintained after 48
and 72 h (1.39 ± 0.23 and 1.75 ± 0.44 fold change,
respectively). Forskolin (50 μM), which was used as a
positive control, strongly increased syncytin-2 mRNA
expression after 24, 48, and 72 h (3.21 ± 0.20, 10.31 ±
0.26 and + 19.06 ± 0.24 fold change, respectively). This
stimulatory effect of adiponectin was confirmed using
cultured primary trophoblast cells. Adiponectin 250 ng/
ml and 500 ng/ml stimulated syncytin-2 mRNA expres-
sion in villous CT (+1.55 ± 0.36 and + 2.47 ± 0.56 fold
change, respectively).
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Figure 1 Regulation of hCG production by adiponectin in BeWo cells and villous CT. Cells were exposed to adiponectin (25 ng/ml, 250
ng/ml or 500 ng/ml) or forskolin (50 μM) for 24, 48 and 72 h. hCG secretion was measured in the culture medium as described in Material and
Methods section. The values are the mean ± SEM obtained from 6-8 separate experiments and are expressed as fold-over control value
(untreated). For BeWo cells, the control values were: 122 ± 22; 160 ± 52; 119 ± 29 mIU/ml/μgDNA at 24 h, 48 h and 72 h, respectively. A. Effect
of 24, 48 and 72 h adiponectin (250 ng/ml) exposure on hCG production in BeWo cells. Medium were changed every 24 h. B. Effect of 48 h
exposure to adiponectin (25, 250 and 500 ng/ml) on hCG production by BeWo cells. C. Effect of 48 h exposure to adiponectin (25, 250 and 500
ng/ml) on hCG production by villous cytotrophoblast cells purified from 5-6 week gestational age placentas. D. Effect of 48 h exposure to
adiponectin (25, 250 and 500 ng/ml) on hCG production by villous cytotrophoblast cells purified from 10-11 week gestational age placentas. For
villous CT from 5-6 weeks’ gestation, the control values were 2020 ± 822 mIU/ml/μgDNA at 48 h. For villous CT from 10-11 weeks’ gestation, the
control values were 419 ± 167 mIU/ml/μgDNA at 48 h. *: p < 0.05; ***: p < 0.005; ns : non significant.
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Adiponectin effects on morphological trophoblast
differentiation
Effects of adiponectin on E-cadherin immunostaining in
BeWo cells and human villous CT
E-cadherin is a cell adhesion molecule expressed only in
isolated CT. During the trophoblast differentiation pro-
cess, E-cadherin mRNA and protein are down-regulated
in association with loss of E-cadherin staining from the
surface of fusing cells [4]. Thus, E-cadherin staining is a
qualitative marker of trophoblast syncytialization.
To confirm our results on syncytialization, we studied

E-cadherin staining in BeWo cells at different time
exposures to adiponectin (250 ng/ml) or forskolin (50
μM). The most important effects were observed after 72
h exposure and are presented in Figure 4. Under control
conditions (without adiponectin nor forskolin), more
than 90% BeWo cells aggregated and showed strong
E-cadherin staining at cell boundaries (Figure 4A). For-
skolin (50 μM) alone resulted in the disappearance of
E-cadherin from cell-cell contact areas (Figure 4C).
BeWo cells incubated with adiponectin (250 ng/ml) for
72 h exhibited a loss of E-cadherin staining and a level
of syncytialization similar to that in the presence of for-
skolin (Figure 4B).

E-cadherin staining was also observed in primary vil-
lous CT after 48 h exposure to adiponectin. With this
time exposure, under control conditions (without adipo-
nectin), we observed that some cells had spontaneously
fused and were negative for E-cadherin staining (Figure
4D). Cells exposed to adiponectin for 48 h expressed
less E-cadherin than cells cultured in control conditions.
Very few cells still expressed E-cadherin (Figure 4E). A
negative staining control can be observed on Figure 4F.

Signalling pathways involved in adiponectin effects on
trophoblast differentiation
Regulation of AdipoR1 and AdipoR2 mRNA expressions in
BeWo cells
To test the impact of AdipoR1 and AdipoR2 on adipo-
nectin effects in BeWo cells, we studied the regulation
of AdipoR mRNA expressions by different hormones
which are known to play a pivotal role during preg-
nancy. We demonstrated that forskolin (50 μM) signifi-
cantly increased the expression of both AdipoR mRNAs
after 24 h exposure in BeWo cells (Figure 5A-B). How-
ever, as can be seen in Figure 5, 17b-estradiol (0.1 μM)
and progesterone (0.1 μM) did not modify AdipoR
mRNA expressions in these cells.

Figure 2 Regulation of leptin expression by adiponectin in BeWo cells and villous CT. A. BeWo cells were exposed to adiponectin (250
ng/ml) or forskolin (50 μM) for 24, 48 and 72 h. B. Villous trophoblast cells were exposed to adiponectin (25 or 250 ng/ml) for 48 h. Total RNA
was extracted and analysed by RT-PCR. The values are the mean ± SEM obtained from 6-8 separate experiments and expressed as fold-over
control value (untreated). *: p < 0.05; **: p < 0.01; ***: p < 0.005.
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Finally, as some studies have described a down-regulation
of AdipoR by adiponectin itself [41-43], we studied Adi-
poR1 and AdipoR2 mRNA expressions in BeWo cells after
24 h exposure to human recombinant adiponectin. We
observed a small but significant decrease of AdipoR2
mRNA expression (0.77 ± 0.04 fold change) in the presence
of low adiponectin concentration (25 ng/ml) (Figure 5B).
However, a higher adiponectin concentration (250 ng/ml)
did not modify AdipoR1 and AdipoR2 mRNA expressions
in BeWo cells (Figure 5A-B).
SiRNA down-regulation of AdipoR in BeWo cells
In these experiments, we used two different siRNA for
each receptor and we observed a decrease of 67 and
54% in AdipoR1 and R2 expression, respectively, after
72 h of transfection (Figure 6A). Furthermore, as shown
in Figure 6B, this partial suppression of AdipoR1 and R2
with siRNA inhibited the increasing leptin mRNA
expression by adiponectin.
Transduction pathways involved in adiponectin effects on
BeWo cells
The classical signal transduction pathway involved in
CT differentiation is the activation of the adenylate
cyclase -cAMP- PKA pathway [44]. We tested the
impact of the PKA pathway on the induction of hCG
secretion by adiponectin in BeWo cells using a PKA
transduction pathway inhibitor.

We demonstrated that treatment of BeWo cells with
adiponectin (250 ng/ml) for 48 h increased cAMP pro-
duction as compared to the control situation (2.05 ±
0.29 fold change; Figure 7A). Forkolin, used as a positive
control, strongly increased cAMP levels. Moreover, as
shown in Figure 7B, treatment of BeWo cells with adi-
ponectin for 48 h in the presence of the specific inhibi-
tor H89 (10 μM) for PKA pathway suppressed the
positive effect of adiponectin on hCG secretion. In our
experimental conditions, addition of H89 alone induced
a slight increase of hCG production in these cells (1.39
± 0.21 fold change).

Discussion
Many factors involved in the regulation of trophoblast
differentiation have been described. Some of them are
also involved in trophoblast proliferation. We have
recently shown that adiponectin exerts anti-proliferative
effects on trophoblast cells [30]. In the present study,
we provide new evidence that adiponectin also promotes
a trophoblast differentiation process.
We have examined direct adiponectin effects on

BeWo cell and villous CT differentiation by studying
biochemical and morphological markers of the ST. We
have found that adiponectin was able to i) up-regulate
expression of fusion markers as syncytin-2 and

Figure 3 Regulation of syncytin-2 expression by adiponectin in BeWo cells and villous CT. A. BeWo cells were exposed to adiponectin
(250 ng/ml) or forskolin (50 μM) for 24, 48 and 72 h. B. Villous trophoblast cells were exposed to adiponectin (25 or 250 ng/ml) for 48 h. Total
RNA was extracted and analysed by RT-PCR. The values are the mean ± SEM obtained from 6-8 separate experiments and expressed as fold-over
control value (untreated). *: p < 0.05; **: p < 0.01; ***: p < 0.005; ns: non significant.
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ii) reduce E-cadherin membrane staining, indicating that
adiponectin promotes the syncytialization of trophoblast
cells. Moreover, we have shown for the first time that
adiponectin induces a strong increase of leptin expres-
sion in BeWo cells and human villous CT. In this way,
adiponectin could potentiate the positive effects of leptin
on proliferation and invasion of trophoblast cells
[21,22,45].
In BeWo cells, adiponectin also mediates a modest but

reproducible induction of hCG production. To investi-
gate the physiological relevance of this result, we exam-
ined the effects of adiponectin on hCG production in
villous CT. We observed that adiponectin exerts a gesta-
tional age-dependent dual action on first trimester
placentas. Like in BeWo cells, we observed an up-
regulation of hCG production by adiponectin in villous
CT purified from very early placentas (5-6 week

gestational age). By contrast, in cells purified from later
placentas (10-11 week gestational age), adiponectin
decreased hCG production. This last result is in accor-
dance with another study showing a down-regulation of
hCG production by adiponectin on the ST of term pla-
centas [46]. Moreover, similar results were observed
with the placental growth factor EGF, that has gestation-
nal age-dependent effects in first trimester placentas
[47]. This switch could be related to the oxygen expo-
sure during placentation. Indeed, it is well established
that during early pregnancy, placentation occurs in a
relative hypoxic environment. After 10-12 weeks’ gesta-
tion, the intervillous space opens to maternal blood and
results in exposure of the trophoblasts to increased oxy-
gen levels [2]. In this context, we can hypothesize that
the dual effect of adiponectin on hCG production
between 5-6 weeks and 10-11 weeks of gestation could

Figure 4 Regulation of E-cadherin staining by adiponectin in BeWo cells and villous CT. Cells were exposed to adiponectin (250 ng/ml) or
forskolin (50 μM) for 72 h. E-cadherin staining was revealed as described in the Material and Methods section. This figure showed one
representative among six separate experiments. (A, B, C) BeWo cells. A. Control (untreated). B. Adiponectin. C. Forskolin. (D, E, F) Villous
cytotrophoblasts. D. Control (untreated). E. Adiponectin. F. Negative staining control using mouse non specific serum intead of primary antibody.
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Figure 5 Regulation of AdipoR mRNA expressions by adiponectin and hormones in BeWo cells. Cells were exposed to the effectors for
24 h. Total RNA was extracted and analysed by RT-PCR. The values are the mean ± SEM obtained from 6-8 separate experiments and expressed
as fold-over control value (untreated). A. AdipoR1 mRNA expression. B. AdipoR2 mRNA expression. *: p < 0.05; **: p < 0.01; ns : non significant.

Figure 6 Role of specific adiponectin receptors in differentiating effects of adiponectin in BeWo cells. Effects of adiponectin in AdipoR-
deficient BeWo cells. Cells were cultured for three days in the presence of 5 nM AdipoR1/R2 or 10 nM control siRNA. A. Level of AdipoR in
transfected cells. Total RNA was extracted and analyzed by RT-PCR as described in Material and Methods section. Results are the means ± SEM of
8 experiments and are expressed as a percentage of the control (non-silencing). B. Effect of adiponectin on the induction of leptin expression.
AdipoR-depleted cells with 5 nM of siRNA were or were not exposed to adiponectin (500 ng/ml) for 48 h. Results are expressed as fold-over
control value (without adiponectin). Each bar represents the mean ± SEM of six separate experiments. *: p < 0.05; **: p < 0.01; ns : non
significant.
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be dependent on signalling pathways and/or transcrip-
tional factors sensitive to oxygen concentrations [48].
Experiments are currently in progress in our laboratory
to test this hypothesis.
We have thus shown that adiponectin is a new regulator

of leptin and hCG production, which are both essential
placental hormones. Moreover, it was recently shown that
leptin expression is up-regulated by hCG in the tropho-
blastic cell line BeWo and in placental explants [49] and,
inversely, that leptin increases hCG production in tropho-
blast and adipose cells [50-52]. Adiponectin, through
direct or indirect actions, could strengthen this amplifica-
tion loop between hCG and leptin. Moreover, the positive
effect of adiponectin on hCG expression might be rein-
forced by the up-regulation of AdipoR1 by hCG itself
(data not shown) [53]. This last finding is in accordance
with an in vivo study showing an up-regulation of Adi-
poR1 -specifically by hCG- in rat ovaries [53]. Silencing
the AdipoR1 and AdipoR2 genes suppressed adiponectin
effects on leptin expression. This result suggests a critical
impact of AdipoR in adiponectin regulation of trophoblast
differentiation.
Biological effects of adiponectin are initiated by Adi-

poR1 and AdipoR2 inducing the activation of protein
kinases, mainly the AMPK but also the PKA pathways
[32]. The rise of intracellular cAMP production by the
PKA pathway is widely described as the main signal

mediating trophoblast differentiation [44]. Thus, we
used a specific inhibitor (H89) to investigate the impact
of PKA signalling pathway in adiponectin effects in
BeWo cells. We show that the addition of H89 sup-
pressed the positive effect of adiponectin on hCG secre-
tion. Moreover, adiponectin increases cAMP release in
BeWo cells, reinforcing PKA signalling impact. How-
ever, this increase was more pronounced in the presence
of forskolin and could explain the difference between
adiponectin and forskolin effects on hCG production.
Finally, we found that AdipoR1 and AdipoR2 mRNA

expressions were increased by forskolin, suggesting a
cAMP dependent mechanism. This up-regulation of the
AdipoR could maintain a higher sensitivity to adiponec-
tin in trophoblast cells and thus promote the positive
effects of adiponectin on trophoblast differentiation.
A recent study showing that adiponectin induces dif-

ferentiation and fusion of muscle cells via AMPK path-
way [54]. Our results show that adiponectin can
promote cell fusion in another cell type.
The process of syncytialization is linked to the early

stages of the apoptotic cascade within cytotrophoblast
cells [55]. In particular, initiator caspase 8 and caspase
14 are involved in this process [56,57]. Adiponectin has
been described as a pro-apoptotic factor in many cell
types, including breast cancer cells [58] and endometrial
cells [17]. Further experiments will be needed to

Figure 7 Role of PKA pathway in differentiating effects of adiponectin in BeWo cells. BeWo cells were exposed to adiponectin (250 ng/ml)
or PKA inhibitor H89 (10 μM) or adiponectin with H89 or foskolin alone (50 μM) for 48 h. A. Effects of adiponectin on cAMP production by
BeWo cells was measured in the culture medium as described in the Material and Methods section. The values are the mean ± SEM obtained
from 9-10 separate experiments. B. Effect of H89 on adiponectin hCG production by BeWo cells. hCG secretion was measured in the culture
medium as described in Material and Methods section. The values are the mean ± SEM obtained from 7-8 separate experiments and expressed
as fold-over the control value (untreated). *: p < 0.05; ***: p < 0.001; ns : non significant. (a): vs control (without H89 nor adiponectin). (b):
adiponectin + H89 vs H89 alone.
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establish whether adiponectin effects on differentiation
are also mediated by these caspases.
Inappropriate trophoblast differentiation is a potential

cause of the aetiology of pre-eclampsia and fetal growth
restriction. Altered plasma adiponectin concentrations
have been described in women with pre-eclampsia [59],
reinforcing its possible impact on the control of tropho-
blast differentiation.
In conclusion, our study reveals a novel function for

adiponectin in modulating trophoblast differentiation.
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