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Background

It has been well acknowledged that the anterior pituitary
is regulated via hypothalamic hormones released at the
median eminence [1]. Although there are small amount

Abstract

Background: A series of studies showed the presence of substantial amount of nerve fibers and
their close relationship with the anterior pituitary gland cells. Our previous studies have suggested
that aside from the classical theory of humoral regulation, the rat anterior pituitary has direct
neural regulation on adrenocorticotropic hormone release. In rat anterior pituitary, typical
synapses are found on every type of the hormone-secreting cells, many on lactotrophs. The present
study was aimed at investigating the physiological significance of this synaptic relationship on
prolactin release.

Methods: The anterior pituitary of rat was sliced and stimulated with electrical field in a self-
designed perfusion chamber. The perfusate was continuously collected in aliquots and measured by
radioimmunoassay for prolactin levels. After statistic analysis, differences of prolactin
concentrations within and between groups were outlined.

Results: The results showed that stimulation at frequency of 2 Hz caused a quick enhancement of
prolactin release, when stimulated at 10 Hz, prolactin release was found to be inhibited which came
slower and lasted longer. The effect of nerve stimulation on prolactin release is diphasic and
frequency dependent.

Conclusions: The present in vitro study offers the first physiological evidence that stimulation of
nerve fibers can affect prolactin release in rat anterior pituitary. Low frequency stimulation
enhances prolactin release and high frequency mainly inhibits it.
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of autonomic vascular nerve fibers in the gland, they do
not play a role of direct regulation of hormone secretion
[2,3]. Since the discovery of the presence of substantial
amount of nerve fibers among the anterior pituitary gland
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cells of monkey in late 1980s [4,5], a series of studies have
been conducted showing that most of these nerve fibers
are closely related to the gland cells in several mammalian
species [6-10], with their varicosities in close proximity to
the latter. Electron microscopic studies have proven that
the nerve terminals form synapses with the anterior pitui-
tary gland cells, which serves as a golden morphological
criterion that the nerve fibers can regulate the activity of
gland cells [11,12]. In the rat, typical asymmetrical syn-
apse can be found on every type of gland cells [13]. To
evaluate the importance of synapses, their number per
anterior pituitary of the rat has been quantitatively stud-
ied, demonstrating that there are as many as about 12,000
synaptophysin-like immunoreactive nerve terminals or
varicosities in an anterior pituitary [14]. Further func-
tional morphological studies by adrenalectomy [15-17] or
ovariectomy [18] to manipulate the plasma hormone lev-
els in the rat have shown profound increase in the density
of nerve fibers in the anterior pituitary as a result of active
axonal sprouting. The number of synapses was also found
markedly increased after adrenalectomy [14]. Paden et al.
reported that after adrenalectomy the sprouting nerve fib-
ers tend to gather around the corticotrophs [19]. All these
lines of evidence imply a direct neural regulation of the
mammalian anterior pituitary and a hypothesis of neural-
humoral dual regulation of the anterior pituitary has been
postulated [11-13].

Having observed synapses on corticotrophs [11-13], we
speculated that the nerve fibers might play the role of
inducing rapid release of ACTH when a situation, such as
acute stress, might call for. Our subsequent study indeed
proved that when the nerve fibers in the anterior pituitary
were stimulated at a low frequency of 2 Hz, which is
known to induce release of classical transmitters from the
small clear synaptic vesicles [20,21], there appeared an
almost immediate surge of ACTH release of two minutes
(min). However, when stimulated at 10 Hz, a frequency
acknowledged to induce exocytosis of the large dense-core
synaptic vesicles, which contain mainly neuropeptides
[20,21]; there appeared a slower and longer gentle curve
of ACTH inhibition [22,23].

In the rat, synapses are found on every hormone-secreting
cell type. In fact, it is the lactotroph that is most frequently
found to have a synapse [13]. Prolactin is another hor-
mone hormone whose rapid release may be needed. It is
clear that prolactin secretion is dramatically affected by
stress. A myriad of stresses have been used to characterize
such effects on prolactin secretion. These include but not
limited to ether stress [24], restraint stress [25], thermal
stress [26], hemorrhage [27], social conflict [28], and even
academic stress in humans [29]. We speculated that nerve
fibers might play a role of inducing rapid prolactin
release. The present experiment was thus aimed to study
the effect of nerve stimulation on prolactin release.

http://www.rbej.com/content/7/1/154

Methods

Animals

Adult male Sprague-Dawley rats, weighing 220-240 g,
were obtained from FMMU's University Laboratory Ani-
mal Center. They were housed (three rats per cage) in a
temperature-controlled room, and a 12: 12 h light/dark
cycle (lights on at 07.00 h), with free access to food and
water.

The rats were handled by holding and gripping 10 times
each day for 5 consecutive days before experiments to
minimize the effect of stress. Every precaution was taken
to ensure proper and humane treatment of the rats. The
number of rats used in each experiment group is indicated
in the figure legends and tables.

Tissue preparation

The experiments started at 09.00 h, the rats were anaesthe-
tized with sodium pentobarbital (40 mg/kg body weight,
i. p). After decapitation, the pituitary gland was immedi-
ately dissected. The intermediate and posterior lobes were
then removed and discarded. The completeness of the
removal was checked by hematoxylin and eosin (H-E)
staining. The isolated anterior lobe was kept in pre-cooled
(4°C) Krebs-Ringer bicarbonate solution (KRBGA, mmol/
L: NaCl 119.0, KCl 4.7, CaCl, 2.5, KH,PO, 1.2, MgSO,
1.2, NaHCO, 25.0, Glucose 11.0, plus BSA 0.1% and baci-
tracin 40 mg/L) and rinsed three times. The anterior pitu-
itary was then cut sagittally into 0.8 mm slices with a self-
designed tissue chopper. The slices were subsequently
transferred into a self-designed stimulation-perfusion
chamber.

Perfusion and electrical field stimulation (EFS)

The schematic diagram of the perfusion chamber was
showed in our previous paper [23]. Within the perfusion
chamber, the anterior pituitary slices were placed onto
wide-bore nylon net between two flat ring-shaped plati-
num wire electrodes of 4 mm in diameter. The horizon-
tally placed paired electrodes were 7 mm apart and had no
contact with the nylon net and pituitary slices. The per-
fusion chamber was kept at 37°C with a surrounding
water bath. The tissue slices were perfused at a rate of 0.1
ml/min with KRBGA (37°C), which was saturated with
95% oxygen and 5% carbon dioxide. After stabilization
for 30 minutes (min), the perfusate was continuously
sampled as aliquots (every 10 min or every 1 min) and
stored at -20°C for RIA later. For 10-min sampling, the
chamber volume was 0.9 ml and the dead volume of the
perfusion system was 86 pl. For 1-min sampling, the
chamber was made smaller in size with a volume of 0.15
ml, so that changes in prolactin secretion may be more
quickly reflected in the perfusate.

The EFS was produced using a SEN 3001 stimulator
(Nihon Kohden, Japan) and applied through two ring-
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shaped electrodes sandwiching the tissue slices. Based on
our previous experience [22], square waves of 0.5 ms and
20 mA were used. 2 Hz and 10 Hz were selected for low
and high frequency, respectively, which may induce dif-
ferent transmitter releasing [20,21]. The isolator function
was chosen to produce trains of electrical stimulation and
the whole stimulation output was continuously moni-
tored through an oscilloscope.

Prolactin RIA and statistic analysis

The double-antibody rat prolactin RIA kit (the rat prolac-
tin antigen and antiserum were kindly provided by Dr. A.
F. Parlow of National Institute of Diabetes and Digestive
and Kidney Diseases, NIDDK, Torrance, CA, USA; and the
radio-iodination was performed by Medical and Pharma-
cal Union Inc., Tianjin, China) was used for the measure-
ment of prolactin concentrations. The range of assay was
10-200 pg/ml, with the intra- and inter-assay variation
being 5.6% and 8.9% respectively. Measurements in
duplicates were performed.

For statistic analysis, SPSS statistical software, version 10.0
(SPSS Inc., Chicago, IL, USA) was used. Significance of dif-
ferences was determined by analysis of variance
(ANOVA). Differences in changes of prolactin concentra-
tion within groups were determined by the Dunnett ¢ -test.
Differences between groups were determined by the least
significant difference test (LSD). P < 0.05 was considered
statistically significant (* P < 0.05, ** P < 0.01).

Controls

Perfusion controls

To test the basal release of prolactin during the experi-
ment, the anterior pituitary slices were perfused with
KRBGA only and the perfusate was continuously collected
every 10 min or every 1 min.

Tetrodotoxin (TTX) perfusion controls

To test the effect of TTX alone on prolactin secretion, TTX
(purity 99.5%, supplied by the Shanghai Institute of Phys-
iology) of 1 pmol/L was added to KRBGA after stabiliza-
tion with KRBGA perfusing for 30 min. The perfusate was
continuously collected every 10 min or every 1 min.

TTX blocking controls

To block the action potential along the nerve fibers, TTX
of 1 umol/L was added to KRBGA, and the anterior pitui-
tary slices were pre-incubated for 30 min before EFS
started. To compare with the experimental groups, the
perfusate was also continuously collected every 10 min or
every 1 min.

Functional viability controls

For assessment of the functional viability of lactotrophs
during the experiment, KRBGA was replaced with high
potassium KRBGA (KRBGA with 60.0 mmol/L of K* and

http://www.rbej.com/content/7/1/154

64.9 mmol/L of Na+) at the end of each test, to evoke peak
prolactin output. To detect the concentration of prolactin,
these samples were diluted with 0.85% NaCl solution
before RIA.

Results

Perfusion controls

After 30 min equilibration, the anterior pituitary slices
were perfused with KRBGA only and the perfusate was
continuously collected every 10 min (Fig. 1-1) or every 1
min (Fig. 1-2). No significant changes in prolactin basal
levels were noticed during the experiment.

TTX perfusion controls

After 30 min equilibration, the anterior pituitary slices
were perfused with KRBGA containing TTX of 1 pmol/L
and the perfusate was continuously collected every 10
min (Fig. 1-3) or every 1 min (Fig. 1-4). TTX of 1 umol/L
failed to affect prolactin basal secretion. No significant
changes were noticed during the experiment.

TTX blocking controls

TTX blocking controls showed that in every experiment
either the excitatory or inhibitory effect of EFS could be
totally blocked (see Figs. 2, 3, 4 and 5 and Tables 1, 2, 3
and 4).

Functional viability controls

At the end of each test, high potassium caused drastic
secretion of prolactin (see Figs. 1, 2, 3, 4 and 5). The
results indicated good secretory responsiveness of lac-
totrophs and showed the viability of the gland cells during
the entire experiment.

Effects of low frequency (2 Hz) stimulation on prolactin
release

Stimulation of 2 min

The EFS started at the beginning of sample-0. When ana-
lyzed in 10-min samples (Fig. 2-1 and Group I of Table 3),
there was a brief sharp increase in prolactin secretion,
detectable only at sample-0 (in average, 142% of the basal
secretion level, P < 0.01). In 1-min samples (Fig. 2-2 and
Group A of Table 1), a wave of prolactin secretion lasting
for 6 min (from sample-1 to sample-6) was noticed,
which started from the second min of stimulation (sam-
ple-1, 131%, P < 0.05), peaked at sample-3 and sample-4
(both 183%, P < 0.01), and then subsided until sample-7,
when the prolactin secretion returned to the basal level.

Stimulation of 10 min

The 1-min samples showed that the rising phase of the
increase appeared the same as that in the 2-min stimula-
tion experiment. After reaching the peak at sample-3
(169%, P < 0.01), prolactin secretion level maintained as
a plateau until the end of the 10-min experiment (Fig. 3-
2 and Group E of Table 2). When assayed in 10-min sam-
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=5). (4) TTX (I umol/L) perfusion control of (2) (n = 5). K*, prolactin release was evoked by high potassium (60 mmol/L). **
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ples (Fig. 3-1 and Group M of Table 4), the increase in
prolactin secretion continued for about 30 min. At sam-
ples 0-20, the relative secretion levels were 152%, 152%
and 150%, respectively (P < 0.01 for all). At sample-30, it
declined to 127% (P < 0.01) and then returned to the
basal level at sample-40 (Fig. 3-1 and Group M of Table
4). No inhibition of prolactin release was observed in the
2-Hz stimulation groups.

Statistic analysis proved that there was significant differ-
ence between 2-min and 10-min stimulation groups (P <
0.01).

Effects of high frequency (10 Hz) stimulation on prolactin
release

Stimulation of 2 min

When the anterior pituitary slices were stimulated for 2
min and examined in 10-min samples, no significant
change in prolactin release could be detected (Fig. 4-1 and
Group K of Table 3). But when parceled in 1-min samples
(Fig. 4-2 and Group C of Table 1), it became evident that
there was an immediate transient increase in prolactin
release only at sample-1 (121%, P < 0.01), which was fol-
lowed by an inhibition of 3 min, from sample-4 to sam-
ple-6 (76%, P < 0.01; 75%, P < 0.01; and 84%, P < 0.05;
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20 mA, 0.5 ms and 2 Hz. The perfusate was continuously collected as aliquots and measured by RIA. (1) Perfusate sampled
every 10 min (n = 4). (2) Perfusate sampled every | min (n = 6). (3) TTX (I umol/L) blocking control of (1) (n =4). (4) TTX (I
pumol/L) blocking control of (2) (n = 5). K*, prolactin release was evoked by high potassium (60 mmol/L). * P < 0.05, ** P < 0.01.

respectively). The prolactin concentration resumed basal
level from sample-7 on (Fig. 4-2 and Group C of Table 1).

Stimulation of 10 min

In 1-min samples (Fig. 5-2 and Group G of Table 2), an
early 1-min only transient increase of prolactin release
appeared (sample-1, 120%, P < 0.05), the same as in 2-
min stimulation experiment. Similarly, the inhibition
started from sample-4, but it lasted till the end of the
experiment (sample-9) with a very gentle down slope
(sample-4 to sample-9: 78%, P < 0.05; 78%, P < 0.05;
74%, P < 0.01; 70%, P < 0.01; 68%, P < 0.01; 67%, P <
0.01; respectively). The 10-min sample analysis (Fig. 5-1

and Group O of Table 4) revealed that the suppression
continued for 40 min, from sample-10 to sample-40
(73%, 67%, 68%, 78%, respectively; P < 0.01 for all), with
the lowest value at samples-20 and 30.

Statistic analysis showed that there was significant differ-
ence between 2-min and 10-min stimulation groups (P <
0.01).

Discussion

Several groups reported that the anterior pituitary con-
tains calcitonin gene-related peptide [30-32] and sub-
stance P [33] immunoreactive nerve fibers. Reports of Gao
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20 mA, 0.5 ms and 2 Hz. The perfusate was continuously collected as aliquots and measured by RIA. (1) Perfusate sampled
every 10 min (n = 6). (2) Perfusate sampled every | min (n = 5). (3) TTX (I umol/L) blocking control of (1) (n =5). (4) TTX (I
pumol/L) blocking control of (2) (n = 6). K*, prolactin release was evoked by high potassium (60 mmol/L). ** P < 0.01.

LZ et al. have strongly implied the existence of direct neu-
ral regulation on ACTH release [22,23]. The present study
indicates that EFS of the nerve fibers in the anterior pitui-
tary of the rat have excitatory and inhibitory effects on
prolactin secretion.

In the present experiment, it is most important to confirm
that nerve fibers are stimulated directory and the gland
cells are not done. The reversing effect of TTX on the elec-
trically evoked changes suggests an indirect effect of the
stimulus on the lactotrophs. TTX itself has no effect on lac-
totrophs of prolactin release, and at the same time, the

existence of TTX could totally block the changes of lac-
totrophs releasing caused by EFS. It is safe to conclude that
the lactotrophs are not stimulated directly. The only rea-
sonable explaination is that nerve fibers are stimulated
directly. The fluctuation of the prolactin level is the result
of nerve releasing.

The anterior pituitary is composed of five major hor-
mone-secreting cell types, corticotrophs, lactotrophs, thy-
rotrophs, somatotrophs and gonadotrophs. These cells
are of the same origin, but exhibit marked differences in
the expression levels of the ionic channels and differ with
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every 10 min (n =5). (2) Perfusate sampled every | min (n = 5). (3) TTX (I umol/L) blocking control of (1) (n =5). (4) TTX (I
pumol/L) blocking control of (2) (n = 4). K*, prolactin release was evoked by high potassium (60 mmol/L). * P < 0.05, ** P < 0.01.

respect to their patterns of basal hormone secretion [34].
Specifically, lactotrophs exhibited low expression levels of
TTX-sensitive Na+ channel, which may be of physiological
significance for the control of Ca2+ homeostasis and secre-
tion of prolactin. Sankaranarayanan S et al. reported that
TTX had no effect on spontaneous action potentials of pri-
mary cultured lactotrophs [35]. Kazahari K et al. reported
that voltage-sensitive sodium channels are not expressed
in the anterior pituitary of rat [36]. In our present experi-
ment, TTX (1 pmol/L) itself did not affect the secretion
level of lactotrophs and no significant change in prolactin
release was detected when perfused with KRBGA contain-

ing 1umol/L TTX only. In every experiment, both the exci-
tatory and inhibitory effect of EFS could be totally blocked
by TTX suggesting that direct stimulation of the gland cells
was unlikely, which is also supported by the biphasic
nature of prolactin secretion following 10 Hz stimulation.

Neurotransmitters pass messages from one particular cell
to another, which happens in a particular time and a par-
ticular place [37]. In the present experimental system, dur-
ing and after EFS of 2 Hz, the releasing of
neurotransmitter(s) is the dominant reason for the fluctu-
ation of prolactin level. Peptides are public announce-
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Table I: PRL concentrations of |-min sampled perfusate, EFS of
2 min (Mean £ SD, pg/ml)

http://www.rbej.com/content/7/1/154

Table 3: PRL concentrations of 10-min sampled perfusate, EFS of
2 min (Mean * SD, pg/ml)

Group A Group B Group C Group D Group | Group ) Group K Group L
-1 117+ 1.0 118 +3.3 I +1.3 107 £ 1.0 -10 107+ 1.0 107 £ 1.0 120 £ 1.1 121 £ 0.6
0 132 £ 13.0 113+74 118 £57 103 £ 5.1 0 152 + 5.9%* 102 + 4.9 115 +57 114 +52
| 153+ 151 * 115+26 134 +3.3 ** 107 £ 1.7 10 105+ 0.5 105+ 1.7 19 £ 1.7 118 £0.7
2 184 + 24.5%* 118 £ 4.3 Il +6.6 108 + 3.2 20 107 £ 3.9 107 £2.2 121 £3.2 121 £ 4.0
3 214+ 18.6%* 118+ 1.2 101 + 6.0 109+ 1.0 30 107+ 1.0 107 £ 1.9 121 £ 1.1 121 +2.8
4 214+ 184%* 113+£43 84 + 3.9%* 104 £ 5.8 40 104 £5.2 103 £ 4.9 115+59 115 +44
5 193 + 32.8%* 116 £2.6 83 £ 8.6%* 107 £ 1.5 50 108 + 4.0 105 £ 2.2 118+ 1.3 118+ 1.5
6 153 + 14.9*% 115+5.9 93 £ 9.6* 109+2.8 60 107 £ 3.7 108 + 2.1 119 £3.7 121 £2.5
7 131 + 84 117 £2.0 105 + 4.6 108 + 1.3 70 107 £ 1.3 108 + 2.5 120 + 1.1 121 £ 0.8
8 114+53 113+5.0 106 + 4.6 106 + 5.3 80 102 + 3.9 102 + 3.7 118+ 5.0 114+5.0
9 117 £3.2 115+3.7 107 £ 1.3 107 £ 1.7 90 106 £ 0.8 105+ 1.7 119 +24 119+ 1.6
K* 423 £423% 44| £ 334% 382 + 25.0%F 470 + 35.7** K* 451 +£23.2% 465+ 29.0% 633 £24.0" 619 + 34.7%
N 6 5 5 4 N 4 4 5 5

Group A: 2 Hz. Group B: 2 Hz + TTX (I pmol/L). Group C: 10 Hz.
Group D: 10 Hz + TTX (I umol/L).

The perfusate was continuously collected as aliquots every | min and
measured by RIA. Italic data represents results during electrical field
stimulation.

TTX, tetrodotoxin; EFS, electrical field stimulation; K*, prolactin
release was evoked by high potassium (60 mmol/L); N, the number of
the rat used.

*Significant changes within group (* P < 0.05, ** P < 0.01).

ments, messages endure, at least for a while; they are
messages from one population of neurons to another
[38]. During and after EFS of 10 Hz, neurotransmitters (in
smaller quantity) and peptides (in greater quantity)
worked together, volume transmission or a paracrine
effect may well play a role at the same time. These com-

Table 2: PRL concentrations of |I-min sampled perfusate, EFS of
10 min (Mean % SD, pg/ml)

Group I: 2 Hz. Group J: 2 Hz + TTX (I umol/L). Group K: 10 Hz.
Group L: 10 Hz + TTX (I umol/L).

The perfusate was continuously collected as aliquots every 10 min
and measured by RIA. Italic data represents results during electrical
field stimulation.

TTX, tetrodotoxin; EFS, electrical field stimulation; N, the number of
the rat used.

*Significant changes within group (** P < 0.01).

bined effects may cause the fluctuation of the perfusate
prolactin level.

The neuroendocrine control of prolactin secretion is dif-
ferent from that of any other pituitary hormone [39]. It is
predominantly inhibited by the hypothalamus [40] and
acts directly in the brain to suppress its own secretion via

Table 4: PRL concentrations of 10-min sampled perfusate, EFS of
10 min (Mean % SD, pg/ml)

Group E Group F Group G Group H Group M Group N Group O Group P
-1 120 £ 2.1 119£25 120 £ 1.6 109 £ 0.5 -10 119+ 1.0 119+ 1.3 120 £ 1.2 120 £ 2.1
0 137 £ 5.7 11456 132+ 5.1 104 + 5.1 0 181 + 6.1** 114 +3.8 110+ 6.6 114 +5.2
| 159 + 9.3%* 117 +3.1 144 + 4.1* 107 £ 0.8 10 181 + 5.1 117 +£1.3 88 + 2.4** 118+ I.1
2 182+ 13.0%* 121 £2.8 119 + 7.6%* 109 £ 3.3 20 179 + 6.4+ 120 + 3.6 80 + 0.6 120 + 2.4
3 203 £ 7.4%* 120 + 1.4 106  |1.0%* I +1.3 30 151 + 7.0+ 11920 8l £ 2.3*%* 120+ 1.3
4 200 £ 22.5%* 115+ 4.2 94 + 10.7%* 103 + 3.6 40 117 £ 6.0 116 +3.7 93 £ 3.3%* 117 £5.2
5 200 £ 2.6%* 118+ 1.2 93 + 5.3% 106 + 1.6 50 118 +4.2 118+ 1.5 105 + 6.3 120 + I.1
6 204+ 1.7 120 + 3.0 89 + 6.0%* 109 + 3.4 60 119 £3.2 119 £3.0 115+ 3.6 121 £ 4.8
7 206 £ 9.9%* 120 + 2.1 84 + 4.6** 109 0.1 70 119+£3.2 119+ 1.9 116 +4.7 121 1.7
8 196 + 7.4%* 115+5.0 81 + 6.1** 103 + 4.9 80 113 +44 115+39 117 £ 45 115+ 4.6
9 197 £ 5.3%* 118+ 1.7 80 + 3.3*%* 108 £ 1.2 90 118 £ 2.1 17+ 1.6 119+ 1.4 119 £ 2.1
K* 568 +82.6%F 499 + 36.2** 446 + 50.4** 489 + 34.6™* K* 542 +24.4% 576 £ 183" 566 + 38.9" 604 + 8.3
N 5 6 7 4 N 6 5 5 5

Group E: 2 Hz. Group F: 2 Hz + TTX (I pmol/L). Group G: 10 Hz.
Group H: 10 Hz + TTX (I umol/L).

The perfusate was continuously collected as aliquots every | min and
measured by RIA. Italic data represents results during electrical field
stimulation.

TTX, tetrodotoxin; EFS, electrical field stimulation; N, the number of
the rat used.

*Significant changes within group (* P < 0.05, ** P < 0.01).

Group M: 2 Hz. Group N: 2 Hz + TTX (I umol/L). Group O: 10 Hz.
Group P: 10 Hz + TTX (I umol/L).

The perfusate was continuously collected as aliquots every 10 min
and measured by RIA. Italic data represents results during electrical
field stimulation.

TTX, tetrodotoxin; EFS, electrical field stimulation; N, the number of
the rat used.

*Significant changes within group (** P < 0.01).
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PRL concentrations of sampled perfusate, EFS of 10 Hz for 10 min (Mean £ SD, pg/ml). The parameters of EFS
were 20 mA, 0.5 ms and 10 Hz. The perfusate was continuously collected as aliquots and measured by RIA. (1) Perfusate sam-
pled every 10 min (n = 5). (2) Perfusate sampled every | min (n = 7). (3) TTX (I umol/L) blocking control of (I) (n =5). (4)
TTX (I umol/L) blocking control of (2) (n = 4). K*, prolactin release was evoked by high potassium (60 mmol/L). * P < 0.05, **

P<0.0lI.

a system known as short-loop feedback [41,42]. Is direct
neural regulation another way of inhibition? Lactotrophs
have a high basal activity and spontaneously secret prol-
actin into the blood. In this in vitro study the lactotrophs
were freed from the tonic hormonal inhibition in vivo,
thus assuming a status of basal secretion. It is interesting,
therefore, to see what may happen if the nerve stimulation
is applied when the lactotrophs are under hormonal reg-
ulation. Actually, the effect of stimulation of nerve fibers
on the anterior pituitary in vivo is an issue very difficult to
study, because it is almost impossible to rule out the con-
comitant stimulation on gland cells, or the induction of
hypothalamic hormonal changes.

Both prolactin and ACTH may be released in great
amount in urgent situations, but differ remarkably in their
patterns in the experiment. It is therefore not surprising to
find that EFS of 2 Hz, which causes the release of classical
transmitters [20,21], can induce immediate secretion
changes in both prolactin and ACTH. Although the release
of prolactin occurred as quickly as in the case of ACTH, it
followed a much gentler slope and lasted longer. When
stimulated for 10 min, the enhancing effect on prolactin
release lasted for as long as 30 min, whereas for ACTH,
there was only sharp peak of release even though the stim-
ulation continued for 10 min [22]. The reason of this dif-
ference remains to be elucidated. It may indicate that
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there are different functional needs for immediate release
of prolactin. Apparently, the neuronal firing pattern may
well be different for different needs, resulting in different
secretion pattern.

EFS 10-Hz also gave a very different response curve from
that of the ACTH. The interesting point is that, when stim-
ulated for 10 min at 10 Hz, the prolactin response started
with a brief increase in prolactin release of 1 min, and
then inhibition began 3 min later and lasted for about 40
min. In the case of ACTH, 10-Hz stimulation caused an
inhibition of ACTH release only. Arguably, this is caused
by its serving as a quick and precise negative feedback for
the humoral enhancement of its release. Ten-Hz stimula-
tion is known to cause release of neuropeptide(s) along
with a smaller quantity of classical transmitter [20,21]. We
believe the initial brief increase is due to the co-release of
classical transmitter(s). Due to its small quantity, the
response was much weaker than that in the 2-Hz stimula-
tion experiment.

Conclusions

The present in vitro study offers the first physiological evi-
dence that stimulation of nerve fibers can affect prolactin
release in rat anterior pituitary. Low frequency stimula-
tion enhances prolactin release and high frequency
mainly inhibits it.

Abbreviations
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