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Background

Abstract

Background: Corpus luteum (CL) regression is known to occur as two parts; functional
regression when steroidogenesis declines and structural regression when apoptosis is induced.
Previous studies suggest this process occurs by the production of luteolytic factors, such as tumour
necrosis factor-alpha (TNF-alpha).

Methods: We examined TNF-alpha, TNF-alpha receptors (TNFRI and 2) and steroidogenic acute
regulatory (StAR) protein expression during CL regression in albino Wistar rats. CL from Days 16
and 22 of pregnancy and Day 3 post-partum were examined, in addition CL from Day 16 of
pregnancy were cultured in vitro to induce apoptosis. mRNA was quantitated by kinetic RT-PCR
and protein expression examined by immunohistochemistry and Western blot analyses.

Results: TNF-alpha mRNA increased on Day 3 post-partum. TNFR were immunolocalized to
luteal cells, and an increase in TNFR2 mRNA observed on Day 3 post-partum whilst no change was
detected in TNFRI mRNA relative to Day 16. StAR protein decreased on Day 3 post-partum and
following trophic withdrawal but no change was observed following exogenous TNF-alpha
treatment. StAR mRNA decreased on Day 3 post-partum; however, it increased following trophic
withdrawal and TNF-alpha treatment in vitro.

Conclusion: These results demonstrate the existence of TNFR| and TNFR2 in rat CL and suggest
the involvement of TNF-alpha in rat CL regression following parturition. Furthermore, decreased
StAR expression over the same time points was consistent with the functional regression of the CL.

The demise of the corpus luteum (CL) is characterized by  stood.
a decrease in progesterone synthesis [1] and an increase in

apoptotic cell death [2]. Whilst a temporal pattern is well
established, the factors regulating both the functional and

structural regression of the rat CL remain poorly under-

Whilst progesterone is synthesized by the ovary, the adre-
nal and the placenta, the CL of pregnancy are the major
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source of progesterone in the rat [3-5]. Small and large
luteal cells within the rat CL of pregnancy retain ster-
oidogenic potential though large luteal cells predominate
[6]. During pregnancy total progestin synthesis (proges-
terone and 20a-hydroxypregn-4-en-3-one (20a-OHP))
declines from a high on Day 16 to the morning of Day 22
prior to an increase in the afternoon on Day 22 [1]. This
observed pattern in total progestin production in rats has
been demonstrated to be a product of decreased synthesis
of progesterone toward term [7] and increased synthesis
of 20a-OHP [1].

Total progestin production is dependent on the transport
of cholesterol to the mitochondria and then from the
outer to the inner mitochondrial membrane which is
mediated by the steroidogenic acute regulatory (StAR)
protein [8]. StAR protein has been reported in the ovary of
the mouse [9], rat [10], rabbit [11] and human [12] and
correlated with the functional state of the CL [11,13,14].
As such StAR expression has been proposed as a reliable
"marker" of CL function [15].

Several publications have reported the participation of the
immune system in ovarian events [16], suggesting a role
for the cytokine tumor necrosis factor - alpha (TNFa) in
CL regression. Luteal cells and endothelial cells are capa-
ble of TNFa synthesis though macrophages remain the
primary ovarian source [17,18]. TNFa expression in the
ovary is coordinated between the infiltration and activa-
tion of macrophages and the hormonal regulation of the
CL [19-21]. We have recently reported TNFa protein local-
ization in the rat CL on Day 16 and Day 22 of pregnancy
and Day 3 post-partum [22]. Furthermore, we have dem-
onstrated the induction of luteal cell apoptosis following
treatment with recombinant TNFa in a dose- and time-
dependent manner [22].

Associated with the TNFa ligand are two similar, though
distinct receptors, TNFa receptor 1 (ITNFR1) and TNFa
receptor 2 (TNFR2). The lack of homology between the
two cytoplasmic domains [23,24] is thought to contribute
to the different outcomes of TNFa. Involved in a variety of
biological processes, TNFa is implicated in both cell pro-
liferation and cell death; TNFR1 is generally associated
with TNFa-induced cell death and TNFR2 with cell prolif-
eration [25]. TNFR binding sites have been demonstrated
within the bovine [18,26], porcine [27] and rat [28,29] CL
under various experimental conditions. TNFR are present
on nearly all cell types with few exceptions [24] and the
subtypes are often co-expressed by the same cells [30].

The aims of this study are to examine the role of TNFa
during the structural regression of the CL by analysis of
TNFR expression, and to determine the role of TNFa in
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the functional regression of the CL through regulation of
StAR protein expression.

Methods

Animals

The animals used were mature (12-20 week old) nullipa-
rous albino Wistar rats obtained from the Animal
Resources Center (Murdoch, WA, Australia). Animals
were housed in a controlled environment and mated over-
night. Day 1 of pregnancy was designated as the morning
on which spermatozoa were present in a vaginal smear.
Litters were born on Day 23 of pregnancy. All procedures
were approved by The University of Western Australia
Animal Ethics Committee.

Experimental tissue collection

All tissues were collected under aseptic conditions with
light anesthesia using a mix of 0.2 L/min O,, 0.8 L/min
NO and 5% Halothane. CL were collected on Day 16 and
Day 22 of pregnancy and Day 3 post-partum. Four rats
from each stage of pregnancy and post-partum were used.
One ovary from each animal (alternating left or right) was
used for immunohistochemistry, the contralateral ovary
was used for Western blot and mRNA analyses (n = 4).
Ovaries were trimmed of adhering tissues and the CL of
pregnancy were selected and dissected as previously
described [2]. In addition to the above, in vitro studies
were conducted using CL collected on Day 16 of preg-
nancy. Three pairs each from a different animal (n = 3)
were collected for each treatment group. Dissected CL
were cultured in MEM either without trophic support for
8 h or with minimal trophic support supplemented with
37.5 ng/ml of recombinant rat TNFo (R&D Systems, USA)
for 6 h as described previously [22]. Following incubation
protein or mRNA was extracted from each CL pair as
described under each experimental method.

Immunohistochemistry

CL collected for immunohistochemistry were fixed and
processed as previously described [22,31]. Sections were
treated for 10 min with 3% hydrogen peroxide in metha-
nol, washed in PBS (pH 7.4) and treated with 10% fetal
bovine serum (FBS; Sigma Chemical Co., St Louis, MO,
USA) (TNFR) or 0.1% bovine serum albumin (BSA; Sigma
Chemical Co.) (StAR) for 1 h at room temperature. Sec-
tions were incubated with either 1:50 polyclonal goat
anti-rat TNFR1 antibody (Santa Cruz Biotechnology,
Santa Cruz, CA, USA), 1:100 polyclonal goat anti-rat
TNFR2 (Santa Cruz Biotechnology) or 1:100 polyclonal
rabbit anti-mouse StAR antibody (supplied by Professor
Doug Stocco). TNFR antibodies were diluted in PBS pH
7.4 whilst the StAR antibody was diluted in PBS pH 7.4,
1% BSA, 0.1% Triton X. Sections were incubated for 2 h at
37°C (TNFR) or overnight at 4°C (StAR). Following this,
sections were incubated for 1 h at 37°C with a 1:200 don-
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key anti-goat HRP (Santa Cruz Biotechnology) secondary
antibody (TNFR) or 1:200 biotinylated goat anti-rabbit
IgG (Santa Cruz Biotechnology) secondary antibody
(StAR). The sections were then incubated with Avidin
Biotin Enzyme Reagent (Vector Laboratories, Burlingame,
CA, USA) for 1 h at room temperature (StAR) and the reac-
tion visualized by the addition of 3,3'-diaminobenzidine
tetrahydrochloride (DAB; 1.2 mg/ml). The immunohisto-
chemical procedures described were repeated for each ani-
mal group (n = 4).

Western blot analysis

CL collected for Western blot analyses were snap frozen in
liquid nitrogen and stored at -70°C until use. Total pro-
tein was extracted by homogenization in RIPA buffer (150
mM NacCl, 50 mM Tris-HCI, pH7.5, 1% Triton X, 0.5% Na
deoxycholate, 1 mM PMSF) as described previously [32].
Protein concentration of homogenates was measured [33]
and 30 g resolved by 12% SDS-PAGE and transferred to
nitrocellulose membranes (MSI, Westboro, MA, USA).

Membranes were blocked in 5% non-fat milk for 1 h at
room temperature and probed with polyclonal rabbit
anti-mouse StAR antibody diluted 1:5000 in Tris-buffered
saline/0.1% Tween-20 (TBST). Following this membranes
were incubated with biotinylated goat anti-rabbit IgG for
1 h at room temperature (diluted 1:10,000 in TBST).
Membranes were then incubated with Avidin Biotin
Enzyme Reagent for 1 h at room temperature and protein
signals detected by enhanced chemiluminescence (Super-
signal West Pico ECL substrate, Pierce, Rockford, IL, USA)
and quantitated by densitometry.

A common tissue sample was included on each gel to
allow for standardization of chemiluminescence levels
and exposure times. Staining of each gel (post transfer)
and membrane with Coomassie Brilliant Blue (Sigma
Chemical Co.) assessed the accuracy of sample loading
and the efficiency of protein transfer. This procedure was
repeated for each animal/experimental group (n = 3).

Table I: Primer sequences used for individual targets

http://www.rbej.com/content/6/1/50

Kinetic RT-PCR

TNFo, TNFR1, TNFR2, L19 and StAR mRNA expression
were quantitated through kinetic reverse transcription
(RT) - polymerase chain reaction (PCR) using the Bio Rad
iCycler (Bio Rad Laboratories, Hercules, CA, USA). All tis-
sue collected was snap frozen in liquid nitrogen and
stored at -70°C until use. Total RNA was extracted using
RNAzol B (Tel-test, Friendswood, TX, USA) and 5 pg
reverse transcribed using SuperScript II reverse tran-
scriptase (Invitrogen, Life Technologies, Melbourne, Aus-
tralia) as per manufacturer's instructions. cDNA samples
were purified using an UltraClean PCR kit (Mo Bio Labo-
ratories, Solana Beach CA, USA), concentrations meas-
ured by spectrophotometry and samples stored at -20°C
until use.

Kinetic PCR and melt curve analyses were performed
using the Qiagen Quantitect PCR SYBR Green I kit (Qia-
gen, Clifton Hill, Victoria, Australia) according to manu-
facturer's instructions with the addition of 100 nM
fluorescein (Bio Rad Laboratories). 2.5 ul of each RT sam-
ple (cDNA) was added to the 1x PCR master mix in a 25
pl final volume. Primers used for each target (0.5 uM)
were based on published rat sequences (Table 1). Each
PCR cycle included an initial denaturation at 95°C for 15
min (including 90 sec at 95°C for automated well factor
collection) followed by 45 cycles of 95°C for 30 sec, 52—
57°C (depending on target) for 30 sec, and 72°C for 60
sec. The annealing temperatures used for each target were;
TNFa 56°C, TNFR1 52°C, TNFR2 54°C, L19 56°C and
StAR 52°C. A fluorescence measurement was performed
during the extension step of each cycle. In addition, melt
curve analysis was performed with continuous fluores-
cence measurement between 55-95°C in 0.5°C incre-
ments.

External standards for each target were generated by
extraction of the RT-PCR product following agarose gel
electrophoresis using the QIAquick PCR Purification Kit
(Qiagen) as per manufacturer's instructions. Samples
were quantified by spectrophotometry, and then used to

Target Forward Primer

TNFa Clontech Laboratories

Inc, CA, USA

TNFRI [28] 5'-CCA GCC CCA ATG GGG GAG TG-3'

TNFR2 [28] 5'-TTC GGA GTG GCC CGT TCA AGA-3'
L19 [36] 5'-CTGAAGGTCAAAGGGAATGTG-3'
StAR [32] 5'-GCA GCA GGC AAC CTG GTG-3'

5'-TAC TGC ACT TCG GGG TGA TTG GTC C-3'

Reverse Primer

5'-CAG CCT TGT CCC TTG AAG AGA ACC-3'

5'-CGG TGT TCT GTT TCT CCT TA-3'
5'-GCT GTG GTC AAT AGG TGC TGC-3'
5'-GGACAGAGTCTTGATGATCTC-3'

5-TGA TTG TCT TCG GCA GCC-3'
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generate a standard curve via serial dilutions. Fluorescence
data were analyzed and a standard curve generated using
the Bio Rad iCycler software (3.0 beta) (Bio Rad Labora-
tories).

The potential for genomic DNA contamination was
assessed by amplification of a DNA sample and RT con-
trols (no RNA template). To confirm reproducibility,
repeats (n = 3) for each time-point of interest were ampli-
fied in duplicate, the external standards were amplified in
duplicate simultaneously. To avoid competition, target
and L19 ¢cDNAs were amplified in 2 separate PCR reac-
tions. At the completion of each PCR reaction the starting
quantity of each sample was calculated against the stand-
ard curve (constructed by software) using the appropriate
threshold cycle (CT) value. Samples were given a relative
measure against their starting cDNA concentration [34]
and this value normalized against corresponding L19
value [35,36].

Figure |

http://www.rbej.com/content/6/1/50

Statistical analyses

All experiments were conducted using a minimum of
three animals per time point/treatment. Variation among
groups was analyzed by one-way ANOVA or t-test where
appropriate. Where significant differences (P < 0.05)
among groups were detected, specific group comparisons
were made by least significant difference (LSD) tests [37].
Associations between parameters were measured by Pear-
son correlation.

Results

Immunohistochemistry

Immunohistochemical staining indicated that TNFR1 and
TNFR2 (Figure 1) were present in the rat CL. Immunore-
active-TNFR1 and TNFR2 were evident in CL on Days 16
and Day 22 of pregnancy and post-partum Day 3. The
staining intensity of TNFR1 appeared to increase on Day
3 post-partum whilst the staining intensity of TNFR2 was
highest on Day 16, then reduced on Day 3 post-partum
and least intense on Day 22 of pregnancy. Within the CL,
immunostaining was concentrated in the cytoplasm of
luteal cells. Cells within the ovarian interstitium and

TNF receptor | & 2 immunohistochemistry. Rat CL sections incubated with polyclonal goat anti-rat TNFRI or TNFR2
antibody stained with DAB and counterstained with haematoxylin. TNFRI protein expression was assessed on Days 16 (a) and
22 (b) of pregnancy and Day 3 (c) post-partum. Oocytes at all stages of follicular development were immunoreactive (d) The
staining pattern and intensity were consistent between immunohistochemical runs (n = 4) and staining intensity was greatest in
Day 3 post-partum sections (c). TNFR2 protein was also assessed on Days 16 (e) and 22 (f) of pregnancy and Day 3 post-par-
tum (g). Immunoreactive-TNFR was observed across all time-points within the CL compartment and specifically luteal cells (Ic).
Oocytes at all stages of follicular development were immunoreactive (h). Sections treated in the absence of the primary anti-
body showed no non-specific immunostaining for TNFRI (inset d) or TNFR2 (inset h). [Magnification 400%]
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Figure 2

StAR protein localization. StAR protein expression was analyzed using a polyclonal rabbit anti-mouse StAR antibody on
Day 16 (a) and 22 (b) of pregnancy and Day 3 post-partum (c). Imnmunoreactive-StAR was observed across all days in the CL
compartment, specifically in luteal cells (Ic). Sections treated without the primary antibody showed no immunostaining (d). The
staining pattern and intensity were consistent between immunohistochemical runs (n = 4). [Magnification 400x]
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oocytes at all stages of follicular development were immu-
noreactive for TNFR1 and TNFR2. Sections treated in the
absence of the primary antibody showed no immunos-
taining.

Immunoreactive-StAR was evident in CL at all stages of
pregnancy and post-partum examined (Figure 2). StAR
protein was localized within the cytoplasm of luteal cells
on Days 16 and Day 22 of pregnancy and post-partum
Day 3. Staining intensity appeared to decrease toward Day
3 post-partum. Negative control sections incubated in the
absence of the primary antibody showed no immunos-
taining. The staining pattern and intensity for all protein
targets were consistent between immunohistochemical
runs (n = 4).

Western blot analysis

Western blot analysis revealed a single immunoreactive
band of approximately 30 kDa consistent with that previ-
ously reported [38] (Figure 3a). StAR protein expression
decreased significantly (P < 0.05) between Day 16 and the
other time points examined. StAR protein expression
decreased significantly following in vitro incubation with-
out trophic support for 8 h (Figure 3b). There was no sig-
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nificant change in StAR protein expression following
treatment with recombinant TNFa (37.5 ng/ml) for 6 h
(Figure 3b).

Kinetic RT-PCR

TNFoo mRNA RT-PCR product was detected in ovarian
samples on all days/time-points (Figure 4). Approxi-
mately 25-30 amplification cycles were needed to reach
the threshold, the threshold cycle (CT) vs. log (starting
concentration) plot or standard curve was linear with a
strong correlation coefficient (r = 0.999) (data not
shown). The relative amount of TNFa increased signifi-
cantly on Day 3 post-partum (P < 0.001) compared to Day
16 of pregnancy, though there was no significant differ-
ence between Day 16 and Day 22 of pregnancy (Figure 4).
Melt curve analysis revealed the amplification of a single
product (295 bp) with a denaturation temperature (Tm)
of 87°C (data not shown).

A single RT-PCR product corresponding to both TNFR1
and TNFR2 on Day 16 and Day 22 of pregnancy and Day
3 post-partum. Approximately 21-27 (TNFR1) and 23-26
(TNFR2) amplification cycles were needed to reach the
threshold and the standard curves generated were linear

(c) Time ContOh 8h TNFa6h
W e w— +— 30 kDa
(d)
160

- .
o O N b
o O o o

N A O
o O O

StAR protein in vitro Day 16
Arbitrary densitometric counts

o

Cont Oh

TNFa 6h

Western blot analysis of StAR protein in vivo and in vitro. Western blot analysis of StAR protein on Day 16 and 22 of
pregnancy, and Day 3 post-partum. A representative autoradiogram showing a single immunoreactive band (a) and corre-
sponding statistical analysis (b). There was a significant change between Day |6 of pregnancy and Day 3 post-partum (P < 0.05;
one-way ANOVA). Values without shared notations differ at P < 0.05 (LSD test). Western blot analysis of StAR protein on Day
16 of pregnancy following incubation without trophic support for 8 h or following treatment with recombinant rat TNFa (37.5
ng/ml). A representative autoradiogram showing a single immunoreactive band (c) and corresponding statistical analysis (d).
Values are expressed in arbitrary density units and show mean + SEM for all groups (n = 3). Asterisk denotes a significant dif-
ference between control and 8 h group (P < 0.05; t-test).
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Figure 4

TNFo mRNA expression. TNFoo mRNA expression was
assessed through kinetic RT-PCR on Day |6 and 22 of preg-
nancy and Day 3 post-partum. mRNA levels were normalized
against L19 and are shown as mean * SEM for all groups (n =
3). There was a significant difference between pregnancy and
post-partum time-points (P < 0.05; one-way ANOVA). Val-
ues without shared notations differ at P < 0.001 (LSD test).

with strong correlation coefficients (r = 0.999 and 0.989
respectively) (data not shown). There was a slight but
insignificant change in TNFR1 mRNA levels between Day
16 and Day 22 of pregnancy (Figure 5a), but levels
increased significantly (P < 0.05) from Day 22 of preg-
nancy to Day 3 post-partum. TNFR2 mRNA levels
increased significantly (P < 0.05) on Day 3 post-partum
compared to Day 16 and Day 22 of pregnancy (Figure 5b).
There was no significant difference in TNFR2 mRNA levels
between Day 16 and Day 22 of pregnancy. Following
amplification, samples were subjected to melt curve anal-
yses which demonstrated a single product of 536 bp with
a Tm of 88°C (TNFR1) and 527 bp with a Tm 86°C
(TNFR2) (data not shown).

StAR mRNA expression was assessed by kinetic RT-PCR on
the same days of pregnancy and post-partum (Figure 6a).
The amplification of StAR required approximately 20-25
cycles to reach the threshold and the standard curve gen-
erated was linear with a strong correlation coefficient (r =
0.985) (data not shown). The relative amount of StAR
mRNA increased significantly from Day 16 to Day 22 of
pregnancy then decreased to levels below Day 16 on Day
3 post-partum (P < 0.05) (Figure 6a). StAR mRNA expres-
sion was further examined following in vitro incubation
without trophic support for 8 h and treatment with
recombinant TNFa (37.5 ng/ml) for 6 h (Figure 6b). The
relative amount of StAR mRNA increased significantly fol-
lowing incubation without trophic support and following
treatment with recombinant TNFa (P < 0.05). Melt curve

http://www.rbej.com/content/6/1/50

analysis revealed the amplification of a single product of
246 bp, with a Tm of 87°C (data not shown).

Discussion

Our work to date has focused on elucidating the mecha-
nisms of CL regression, particularly those associated with
structural regression of the CL [22,31,39,40]. We have pre-
viously demonstrated TNFa expression during the struc-
tural regression of the CL both in vivo and in vitro through
immunohistochemistry and Western blot analyses [22],
concluding that TNFa is a potential luteolytic factor at
Day 22 of pregnancy and Day 3 post-partum. The analysis
of TNFa mRNA expression in this study supports these
earlier findings and suggests that the involvement of
TNFa in CL regression is active (requiring transcription)
rather than passive.

Critical to the effectiveness of cytokine-mediated apopto-
sis, is receptor-ligand binding. The immunohistochemical
data in this study demonstrate for the first time the pres-
ence of the TNFR in adult rat CL during pregnancy and
post-partum. Since the TNFR is an essential element in the
TNFa cell death pathway, our findings further support a
role for TNFa during CL regression. TNFR immunostain-
ing appeared to be confined to rat luteal cells, despite pub-
lished evidence of endothelial cell expression within the
porcine and bovine CL [18,27,41]. Furthermore, immu-
nostaining was not solely localized to the cell membrane
(as expected) but also the cytoplasm of luteal cells; for this
reason quantitative analysis of protein expression was not
undertaken since the results, whilst supporting the pres-
ence of TNFR in the CL, do not definitively define it's cel-
lular compartmentalization. Importantly, this finding is
supported by the manufacturer's (Santa Cruz Biotechnol-
ogy) disclosure stating the presence of both membrane
and cytoplasmic staining for either antibody. Indeed pho-
tographs presented in cited publications [42,43] clearly
show both cytoplasmic and membrane-bound localiza-
tion of TNFR1 and TNFR2. Whilst the significance of these
findings is not discussed it is possible that it reflects either
latent TNFR protein expression or is the result of the
homology between the TNFR death domain and the death
domain of adapter proteins localized within the cyto-
plasm.

TNFR mRNA was expressed in the rat CL at all stages
examined during pregnancy and post-partum. One of the
unanswered questions in TNFa biology is what types of
signals are mediated through either TNFR. The hypothesis
of this study was that CL fate might be regulated at the
level of the TNFR; should only one receptor type be
expressed during CL regression. There was no change in
TNFR1 mRNA levels when compared to Day 16 of preg-
nancy; however, there was a significant increase in TNFR1
mRNA levels from Day 22 of pregnancy to Day 3 post-par-
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TNFRIand TNFR2 mRNA analysis. (a) Kinetic RT-PCR measurements of TNFRI mRNA expression on Day 16 and 22 of
pregnancy and Day 3 post-partum. There was a significant difference between Day 22 of pregnancy and Day 3 post-partum
groups (P < 0.05; one-way ANOVA). Values without shared notations differ at P < 0.05 (LSD test). (b) TNFR2 mRNA expres-
sion was assessed on Day 16 and 22 of pregnancy and Day 3 post-partum by kinetic RT-PCR. mRNA levels were normalized
against L19 and shown as mean + SEM for all groups (n = 3). There was significant variation between pregnancy and post-par-
tum (P < 0.05; one-way ANOVA). Values without shared notations differ at P < 0.05 (LSD test).
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StAR mRNA analysis in vivo and in vitro. StAR mRNA expression measured by kinetic RT-PCR on Day 16 and 22 of
pregnancy and Day 3 post-partum. mRNA levels were normalized against L19 and are shown as the mean + SEM for all groups
(n = 3). There was a significant difference among groups (P < 0.05; one-way ANOVA). Values without shared notations differ at
P < 0.05 (LSD test). (b) mRNA expression measured by kinetic RT-PCR on Day |6 of pregnancy following incubation without
trophic support for 8 h or following treatment with recombinant rat TNFa (37.5 ng/ml). mRNA levels were normalized against
L19 and are shown as mean + SEM for all groups (n = 3). Asterisk denotes significant difference between control and treatment
groups (P < 0.05; t-test).
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tum. This finding supports the association of TNFR1 with
apoptosis [25] and also its association with the rapid
luteal regression seen following parturition. TNFR2
mRNA was more abundant on Day 3 post-partum, a
period when active growth of new follicles is occurring,
and this finding further supports the cell proliferative role
of TNFR2 [25]. Whilst mRNA expression cannot be
extrapolated to protein expression, the observed changes
are intriguing.

Despite its association with cell survival, TNFR2 expres-
sion may also contribute to the apoptotic signal of TNFa.
Anti-TNFR2 antibodies, although not directly cytotoxic,
can antagonize the cytotoxic action of TNFa [44]. Tar-
taglia et al., [45] hypothesized that the auxiliary function
of TNFR2 was to cooperate in the binding of TNFa to
TNFR1 (the ligand-passing hypothesis). An alternate
hypothesis is that TNFR2 may be responsible for the DNA
fragmentation activity associated with TNFa-induced
apoptosis [46]. Although separation between the func-
tioning of the two receptors has been demonstrated, over-
expression of TNFR2 can result in apoptosis [47]. Thus the
increased levels of TNFR2 mRNA observed on Day 3 post-
partum may possibly contribute to TNFa-induced apop-
tosis [48]. However, if none of these hypotheses hold true,
these data do not diminish the role of TNFa during CL
apoptosis since, associated with receptor expression, is a
reported increase in the binding affinity of TNFa during
the oestrus cycle and pregnancy [26,28,49]. A quantitative
study of TNFR binding affinity and protein expression in
the rat CL is required before such conclusions can be
made.

The role of TNFa in the functional regression of the CL
was assessed through analysis of StAR protein expression.
Localized to luteal cells, StAR protein and mRNA expres-
sion decreased on Day 3 post-partum. StAR expression
correlated with the reported changes in total progestin
synthesis [1] and the structural regression of the CL
[40,50,51]. Whilst StAR expression was significantly
reduced on Day 3 post-partum, the observed increase in
mRNA expression on Day 22 of pregnancy is consistent
with the observed synthesis of 200.-OHP [1]. Importantly,
the decline in StAR expression post-partum was inversely
correlated with TNFa expression as reported in earlier
studies [15]. However, following treatment with recom-
binant TNFa, StAR mRNA expression increased whilst
protein expression remained unchanged. A similar effect
was observed following the withdrawal of trophic support
for 8 hours. We have previously demonstrated the pattern
of apoptosis occurring both during pregnancy and follow-
ing in vitro organ culture [2,22] and the decline in proges-
terone synthesis during the structural regression of the CL
is well documented [3]. It is possible that the elevation in
StAR mRNA corresponds to the attempted compensation

http://www.rbej.com/content/6/1/50

by remaining healthy luteal cells in a similar manner to
that observed following unilaterally ovariectomized rats
[52]. As such the in vitro data present confounding evi-
dence for the role of TNFa in the functional regression of
the CL.

Conclusion

The results of the present study indicate the local produc-
tion of TNFa and the presence of both TNFR in rat CL
throughout pregnancy, and further support the role of
TNFa in the structural regression of the rat CL. The data
further demonstrate the relationship between StAR
expression and the functional state of the rat CL and sug-
gest that TNFa is associated with its functional regression.
This work forms the basis from which further investiga-
tions around TNFa systems' biology may be undertaken
and may ultimately lead to the ability to manipulate CL
regression.
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