Reproductive Biology and 0)
Endocrinology BioMed Centa

Research

Disruption of the maxi-K-caveolin-|l interaction alters current
expression in human myometrial cells
Adam M Brainard!, Victoria P Korovkina2 and Sarah K England*12

Address: 'Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of lowa, lowa City, IA, USA and
2Department of Obstetrics and Gynecology, Carver College of Medicine, University of lowa, lowa City, IA, USA

Email: Adam M Brainard - adambrainard @hotmail.com; Victoria P Korovkina - victoria-korovkina@uiowa.edu; Sarah K England* - sarah-
england@uiowa.edu

* Corresponding author

Published: 23 November 2009 Received: 5 October 2009
Reproductive Biology and Endocrinology 2009, 7:131  doi:10.1186/1477-7827-7-131 Accepted: 23 November 2009
This article is available from: http://www.rbej.com/content/7/1/131

© 2009 Brainard et al; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Background: One determinant of the total K+ myometrial smooth muscle cell (MSMC) current
is the large conductance, calcium- and voltage-activated potassium channel (maxi-K channel). This
channel provides a repolarizing current in response to excitatory stimuli, most notably in response
to increases in the levels of intracellular Ca2+, and blocking the channel by pharmacological means
induces the depolarization of MSMCs and also enhances contraction strength. In MSMCs, maxi-K
channels can reside in the caveolae, where they associate with the scaffolding protein caveolin-|
(cav-1). The aim of this study was to investigate the consequences of this interaction - more
specifically, how disruption of the association between the maxi-K channel and cav-1 may influence
the current expression and excitability of myometrial cells - with the aim of better understanding
the mechanisms that underlie the regulation of normal and aberrant uterine function.

Methods: Myometrial biopsies were collected from women undergoing elective C-sections. From
these samples, myometrial cells were isolated, cultured, infected with a virus containing either
caveolin-1 (cav-1) siRNA or scrambled cav-1 siRNA, and finally subjected to patch-clamp analysis.
Mutant caveolin-binding site maxi-K channel constructs were generated and transfected into
mouse Ltk- fibroblasts. Channel activity, expression, association, and localization were examined
by patch-clamping, Western blot, immunoprecipitation, and immunofluorescence, respectively.

Results: The caveolin-1 siRNA suppressed the total K+ current in human myometrial smooth
muscle cells (hnMSMC), as evident from comparison to the currents generated by both non-infected
cells and cells infected with scrambled siRNA controls. The interaction between the maxi-K
channel and caveolin depends on a region in the channel's C-terminal caveolin-binding site.
Mutations of aromatic residues in this site (mutant FI012A, mutant Y1007A, FI1012A and mutant
Y1007A, FIOI12A, YI015A) resulted in a decrease in K+ current compared to that produced by
wild-type channels transfected into mouse Ltk- fibroblasts. However, mutation of all three aromatic
amino acids (mutant Y1007A, F1012A, YI0I5A) was necessary to disrupt the association between
caveolin and the maxi-K channel, as visualized by immunofluorescence and immunoprecipitation.

Conclusion: Our results suggest that disruption of the caveolin-binding site interferes with the
cav-l/maxi-K channel interaction, and that lack of the cav-l/maxi-K channel interaction in MSMCs
attenuates the total K+ channel current of the cell.
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Background

Potassium efflux from myometrial cells results in mem-
brane repolarization. This potassium efflux constitutes the
primary ionic current responsible for maintaining resting
membrane potential, and contributes significantly to uter-
ine quiescence during pregnancy. In myometrial smooth
muscle cells (MSMCs), changes in the expression or activ-
ity of K+ channels can translate into inadequate repolari-
zation, thus leading to aberrant uterine activity, and this
may contribute to pathophysiological conditions such as
pre-term and post-term labor. One determinant of the
total K+ MSMC current is the large conductance, calcium-
and voltage-activated potassium channel (maxi-K chan-
nel). This channel provides a repolarizing current in
response to excitatory stimuli, most notably in response
to increases in the levels of intracellular Ca2+[1], and
blocking the channel by pharmacological means induces
the depolarization of MSMCs and also enhances contrac-
tion strength [2]. Various mechanisms contribute to the
modulation of maxi-K current expression in MSMCs. For
example, an association of the channel with accessory
beta subunits promotes channel activity [3]. Also, both
alternative splicing of a pre-mRNA [4] and post-transla-
tional modifications of protein can lead to either
increased or decreased channel activity [5]. Adding to the
complexity of the regulation of MSMC excitability is
recent evidence indicating that the maxi-K channel is tar-
geted to caveolae, where it regulates cellular processes and
muscle contraction [6-8].

Localization to caveolae and lipid rafts has been impli-
cated as a regulatory mechanism for a number of ion
channels. For example, isoform 4 of the cyclic nucleotide-
gated channel (HCN4) has been shown to localize to lipid
rafts, and disruption of this association following the
application of methyl-beta-cyclodextrin results in both
channel redistribution within the membrane and changes
in channel kinetics [9]. In the case of the voltage-gated K*
(Kv) channel, different isoforms are normally present in
distinct raft domains, with Kv1.5 present in caveolae and
Kv2.1 present in non-caveolar lipid rafts [10,11]. It has
also been shown that cells transfected with a caveolin
mutant that disrupts trafficking sequesters Kv1.5, but not
Kv2.1, intracellularly. In addition, depletion of choles-
terol, a key component of lipid rafts, alters Kv1.5 channel
function [11,12].

Caveolar invaginations are prevalent in human MSMCs
(hMSMCs), increasing the geometric cell surface area by
as much as ~ 70% [13]. Maxi-K channels can reside in the
caveolae, where they associate with the scaffolding pro-
tein caveolin [7,8]. Of three caveolin isoforms (cav-1, -2,
and -3), cav-1 and cav-2 are predominant in both non-
pregnant and pregnant non-laboring myometrium [7].
These proteins can bind, organize, and functionally regu-
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late multiple cell signaling molecules [11] through a
region termed the scaffolding domain, which interacts
with a variety of proteins, including G-protein alpha-sub-
units, Src family tyrosine kinases, and eNOS [14,15].

In spite of our knowledge of the existence of an associa-
tion between the maxi-K channel and caveolin, how this
interaction affects MSMC function remains unknown. In
this study we investigate the consequences of this interac-
tion--more specifically, how the association between the
maxi-K channel and cav-1 influences the current expres-
sion and excitability of myometrial cells--with the aim of
better understanding the mechanisms that underlie the
regulation of normal and aberrant uterine function.

Methods

Generation of mutants

Constructs encoding mutant maxi-K channel forms were
generated using the QuikChange Site-Directed Mutagene-
sis Kit (Stratagene, La Jolla, CA). Primers used are as fol-
lows:

a) Mutant F1012A,

Forward 5'-GGTATAATATGCTTTGTGCTGGAATITACCG-
GCTGAGAGATGCG-3', Reverse 5' CGCATCICT CAGC
CGGTAAATTCCAGCACAAAGCATATTATAGG-3";

b) Mutant Y1007, F1012A,

Forward 5'-GCA AAGCTCTGAAAACAGCTAATATGCITT-
GTGCTGG-3',

Reverse 5'-CCAGCACAAAGCATATTAGCTGTTTTCA-
GAGCTITGC-3'; and

¢) Mutant Y1007A, F1015A, Y1015A,

Forward 5'-CTTTGTGCTGGAATTGCCCGGCTGAGAGAT-
GCGCACCTC-3/,

Reverse 5'-GAGGTGCGCATCTCTCAGCCGGGCAATTC-
CAGCACAAAG-3".

For both patch-clamping and immunocytochemistry
experiments, mutants were cloned into the pTracer expres-
sion vector, (Invitrogen, Carlsbad, CA) between restric-
tion sites Not1 and Xbal.

Tissue collection

Human myometrial tissue from the lower uterine segment
was obtained from patients who, in the absence of spon-
taneous or induced labor contractions, underwent elective
Cesarean section in late pregnancy (NL; 38-40 wk gesta-
tion) while under spinal anesthesia. All patients signed
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written consent forms approved by the University of
Iowa's Internal Review Board (approval no. 199809066).
Tissue was placed in Hanks' balanced salt solution or in
phosphate-buffered saline (PBS) on ice, and was used to
isolate hMSMCs within 1-3 h of collection.

Isolation, culture, transfection, and infection of cells
Human MSMCs were isolated and cultured as previously
described [7], and were then utilized to study the effects of
caveolins on endogenous cells by patch clamp analysis
The adenoviral constructs containing caveolin-1 and cave-
olin-1-scrambled siRNAs were a gift from Dr. Debbie
Thurmond (Indiana University School of Medicine), and
their production was previously described [16]
(Viraquest, North Liberty, [A). Cells were infected with 1
pl of 1.0 - 1.1 x 1012 particles/ml of the purified siRNA
adenoviral constructs and incubated in the presence of the
virus for an additional 72 hours before experiments were
carried out. Transduction efficiency was gauged by EGFP
fluorescence every 24 hours, which was typically greater
than 90% by 72 hours.

The mouse Ltk- fibroblasts (Ltk-) [17] used for patch
clamp, Western blot, immunoprecipitation and immun-
ofluorescence studies were generated by transfecting cells
of the Ltk- parent line, following growth to 50-80% con-
fluency in T-75 flasks, 6-well or 12-well dishes, in DMEM/
F12 (Sigma, St. Louis, MO) supplemented with 10% FBS
(Gibco-BRL, Carlsbad, CA) and 50 pg/ml gentamicin
(Sigma). Ltk- cells were transfected with 10 pg (T-75), 2 ug
(6-well) or 1 pg (12-well) of plasmid DNA (Lipo-
fectAMINE PLUS Reagent Kit, Invitrogen), and incubated
an additional 48 hours before the experiments were car-
ried out. The Ltk- cells utilized for these experiments lack
endogenous maxi-K channels but contain cav-1; this ena-
bled us to study each caveolin-binding mutant without
contamination from the endogenous channel.

Preparation of lipid rafts

Ltk- cells transfected with plasmid DNA (one T-75 flask)
were trypsinized (0.25% TE/EDTA, Gibco-BRL) and spun
down at 300 x g for 5 min. Cells were resuspended in 200
pl of Mes-buffered saline (MBS; 24 mM Mes, 150 mM
NaCl, pH 6.5) plus 1% Triton X-100 and a Complete Pro-
tease Inhibitor tablet (Roche, Indianapolis, IN), incu-
bated for 30 min on ice and dounce homogenized on ice
for 1 min. A 100 pl aliquot was transferred to a microcen-
trifuge tube, and 300 pl of 53.33% sucrose/MBS was
added and mixed in. 450 pl each of 30% and 5% sucrose/
MBS were layered above this mixture, in this order, and
the samples were centrifuged for 24 hours at 54,000 rpm,
at 4°C. After this spin, 10 equal fractions were collected,
starting at the top. We controlled for the presence of non-
lipid membranes by monitoring the presence of the
human transferrin receptor by Western blot, as this pro-
tein does not associate with lipid rafts.
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Preparation of beads and immunoprecipitation

Protein G-Plus Agarose beads (Santa Cruz, Santa Cruz,
CA) were incubated in 4 ml Dulbecco's Phosphate Buff-
ered Saline, DPBS, (Gibco-BRL) with 1% BSA, 1% Normal
Donkey Serum and 1% Normal Rabbit Serum, for 2 hours
at 4°C. The beads were washed 1x with DPBS and resus-
pended in 1 ml DPBS with 0.025% Sodium Azide. 50 pl
of each floating fraction were incubated in 1 ml Solubili-
zation Buffer (10 mM Tris pH 8.0, 150 mM NacCl, 1% TX-
100, 60 mM Octyl-glucopyranoside) plus a Complete Pro-
tease Inhibitor Tablet (Roche), for 45 min at 4°C, and
were then mixed by nutation. These samples were spun
down at 3500 x g for 5 min at 4°C, and the supernatants
were transferred to new tubes. 50 pl of the prepared beads
were added, and the samples were agitated overnight at
4°C. One pg of a maxi-K channel antibody (BD Bio-
sciences, San Jose, CA) was then added, and immunopre-
cipitates were gently mixed overnight at 4°C. The samples
were spun down at 3500 x g at 4°C, and washed 3x with
1 ml Buffer A (150 mM NaCl, 50 mM Tris-HCI pH 7.5, 1
mM EDTA, 0.5% TX-100), after which the bead fractions
(representing the immunoprecipitates) were resuspended
in 40 pl of 2x sample loading buffer (4X: 10% Glycerol,
0.25 M Tris pH 7.0, 3% SDS, 5% 2-Mercaptoethanol,
Bromophenol Blue).

Immunoblotting

The immunoprecipitates and mini lipid-raft fractions
were separated by SDS-PAGE and immunoblotted as pre-
viously described [4]. The primary antibodies used were
one against the mouse maxi-K channel (1:250) (BD Bio-
sciences), one against mouse cav-1 (1:1000) (BD Bio-
sciences) and one against the mouse transferrin receptor
(1:1000) (Zymed, South San Francisco, CA). The second-
ary antibody used in all cases was goat anti-mouse
(1:3000) (Jackson Immunoresearch, West Grove, PA). All
antibodies were diluted in PBST (1.37 mM NacCl, 81.01
mM Na,HPO,, 26.82 mM KCl, and 14.7 mM KH2PO4,
0.5% Tween, pH 7.2) containing 3% non-fat dry milk.
Immunoreactivity was detected using HyGlo Western
Blotting detection reagents (Denville Scientific Inc.,
Metuchen, NJ).

Immunocytochemistry

Ltk- cells transfected with plasmid DNA were fixed with
2% paraformaldehyde for 30 min at RT, quenched with
50 mM NH,CI for 10 min at RT, permeabilized with 0.1%
Triton X-100 for 10 min at RT, and blocked with 10%
heat-inactivated FBS + 1% heat-inactivated donkey serum
(blocking buffer) for 30 min at 37°C (all diluted in
DPBS). For co-localization studies, Ltk- cells were incu-
bated with rabbit maxi-K channel antibody (1:250; Milli-
pore, Temecula, CA) for 1 hour at 37°C, and then with a
Cy3-conjugated donkey anti-rabbit (1:1000; Jackson
Immunoresearch) for 15 min, 37°C. They were then incu-
bated for 15 min in blocking buffer for at 37°C, for 30
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min in blocking buffer plus a mouse anti-caveolin anti-
body (1:500; BD Biosciences) for 30 min at 37°C, and
finally for 15 min in blocking buffer plus a Cy5-conju-
gated donkey anti-mouse (1:1000; Jackson Immunore-
search) for 15 min at 37°C. Signals were visualized using
a Zeiss 510 confocal scanning microscope (Zeiss, Oberko-
chen, Germany), and images were acquired with a Zeiss
LSM 5 Image Browser (Zeiss). For controls, Ltk- cells were
incubated with primary antibodies alone (30 min at
37°C) or secondary antibodies alone (15 min at 37°C).
In general, Ltk- cells do not generate high background
when an anti-mouse secondary antibody is used. Moreo-
ver, any background issues due to non-specific binding of
the secondary antibody would be discovered by perform-
ing the experiments with the secondary antibody alone.
Bleedthrough of fluorescent signals into the neighboring
channels was controlled for by turning off all but one laser
at a time, and recording images in all channels. Laser
power, pinhole size and detector gain were then adjusted
to ensure that the image appeared in its respective channel
only. A nuclear counterstain was not performed since con-
focal microscopy of these cells showed sufficient morpho-
logical detail to identify individual cells.

Electrophysiology

All patch-clamping experiments were performed at RT.
Whole-cell current was measured using an Axopatch 200-
B amplifier (Molecular Devices, Sunnyvale, CA). Signals
were filtered with a cutoff frequency of 5 kHz. Data acqui-
sition was controlled using commercial pClamp 9.2 soft-
ware (Molecular Devices), and data were digitized using a
Digidata 1320 interface (Molecular Devices). Ltk- cells
expressing wild-type and mutant channels (see Transfec-
tions), and hMSMC in which the caveolin-1 gene was
inhibited (see siRNA) were placed in a pH 7.4 bath solu-
tion containing, in mM: 135 NaCl, 4.7 KCl, 1 MgCl,, 10
Glucose, 2 CaCl, and 5 Hepes. Borosilicate glass pipettes
of 2-5 MQ were filled with a pH 7.2 solution containing,
in mM: 140 KCl, 0.5 MgCl2, 1 EGTA, 5 ATP and 5 Hepes.
Cells expressing GFP (the reporter for the plasmid and
siRNA expression vector used) were clamped, currents
were measured using a holding potential of -80 mV and
prepulsing to -100 mV, and currents were elicited at step
potentials from -80 to 160 mV in 20-mV intervals.

Statistical analysis

Each experiment was performed in a minimum of X inde-
pendently transfected/infected samples. Statistical signifi-
cance was calculated using Student's t-test for unpaired
observations (siRNA and caveolin binding-site mutation
experiments) and paired observations (for IbTX experi-
ments; SigmaPlot software; SPSS, Chicago, IL). Differ-
ences were considered significant at P < 0.05.

http://www.rbej.com/content/7/1/131

Results

The maxi-K channel-generated current in human MSMCs
is reduced when caveolin-1I is knocked down

To establish whether interactions between maxi-K chan-
nels and caveolin affect the endogenous myometrial total
outward K+ current, we used a siRNA to inhibit cav-1 gene
expression in hMSMCs. Maxi-K currents were measured
by whole-cell patch clamping and compared to those
from control (non-infected cells and cells infected with
scrambled siRNA; Fig. 1A, B, and 1C). Current in cells
depleted of cav-1 was decreased 49% in comparison to
that in control cells (Fig. 1D), and 45% in comparison to
that in cells transfected with scrambled siRNA (Fig. 1D).
In control cells, iberiotoxin (IbTX) inhibited K+ current by
74%. Our data suggest that a subpopulation of maxi-K
channels whose function is modulated by cav-1 generates
40 to 45% of the total maxi-K current in hMSMCs. The
decrease in current density when cells are depleted of cav-
1 could reflect a role for cav-1 in trafficking of the maxi-K
channel to the plasma membrane. The fact that the cur-
rent is not abolished demonstrates that maxi-K channels
are not solely modulated by cav-1.

The maxi-K channel-generated current in mouse
fibroblasts is reduced when the channel's caveolin-binding
motif is disrupted

The maxi-K channel contains one caveolin-binding motif
in its C-terminus (1°07YNMLCFGIY!015) (Fig. 2). In order
to determine the role of this site in modulating maxi-K
channel localization and activity, we substituted the aro-
matic amino acids within this motif with alanines in var-
ious combinations (Fig. 2). In order to identify the
functional significance of each mutation without contam-
inating native current, we performed experiments in Ltk-
cells, which lack endogenous maxi-K channel current but
contain endogenous cav-1. Each mutant was assessed by
performing whole-cell patch-clamp measurements of K+
currents in Ltk- cells transiently expressing the mutants,
and then comparing current expression in these mutants
to that in WT controls (Fig. 3A). Mutant F1012A and
mutant F1007A, Y1012A generated less current than the
WT channel (53% decrease with mutant F1012A, Fig. 3B,
E; 42% decrease with mutant F1007A, Y1012A, Fig. 3C,
E). Mutant Y1007A, F1012A, Y1015A was associated with
the most significant reduction in current density (59%
decrease, Fig. 3D, E). These findings suggest that cav-1
contributes to the regulation of maxi-K current, at least in
part, via specific maxi-K-caveolin interactions.

The maxi-K channel fails to associate with lipid rafts when
its caveolin-binding motif is disrupted

Since mutation of the caveolin-binding site had a signifi-
cant effect on activation of the maxi-K channel, we next
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Figure |

Whole-cell patch-clamp analysis of h(MSMCs depleted of caveolin-1 using an siRNA approach. siRNA-mediated
depletion of caveolin-| (cav-1) in non-laboring hMSMCs (C) decreases current density relative to that in non-infected hMSMCs
(A) and hMSMC:s treated with a scrambled siRNA (B). (D) Bar graph summarizes and compares the mean current densities
presented in A-C. Inhibiting cav-1 resulted in a 49% decrease in the mean current density compared to that in non-infected
control cells, and a 45% decrease in comparison to that in samples treated with a scrambled siRNA. In non-infected control
cells, IbTX decreased the mean current density by 74%. Significant differences (p < 0.05) between samples treated with cav-|

siRNA and non-infected controls (¥) or scrambled siRNA (#) are noted. (§ indicates significant difference between non-infected
controls in the presence and absence of IbTX. Data shown are the mean values for 16 (control), 6 (scrambled siRNA control),
14 (cav-1 siRNA) and 3 (control+IbTX) independent experiments + standard error.

determined the role of the caveolin-binding motif in reg-
ulating localization of the maxi-K channel within lipid
rafts. Taking advantage of the characteristics of lipid rafts-
-in particular their resistance to solubilization in nonionic
detergents at low temperature and their buoyancy due to
an enriched lipid content--we were able to isolate Triton
X-100-insoluble complexes from mouse Ltk- cells trans-
fected with wild-type (WT) and mutant maxi-K channels.
Western blot analysis of lipid raft fractions using a maxi-K
channel antibody confirmed that WT maxi-K channels
were present in fractions that also harbored cav-1 (Fig. 4A,
boxed region). Like the WT channels, the mutant channels
containing either one (F1012A), or two (Y1007A,
F1012A) amino-acid substitutions were present in the
same fractions (Fig. 4B and 4C boxed region). However,
the mutant with three amino-acid substitutions (Y1007A,

F1012A, Y1015A) was absent from these fractions, with its
expression limited to non-caveolar lipid rafts (Fig. 4D).
The solubilization of non-raft proteins in these samples
was complete, as the transferrin receptor (which does not
associate with lipid rafts and thus served as a marker of
Triton X-100-soluble membranes) was not detected in any
of these samples (data not shown).

Disruption of the maxi-K channel's association with
caveolin-1 in mouse fibroblasts leads to channel
mislocalization

Since caveolae share many biochemical properties with
lipid rafts, the isolation of detergent-resistant fractions is
not sufficient to discriminate between these two subcellu-
lar domains. We therefore used anti-channel and anti-
caveolin antibodies in immunocytochemical analysis to
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Figure 2

Schematic representation of the maxi-K channel. The
channel is composed of seven hydrophobic membrane-span-
ning domains (S0-S6) and four intracellular hydrophobic
domains (S7-S10). The caveolin-binding motif is shown in the
inset, along with the amino-acid alterations present in each of
the mutants tested in this study.

determine whether, in Ltk- cells expressing the WT and
mutant channels, the channel proteins and caveolin local-
ize to the same area of the membrane. As expected, WT
maxi-K channels (Fig. 5A, red) were localized primarily on
the plasma membrane, whereas cav-1 (Fig. 5A, green) was
present both on the plasma membrane and intracellu-
larly. Regions of overlap between the cav-1 and WT signals
(Fig. 5A, yellow) were observed in these cells, consistent
with co-localization at the plasma membrane. Similarly,
mutant F1012A (Fig. 5B) and mutant Y1007A, F1012A
(Fig. 5C) were expressed only on the plasma membrane,
in a pattern that overlapped with that of cav-1. In contrast,
mutant Y1007A, F1012A, Y1015A localized to both the
membrane and intracellular sites, and its signal did not
overlap with that of cav-1 (Fig. 5D).

To confirm that the reduction in maxi-K current observed
in cells expressing the triple mutant is due to the altered
interaction between the maxi-K channel and cav-1, we
immunoprecipitated the maxi-K proteins from isolated
lipid rafts (as indicated by a box in Figure 4). In the case
of lipid rafts isolated from cells transfected with the WT
channel (Fig. 5E, WT), mutant F1012A (Fig. 5E, F1012A)
and mutant Y1007A, F1012A (Fig. 5E, Y1007A, F1012A),
cav-1 was observed in the immunoprecipitate. However,
when lipid rafts from cells transfected with mutant
Y1007A, F1012A, Y1I015A were tested, cav-1 was absent
(Fig. 5E, Y1007A, F1012A, Y1015A). These findings sug-
gest that all three aromatic amino acids contribute to the
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interaction between the maxi-K channel and cav-1, but
that two are sufficient to promote a detectable interaction.

Discussion

The molecular mechanisms that underlie the process, and
particularly the initiation, of labor remain only poorly
understood. During labor, the upper segment of the
uterus actively contracts, thereby promoting fetal expul-
sion, whereas the lower portion of the organ (composed
of both the lower uterine segment and the cervix) relaxes
to permit fetal exit. Cells isolated from the lower uterine
segment of humans during late stages of pregnancy gener-
ate a current reminiscent of that typically produced by the
maxi-K channel, but this channel becomes constitutively
active and lacks voltage- and Ca2+-sensitivity after the
onset of labor [18-20]. The reason for this switch in activ-
ity remains unknown, but could be due to: 1) variation in
the physiological and pharmacological properties of
maxi-K channels in MSMCs during pregnancy and/or, 2)
rapid changes in maxi-K channel regulation during the
transition from the non-laboring to the laboring state.
Our recent findings that the maxi-K channel resides in
caveolae on the MSMC, and that it associates with the
actin cytoskeleton to regulate channel activity, raise the
possibility that this channel may interact dynamically
with associated proteins to regulate the transition of the
uterus from a quiescent to a contractile state. For example,
components crucial for the regulation of Ca?+, a key regu-
lator of the maxi-K channel, are localized in caveolae and
may serve as initiation sites for Ca2+ release events, includ-
ing Ca2* sparks [21,22]. These data suggest that the caveo-
lar microdomain may play a role in modulating
myometrial excitability.

Myometrial smooth muscle contains an abundance of
caveolae, which have been proposed to expose or shield
the associated proteins to/from the extracellular milieu by
opening and closing, respectively [23]. The vast number
of caveolae in the myometrium is likely a reflection of the
rich signaling environment. Indeed, several studies have
shown that caveolae serve as docking sites for many cell-
signaling molecules involved in muscle contraction, i.e.
PKCa and rhoA [24]. Moreover, hormones regulate the
number of caveolae, with estrogen decreasing caveolin
levels and thereby the number of caveolae, and progester-
one having the opposite effect [25]. Based on these find-
ings, we believe that maxi-K channels that are present in
caveolae and interact with caveolin would likewise be
responsive to the negative effects of estrogen, and that the
decrease in channel current expression could account for
the more depolarized myometrial membrane and
enhanced contractility during labor. However the nature
and role of the interaction between caveolar proteins and
the maxi-K channel in the myometrium had not been
identified prior to this study.
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Figure 3

Whole-cell patch-clamp analysis of mouse fibroblasts transfected with wild-type and mutant forms of the
maxi-K channel. Current density recordings for Ltk- cells transfected with (A) WT, (B) mutant F1012A, (C) mutant Y1007A,
FI1012A and (D) mutant YI1007A, FI1012A, YI0I5A maxi-K channel constructs. (E) Bar graph data summarizes and compares
the mean current densities generated by cells transfected with the indicated maxi-K channel construct. Cells transfected with
mutant F1012A, mutant Y1007A, FI1012A and mutant Y1007A, FIOI12A, Y10I5A exhibited 53%, 49% and 59% decreases in cur-
rent density, respectively, in comparison to cells transfected with the WT construct. (*) indicate statistically significant differ-
ences between currents generated in cells transfected with each mutant maxi-K channel construct versus cells transfected with
the WT construct (p < 0.05). Data shown are the mean values for 10 (WT, mutant FIOI2A, mutant Y1007A, FIOI2A) and 7
(mutant Y1007A, FI012A, Y1015A) independent experiments + standard error.
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; ’ . ” -1 | e
Y1015A H 0w SR it
Figure 4

Western immunoblot analysis of the expression of WT and mutant maxi-K channels in lipid rafts from mouse
fibroblasts. Sucrose density gradient centrifugation of 1% Triton X-100 solubilized extracts from transfected Ltk- cells were
examined by Western blot analysis. Samples range from lowest density at left (lane 1) to highest density at right (lane 10). The
(A) WT (B) mutant FI012A, and (C) mutant Y1007A, FI1012A forms of the maxi-K channel (as indicated by boxed regions in

panels on left) co-fractionate with caveolin-| in low-density fractions (cav-1; right). However the (D) mutant Y1007A, FIOI2A,
Y1015A form (visible at left) was not present in these low-density caveolin-associated fractions. Data shown are representative
examples from 10 independent experiments for each protein form.
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Figure 5

Immunofluorence- and immunoprecipitation-based
analyses of cellular localization of wild-type and
mutant forms of the maxi-K channel in mouse fibrob-
lasts. Cellular localization of (A) WT, (B) mutant FI0I2A,
(C) mutant Y1007A, FIOI2A and (D) mutant Y1007A,
FIOI2A, YI0I5A maxi-K channel forms in Ltk- cells, as
detected by immunocytochemistry, using antibodies against
the maxi-K channel (red) and cav-I (green). Images were
pseudocolored for better comparison. WT and all mutant
channels except mutant Y1007A, FIOI2A, YI0I5A co-local-
ized with cav-1 on the membrane (yellow). Data shown are
representative examples of 6 (WT, mutant FI012A, mutant
Y1007A, FIOI2A) or 5 (mutant Y1007A, FI0I2A, YI015A)
independent experiments. (E) Immunoprecipitation of the
lipid raft fractions shown in the boxed region of Figure 4
(using an anti Maxi-K channel antibody) demonstrated that
WT, mutant FIOI2A, and mutant Y1007A, FI0I2A, but not
mutant Y1007A, FI012A, YI0I5A, associate with cav-1 (E).
Data shown are representative of 8 (WT), 10 (mutant
FI1012A), 9 (mutant Y1007A, FIOI12A) and 6 (mutant
Y1007A, FIOI2A, YI0I5A) independent experiments.

The maxi-K channel contains a consensus caveolin-bind-
ing motif (1007YNMLCFGIY!015) in its C-terminus [26],
and mutation of phenylalanine within the caveolin-bind-
ing motif had previously been shown to disrupt the asso-
ciation between the ganglioside-specific sialidase Neu3
and cav-1 [27]. Here we show that although mutation of
the aromatic amino acids that constitute a part of this
motif leads to diminished current regardless of the
number and placement of substitutions, only the triple-
mutant Y1007A, F1012A, Y1015A loses its ability to asso-
ciate with cav-1. A recent study investigating similar maxi-
K channel mutants in HEK 293 cells found that single,
double and triple substitutions of these aromatic amino
acids fail to disrupt the interaction between the maxi-K
channel and cav-1, but that complete deletion of the con-
sensus site abolishes almost all (80-85%) interaction with
cav-1 [8]. This is inconsistent with our demonstration that
mutant Y1007A, F1012A, Y1015A was not present in cave-
olin-containing fractions, and that it neither immunopre-
cipitates with cav-1 or co-localizes with it at the plasma
membrane. Although we cannot fully explain the differ-

http://www.rbej.com/content/7/1/131

ences between the results from the two studies, one possi-
ble source of this discrepancy is the fact that the HEK293-
cell study relied on the use of heterologous over-expres-
sion of both the maxi-K channel proteins and cav-1 (in
caveolin-negative HEK293 cells) [8]. In contrast, the Ltk-
mouse fibroblasts used in our study expressed endog-
enous cav-1, thus providing a more physiological environ-
ment for the study of caveolin-maxi-K interactions. We
stress that, in spite of the differences between the two
studies, they do agree on the localization and amino acid
sequence of the consensus site that mediates binding of
the maxi-K channel to caveolin [8].

Inhibiting the cav-1 gene in hMSMCs demonstrated the
significance of the maxi-K-caveolin interactions for the
excitability of myometrial cells. The decrease in hMSMC
current density observed in these experiments comple-
ments the findings of Shmygol et al., who observed that
disrupting lipid rafts by depleting cells of cholesterol also
decreased the maxi-K current in freshly dispersed myome-
trial cells [28]. The expression of caveolin isoforms and
their association with maxi-K channels change during
pregnancy [7]. It is thus possible that changes in the asso-
ciation of the maxi-K channel with various caveolin iso-
forms plays a role in determining which other cell
signaling molecules the maxi-K channel is in proximity to
during different stages of pregnancy.

Interestingly, all three of the mutants used in this study
reproduced the inhibitory effects of cav-1 deficiency on
maxi-K channel current in hMSMG s, although only in the
case of mutant Y1007A, F1012A, Y1015A was the maxi-K-
caveolin complex disrupted. These data suggest that the
cav-1 regulates the maxi-K channel at a minimum of two
independent steps: 1) complex formation and 2) current
modulation. Formation of the maxi-K-caveolin complex
may involve redundant pathways, thus making it difficult
to completely disrupt this complex. In fact, Alioua et al.
have identified a second putative caveolin-binding site in
the maxi-K channel protein [8]. Thus, we hypothesize that
extensive changes in amino acid sequence within the cave-
olin-binding site are required to dissociate the channel
and cav-1. Given that the physical formation of the maxi-
K-caveolin complex may be insufficient to regulate all
maxi-K channel activity, a second mechanism involving
only the 1907YNMLCFGIY1015 motif may contribute to the
ability of cav-1 to activate the maxi-K-generated current.
Single amino-acid substitutions may disturb this mecha-
nism so that cav-1 cannot maintain the maxi-K current at
physiological levels. The caveolin-binding motif is located
within a single exon of the KCNMAT1 gene, which encodes
the maxi-K channel. This raises the possibility that the
heavily alternatively-spliced KCNMAT1 transcript could
produce a channel lacking this caveolin-binding motif--
which this study and another [8] have shown to lead to a
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decrease in the current expressed by the channel. How-
ever, experiments seeking to identify a protein that
encodes a channel without a caveolin-binding motif were
inconclusive (data not shown). While it is possible that
lacking this entire domain is necessary to produce physio-
logically relevant changes in current expression, even
point mutations might be sufficient to do so. More exper-
iments in this area are needed to convincingly resolve this
issue.

The C-terminus of the maxi-K channel harbors not only
the caveolin-binding motif, but also an actin-binding
domain [29] and is capable of interacting with the actin-
binding protein filamin [30]. Our own work has shown
that the maxi-K channel associates with actin, and has sug-
gested that an actin-channel-caveolin complex could
potentially be involved in the regulation of myometrial
smooth muscle K* current |7]. Further elucidation of how
all of these regulatory mechanisms interact is expected to
shed significant light on the regulation of myometrial
contractility.

Conclusion

Our results showing that inhibiting the cav-1 gene in
hMSMCs leads to decreased maxi-K channel current dem-
onstrate the significance of the maxi-K-caveolin interac-
tions for the excitability of myometrial cells. These
interactions appear to be regulated, in part, by the aro-
matic amino acids located within the caveolin-binding
motif of the maxi-K channel. Because the maxi-K channel
is important for regulating myometrial cell excitability
and uterine contraction, the modulation of this channel
by dynamic interactions with caveolin could, in part,
explain novel mechanisms underlying aberrant uterine
activity.
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