
BioMed Central

Reproductive Biology and 
Endocrinology

ss
Open AcceResearch
Level set segmentation of bovine corpora lutea in ex situ ovarian 
ultrasound images
Brennan J Rusnell1, Roger A Pierson2, Jaswant Singh3, Gregg P Adams3 and 
Mark G Eramian*1

Address: 1Department of Computer Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada, 2Department of Obstetrics, 
Gynecology and Reproductive Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada and 3Department of Veterinary Biomedical 
Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada

Email: Brennan J Rusnell - brennan.rusnell@usask.ca; Roger A Pierson - pierson@erato.usask.ca; Jaswant Singh - jaswant.singh@usask.ca; 
Gregg P Adams - gregg.adams@usask.ca; Mark G Eramian* - eramian@cs.usask.ca

* Corresponding author    

Abstract
Background: The objective of this study was to investigate the viability of level set image segmentation
methods for the detection of corpora lutea (corpus luteum, CL) boundaries in ultrasonographic ovarian
images. It was hypothesized that bovine CL boundaries could be located within 1–2 mm by a level set image
segmentation methodology.

Methods: Level set methods embed a 2D contour in a 3D surface and evolve that surface over time
according to an image-dependent speed function. A speed function suitable for segmentation of CL's in
ovarian ultrasound images was developed. An initial contour was manually placed and contour evolution
was allowed to proceed until the rate of change of the area was sufficiently small. The method was tested
on ovarian ultrasonographic images (n = 8) obtained ex situ. A expert in ovarian ultrasound interpretation
delineated CL boundaries manually to serve as a "ground truth". Accuracy of the level set segmentation
algorithm was determined by comparing semi-automatically determined contours with ground truth
contours using the mean absolute difference (MAD), root mean squared difference (RMSD), Hausdorff
distance (HD), sensitivity, and specificity metrics.

Results and discussion: The mean MAD was 0.87 mm (sigma = 0.36 mm), RMSD was 1.1 mm (sigma =
0.47 mm), and HD was 3.4 mm (sigma = 2.0 mm) indicating that, on average, boundaries were accurate
within 1–2 mm, however, deviations in excess of 3 mm from the ground truth were observed indicating
under- or over-expansion of the contour. Mean sensitivity and specificity were 0.814 (sigma = 0.171) and
0.990 (sigma = 0.00786), respectively, indicating that CLs were consistently undersegmented but rarely did
the contour interior include pixels that were judged by the human expert not to be part of the CL. It was
observed that in localities where gradient magnitudes within the CL were strong due to high contrast
speckle, contour expansion stopped too early.

Conclusion: The hypothesis that level set segmentation can be accurate to within 1–2 mm on average
was supported, although there can be some greater deviation. The method was robust to boundary
leakage as evidenced by the high specificity. It was concluded that the technique is promising and that a
suitable data set of human ovarian images should be obtained to conduct further studies.
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Background
The ovaries of all mammalian species, including humans
and cattle, contain follicles and corpora lutea (CL). The
bovine model for studying human ovarian function is
well established [1].

Objective and motivation
The objective of this research is to study the viability of
level set image segmentation techniques [2] for automatic
segmentation of CL (delineation of the boundary) in two-
dimensional (2D) ultrasound images. Our study repre-
sents the first investigation of semi-automated segmenta-

tion of corpora lutea from ultrasound images. The level set
method lends itself to image segmentation tasks because
it requires minimal user input, accommodates arbitrary
changes in region topology and offers a straightforward
extension to higher dimensional data [3]. Figure 1(a)
shows an image of a CL and Figure 1(b) shows the desired
segmentation result as drawn by a human expert in ovar-
ian ultrasound interpretation.

The presence (or absence) of a CL in the ovaries, its size
and morphology provide information regarding the cur-
rent state of the individual's reproductive cycle [4,5]. The

Corpus Luteum segmentation goal and contour initializationFigure 1
Corpus Luteum segmentation goal and contour initialization. (a) Unprocessed ultrasound image containing a corpus 
luteum; a small irregularly shaped cystic cavity is visualized within the CL. (b) Manual segmentation of the CL by a human 
expert. (c) A circular initial contour placed within the CL in the image in (a). (d) The surface (ψ) of the initial signed distance 
function in which the contour is embedded.

(a) (b)

(c) (d)
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most common method of visualizing the CL in vivo is
ultrasonography. Monitoring the development of ovarian
follicles and CL over time is crucial to the understanding
of human and bovine reproductive biology, fertility and
timing of fertility therapy, the effects of contraception,
and the diagnosis of ovarian diseases and dysfunction,
such as ovarian cysts, cancers, and polycystic ovarian syn-
drome.

In practice, CL segmentation is performed manually.
Manual delineation is time consuming and subject to var-
iance in human interpretation of images. The domain of
image processing offers the potential for detailed analysis
of CL size, and appearance, which will facilitate study of
the aforementioned processes and diseases. Successful
automation of CL segmentation would further the auto-
mation of existing analyses, such as correlating the value
of image pixels within the CL region with various physio-
logical attributes [6] and automatically determining CL
diameter for use in higher-level classifiers [5], as well as
facilitate new investigations.

Literature review
Research on prostate segmentation from 2D ultrasound
images was reviewed for insight into CL segmentation due
to the similarities of the two problems. The prostate has a
similar echotexture appearance to that of corpora lutea in
ultrasound images and a similar level of contrast with the
rest of the image. Moreover, there is only one region of
interest in both problems. However, there are differences
which make the CL segmentation problem more challeng-
ing. Due to standardized imaging procedures, the pros-
tate's position in an image is approximately known a priori
and strong assumptions may also be made about the pros-
tate's shape in the image plane [7-10]. This is not possible
when imaging corpora lutea since it can be present at dif-
ferent locations within the ovary and is more variable in
shape and size [11,12]. CLs are assumed only to be
approximately elliptical in the image plane with low to
moderate eccentricity. Segmentation of the prostate from
ultrasound images has been well studied [7]. A number of
prostate segmentation methods used deformable contour
models. Deformable contour models were first intro-
duced as tools for image segmentation by Kass et al. [13].
Their active contour models or "snakes" formulated image
segmentation as an energy minimization problem. An
active contour was initially placed on an image. Solving
energy equations caused the curve to move or "evolve"
until it minimized the energy function. The energy func-
tion was chosen so that the curve tended to follow edges
in the image. Snakes were found to poorly handle topo-
logical changes in contours such as merging or splitting
but the difficulties can be overcome with care, albeit con-
siderable computational overhead.

The success of prostate segmentation using deformable
models using snakes and so-called "discrete dynamic con-
tours" were largely dependent on careful initialization of
the contour in a position near the desired boundary [14-
16].

Badiei et al. developed an algorithm in which small
number of marker points were placed on the prostate
boundary which was then warped, based on an a priori
shape model, so that the prostate was elliptical in shape
[8]. The marker points were then used to find the ellipse
that best fit the warped prostate. The inverse of the warp-
ing transformation was applied to the ellipse to obtain the
final segmentation. The success of the approach was
dependent on the correctness of the assumption of ellipti-
cal shape and the careful placement of the initial marker
points.

Level set methods has been proven effective both in gen-
eral [17-20] and for ultrasound image segmentation
[21,22]. Recent applications of the level set method to
prostate ultrasound image segmentation [3,7,23] show
that this technique is accurate and flexible (it can handle
contours of varying shape, size, and concavity). A level set
method was chosen for the current study because of the
prior success of level set methods in prostate segmenta-
tion and its ability to easily handle arbitrary changes in
contour topology.

Fan et al. [3] used a level set method to perform three-
dimensional (3D) surface detection from ultrasound
images of the prostate. A fast discrimination method was
used to roughly extract the prostate region. The prostate
region information was incorporated into the level set
method instead of the spatial image gradient. This
addressed the issue of "boundary leaking" which occurs
when the contour evolves across a very weak edge that is
part of the desired boundary. The segmentations pro-
duced qualitatively appeared to be good, but a quantita-
tive assessment of segmentation accuracy was lacking.

Herein, a new methodology was created to segment cor-
pora lutea from 2D ultrasound images using this work as
a starting point. Our algorithm consists of a multi-step
preprocessing stage followed by segmentation using a
level set method. It is semi-automated in that it requires
an initial user-specified closed contour that is assumed to
be completely contained within the CL, and to completely
contain the CL's central cavity if one exists. It was hypoth-
esized that this level-set contour evolution method could
be used to locate the boundaries of CL with an average
error of 1–2 mm. The CLs used in this study ranged from
14.3 mm to 21.5 mm in diameter.
Page 3 of 16
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Methods
Image data
The work herein is motivated by the need to study human
reproduction but images of bovine ovaries were used in
this feasibility study as they are well-established as a vehi-
cle for studying human ovaries due to similarities in phys-
iology and morphology. The images used in this study
were obtained during a previous study Singh et al. [6]. Left
and right ovaries of heifers were surgically removed at
defined stages of the estrous cycle and imaged ex situ in
parallel planes at 0.5 mm increments using a broad-band
(5–9 Mhz), convex-array, ultrasound transducer inter-
faced with an ATL Ultra Mark 9 HDI ultrasound machine
(Advanced Technology Laboratories, Brothell, WA). At the
time of ovariectomy, the number of days from ovulation
was known. From this data set, ovaries with CLs (n = 8)
were selected for the current study. From the set of parallel
images of each ovary, the image which contained the CL
at maximum diameter was selected. All images were 640
× 480 pixel 8-bit grayscale, but the pixel size varied across
images, ranging from 0.057 mm × 0.057 mm to 0.087
mm × 0.087 mm as determined from the distance grada-
tions on the right-hand side of each image. An experi-
enced gynecologic ultrasonographer manually segmented
the images which provided a "ground truth" for valida-
tion purposes. The diameters of the CLs in the selected
images ranged from 14.2 mm to 21.5 mm. Diameter was
estimated by averaging the length and width of the small-
est bounding box aligned to the image coordinate axes of
the expertly segmented CL region. A sample image is
shown in Figure 1(c) and is used as a running example
throughout this paper.

Curve evolution with level sets
In this section, the level set method is presented in a sim-
ilar fashion to that in [3] which is, in turn, derived from
[2]. The level set method evolves an initial 2D contour
according to an energy function derived from image pixel
data by embedding the 2D contour in a 3D surface.

An initial 2D contour C(t = 0) is represented by a 3D func-
tion ψ that evolves over time. The value of ψ at a point p
at time t = 0 is defined as the distance d from p to the near-
est point on C at time t:

ψ(p, t = 0) = ± d. (1)

The sign of d is negative if the point lies in the interior of
C and is positive otherwise. The function ψ(p, t = 0) is
called a signed distance function. Figure 1(c) illustrates a cir-
cular initial contour that was used to segment the image
on which the contour was superimposed. The correspond-
ing signed distance function, ψ(p, t = 0) is in Figure 1(d);
the 2D contour is drawn beneath the surface.

The level set method causes the contour C(t = 0) to move
towards the desired boundary by evolving the surface ψ
over time. At an aribitrary time t, the contour C(t) is rep-
resented by the set of points for which ψ(p, t) = 0, also
called the zero-level set of ψ:

C(t) = {p | ψ(p, t) = 0}. (2)

The evolution of ψ is described by the partial differential
equation

In this equation, the initial condition is ψ(p, t = 0), ∇ψ
denotes the gradient of ψ, and F is the speed function. The
speed function describes the rate at which the contour will
move in the outward normal direction. The contour is
encouraged to evolve towards the desired image boundary
by designing an appropriate speed function F. Figure 2(a)
is the contour from Figure 1(c) resulting from evolution
using Equation 3 and an appropriate speed function; the
corresponding final surface and its zero level set are
depicted in 2(b).

In general, the speed function F depends on the curvature
K of the evolving front and is typically separated into a
constant term F0 and the remainder F1(K):

F(K) = F0 + F1(K). (4)

The constant term F0 provides a constant expansion or
contraction force depending on its sign. The curvature-
dependent component F1 controls the smoothness of the
deforming shape. A common choice of F is given in the
following equation:

F(K) = 1 - K. (5)

Equation 5 describes an outward unit normal force that is
reduced by a factor proportional to the local curvature of
the contour. Intuitively, this causes the non-smooth seg-
ments of the contour (which have high curvature) to
move slowly while nearby portions of contour "catch up",
resulting in smoother curve. The constant  regulates the
smoothness of the curve and must be greater than zero
[3]. Larger values of  result in smoother contours.

To cause the evolving contour to stop at the desired image
boundary, F is typically multiplied with an image depend-
ent quantity kI:
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The term ∇Gσ denotes the gradient of a two-dimensional
Gaussian function whose standard deviation is σ, I is the
image function, and * denotes convolution. The convolu-
tion operation is the same as that described for sticks fil-
ters (below); only the kernel differs. Since the gradient
operator can be applied after the convolution operation
without changing the result, the second term of the
denominator's sum can be viewed as magnitude of the
gradient of an image which has been convolved with a
Gaussian filter kernel raised to the power p. A Gaussian fil-
ter has the effect of computing for each pixel a center-
weighted average of the intensities in its local neighbor-
hood which smoothes or blurs the image. A smoothed
image is desirable since it reduces the magnitude of small,
unimportant local edges so that they have less effect on
the speed function.

Pixels with large image gradient (corresponding to pixels
that have a high probability of being edges of the corpus
luteum) will cause the value of kI (Equation 6) to be close
to zero. When kI is multiplied with F the speed at which
the contour embedded in ψ propogates is reduced to
nearly zero when it is near the desired boundary. The
exponent p controls the severity of the penalty that gradi-
ent magnitude applies to the speed function.

Speed function for CL segmentation
The low intensity contrast between CL regions and other
regions of the ovary and the noisy nature of ultrasound
images required a more sophisticated construction of the
speed function, rather than direct application of the proc-
ess described by Equation 6. The speed function was con-

structed by filtering the image with a sticks filter [24,25].
The filtered image was then processed with Sobel filters
[26] to obtain a gradient magnitude which was then con-
trast enhanced. The mean image intensity was then sub-
tracted from each pixel and the resulting image was
contrast enhanced a second time and inserted into Equa-
tion 6 to obtain the weighting term kI for the speed func-
tion F, above. These steps are discussed in greater detail
below.

Sticks filter
Sticks filtering [24,25] is a process for reducing image
speckle which may obfuscate boundaries of structures in
the image. A sticks filter is a bank of linear filters which
evaluate the likelyhood of a linear feature of length N in
one of 2N-2 possible orientations passing through each
pixel. Each filter mask is a N × N matrix where each entry
is either 0 or 1/N. Entries with value 1/N represent lines
through the center of the matrix. A bank of filters for N =
5 is illustrated graphically in Figure 3. Linear filtering [26]
(convolution) works by positioning the filter mask's
center over each image pixel and computing the sum of
products of each entry in the filter mask with the intensity
of the underlying pixel. Each filter mask or "stick" will
thus produce the greatest response (sum of products)
when positioned over a bright linear feature of a specific
orientation. A pixel's output intensity is the response of
the filter from the sticks filter bank which responds maxi-
mally at that point; the magnitude of the maximal
response corresponds to the mean intensity along the line
segment orientation to which that filter is most sensitive
(the filter response is the sum of the intensities along the

Result of the level set methodFigure 2
Result of the level set method. (a) The contour in Figure 1(c) after evolution with Equation 3 and an appropriate speed 
function. (b) The corresponding surface.

(a) (b)
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stick divided by N). Figure 4(b) shows the effect of sticks
filtering on the image in Figure 4(a) using sticks of length
17. The sticks filter suppresses much of the speckle while
maintaining the visibility of thin linear features which

would be seriously degraded by standard image smooth-
ing techniques.

The first step in our algorithm was to filter the images with
a sticks filter bank of size 17. This stick length was chosen

Representation of a sticks filter bank for sticks of length 5Figure 3
Representation of a sticks filter bank for sticks of length 5.
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because it is small enough that it correlates well with CL
boundary segments of the same length but is large enough
that it smoothes small-scale features and reduces the mag-
nitude of edges with high curvature which are not of inter-
est. Reducing the magnitude of high-curvature edges is
important since the level set method relies heavily on edge
information and segmentations are undesirably influ-
enced by small-scale edges such as those caused by
speckle.

Sobel magnitude filter
Sobel convolution filters are edge detectors which approx-
imate partial first derivatives of the image. The horizontal
(Sh) and vertical (Sv) Sobel filter kernels are

These filters compute center-weighted average finite dif-
ferences over a distance of 3 pixels in a 3 pixel-wide band
in the horizontal and vertical directions, respectively.

An edge magnitude image M was computed by applying
horizontal and vertical Sobel edge detectors to the sticks
filtered image and combining the horizontal and vertical
responses (respectively Rh and Rv) in the usual way:

The Sobel filters may be generalized to larger sizes:

Larger Sobel filters compute the finite differences over
longer distances and bands and are much less sensitive to
very local changes. The effect is that larger filters respond
to larger scale changes in the image function and small
scale changes are not captured.

The use of the Sobel filter at this point in the algorithm
was to identify large scale step edges in the image which
are characteristic of the CL-stroma boundary. A Sobel fil-
ter size of 17 × 17 was chosen empirically by testing the fil-
ters on sample images, where preference was given to
images that exhibited strong edges along the true bound-
ary of the CL. A size of 17 × 17 enhanced only the major,
dominant edges, which are more likely to be true bound-

aries of the CL. Figure 5 shows the results of processing
Figure 4(b) with a 17 × 17 Sobel magnitude filter.

Intensity normalization

In ultrasonographic images, even the strongest edges may
have fairly weak magnitude. In order to improve the con-
trast and further emphasize major edges, the pixel intensi-
ties of the edge magnitude image M were normalized to

obtain the image .

Normalization is a linear remapping of pixel intensities. If
the pixel intensities in an image are within the interval
[Imin, Imax], then a normalizing linear remapping causes
intensity Imin to be mapped to intensity 0, and Imax to be
mapped to the maximum possible intensity while intensi-
ties between Imin and Imax are linearly interpolated. After
normalization, images were converted from 8-bit gray-
scale (integer pixel intensities ranging from 0 to 255) to
real-valued images with intensities ranging from 0.0
(black) to 1.0 (white) by dividing each pixel's intensity by
255.

Weak edge suppression

The normalized edge magnitude image obtained in the
previous step exhibits weak edges within the interior of
the CL region (Figure 6(a)) caused by the fine texture
present there. These edges interfere with the level set seg-
mentation process. Weak edges were suppressed by sub-
tracting from each pixel in the normalized edge
magnitude image the mean intensity of the normalized
edge magnitude image and clipping all resulting negative

intensities to zero. Formally, let μ be the mean intensity of

the normalized edge magnitude image . The mean-sub-
tracted edge magnitude image N is defined as

The resulting image N was re-normalized using the proce-
dure described above to obtain the normalized mean-sub-

tracted edge magnitude image . Figure 6(b) illustrates
the effect of mean subtraction from the normalized edge
magnitude image in Figure 6(a); the weaker edges present
in the CL region have been largely suppressed. The central
fluid cavity in the pictured CL causes the high-magnitude
edge that is retained in the renormalized image. The

image  was used to compute the weighting term kI for

the speed function F in the level set method.

S Sh v=
−
−
−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
− − −

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1 0 1

2 0 2

1 0 1

1 2 1

0 0 0

1 2 1

. (7)

M x y R x y R x yh v( , ) ( , ) ( , ) .= +2 2 (8)

S Sh v=

−

−

−

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

=

1 0 0 1

0 0

2 2

0 0

1 0 0 1

1 2 1

0 0 0 0

�
� �
� �

� �
�

� �
�

� ��
�

� �
0 0 0 0

1 2 1− − −

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

.

(9)

M

M

N x y
M x y M x y

otherwise
( , )

( , ) : ( , ) ;

: .
= − − >⎧

⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
m m 0

0

(10)

N

N

Page 7 of 16
(page number not for citation purposes)



Reproductive Biology and Endocrinology 2008, 6:33 http://www.rbej.com/content/6/1/33
Level set segmentation of corpora lutea
Placement of the initial contour
Placement of the initial 2D contour was done manually.
All initial contours were circular. If a fluid cavity was
present, the initial contour was chosen to enclose the fluid
cavity. Kastelic et al. showed that 79% of bovine ovaries
exhibit central cavities [27]. If a fluid cavity was not
present, the contour was placed near the center of the CL.
The remainder of the algorithm is automatic.

The intial 2D contour was embedded as the zero level set
of a 3D signed distance function ψ(p, t = 0). This function
was evolved using Baris Sumengen's Matlab level set tool-
box [28] according to Equation 3.

Curve evolution parameters

The weighting term kI for the speed function F was com-

puted from the preprocessed image  in the previous sec-
tion using a slightly altered version of Equation 6:

In order to achieve finer control over the rate at which kI

approaches zero as  increases, a coefficient α was added
to the second term of the denominator.

Values of α = 100 and p = 1 were chosen empirically. A
surface plot of 1-kI (inverted for ease of interpretation)

computed using the image in Figure 6(b) as  is shown

Figure 7. Strong edges are red in colour, indicating that the

evolution of ψ will slow and eventually stop near the true
contour of the CL. The parameter  in Equation 5 was
experimentally chosen to be 0.375. Use of a non-zero cur-
vature-based force was used to discourage the "leaking" of
the evolving contour through sections of the true CL
boundary where the magnitude of the edge was weak.

The Matlab toolbox [28] which was used to evolve the
boundary also required some additional parameters. The
first-order accurate finite difference option was chosen for
approximation of derivatives. The surface being evolved
must be discretized on a grid; a conservative grid size of 1
× 1 was chosen. The time interval between steps of the
evolution, which may range from 0.5–0.9, was chosen to
be a conservative 0.5. A more aggressive selection of a
larger timestep would improve the speed of the curve evo-
lution algorithm, but could also cause numeric instability
leading to poor or nonsensical results.

The surface in which the 2D contour is embedded will
almost certainly lose the property of being a signed dis-
tance function as it evolves since portions of surface will
move at different velocities. It is necessary to periodically
re-initialize the surface to a signed distance function, for
example, after every m time steps. This is achieved by
extracting the zero-level set C(t) (defined in Equation 2)
and constructing from it a new signed distance function
ψnew. The evolution process then continues using ψnew for
another m time steps. This is repeated until a stopping
condition is condition is met (see below). A value of m =
1 was selected which caused the surface to be reinitialized
as a signed distance function after every time step. This
ensured that the surface was always a signed distance func-
tion and facilitated the test of the stopping condition.

Stopping condition

The stopping condition determined when to cease evolu-

tion of ψ. Since the zero level set contour will presumably
stop when it has settled onto the desired boundary, a test
is needed to determine when motion of C(t) becomes suf-
ficiently small. The criterion used was motivated by the
work of [29]: "If the iteration count [total number of time
steps] n exceeds a particular threshold N0 and the rate of

change of contour length  <γ over a fixed number

of iterations Δn, STOP the iteration process".

Herein, Lc(t), the length of the contour C(t), was replaced

with the area of the interior of C(t), denoted Ac. The quan-

tity  was computed at each time step and a record

N

k x y
N x y pI( , )

[ ( , )]
.=

+ ×

1

1 a
(11)

N

N

dLc t
dt

( )

dAc t
dt

( )

Effect of edge detectionFigure 5
Effect of edge detection. This figure shows the result of 
applying a 17 × 17 Sobel magnitude filter to Figure 4(b). The 
dominant edges identified at this stage are those more likely 
to be contours of the corpus luteum.
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of these values for the previous Δm time steps was main-
tained. The evolution was halted when n > N0 and

 <γ was true for all of the previous Δm time steps.

Values N0 = 250 and γ = 250, and Δm = 15 were used to

evaluate the stopping condition.

Figure 8 shows the contour detected by the proposed
method using the lower CL image from Figure 1(a) as
input to the level set method. The green contour is the ini-
tial contour, the purple contour is the final (automatic)
contour, and the yellow contour is the contour deter-
mined by an experienced human interpreter. Results of
the method on the entire data set are discussed in the
Results section, below.

Smoothing with Fourier descriptors
During development of the implementation of the above
algorithm, it was observed that the region boundaries
determined by the algorithm quite often meandered back
and forth across the expertly traced boundary. It was
hypothesized that if the boundaries were smoothed, they
might conform more closely to the ground truth bound-
ary. Boundaries were smoothed by truncating the Fourier
descriptors of the boundary [26]. This section reviews the
basics of smoothing using Fourier descriptors.

Let P = (p1,...,pB) be a sequence of B points representing

the pixel locations of a boundary in (anti-)clockwise

order. For the i-th point, pi, let x(pi) and y(pi) respectively

denote the x and y coordinates of pi. The boundary can

then be represented as a sequence of complex numbers S

= (s1,s2,...,sB) where si = x(pi) + jy(pi) and j = . The Fou-

rier descriptors, a(u), of the boundary are the coefficients of
the Fourier transform of S:

The original boundary may be recovered via the inverse
Fourier transform. However, S, (and, in turn, P) may be
approximated by using only the first Z ≤ B Fourier descrip-
tors in the computation of the inverse transform:

This acts as a "lowpass filter" on the contour, and reduces
the magnitude of high frequency variations which results
in a smoother contour. The fewer descriptors that are
retained, the greater the smoothing effect, as illustrated in
Figure 9. The effects of smoothing on contour accuracy are
discussed in the Results section.

Validation
The manual segmentations obtained for this study were
used as the basis for comparison when validating the
semi-automatic segmentations. The metrics [30,31] mean
absolute distance (MAD), root mean squared distance

dAc t
dt

( )

−1

a u
B

s ei
j ui B

i

B

( ) ./= −

=
∑1 2

0

p (12)

ˆ ( ) ./s a u ei
j ui B

u

Z

=
=

−

∑ 2

0

1
p (13)

Removal of weak edges within the CLFigure 6
Removal of weak edges within the CL. (a) The normalized image from Figure 5. (b) The image from (a) after subtraction 
of global average, truncation, and re-normalization; the weak edges within the CL have been largely suppressed.
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(RMSD), Hausdorff distance (HD), sensitivity, and specif-
icity were used to evaluate segmentation accuracy. These
metrics are formally defined below.

The minimum distance dmin between a point p, and a con-
tour C, is defined as

which is the smallest Euclidean distance between p and
any point on the contour C.

Let CM and CA denote the sets of points on the manually
segmented and semi-automatically segmented contours,

respectively. The mean absolute distance between CM and
CA is

where |CM| denotes the number of points in the set CM.
Smaller MAD indicates a better segmentation. The root
mean squared distance between CM and CA is

d p C p qmin
q C

( , ) min || ||,= −
∈

(14)

MAD
CM

d p Cmin A

p CM

=
∈
∑1

( , ) (15)

RMSD
CM

d p Cmin A

p CM

=
∈
∑1 2[ ( , )] . (16)

Visualization of the speed functionFigure 7
Visualization of the speed function. A surface plot of 1 - kI (inverted for ease of interpretation) computed by using the 

image in Figure 6(b) for  in Equation 11. Areas close to the desired contour of the corpus luteum boundary are red in col-
our, indicating that the evolution of ψ will slow and eventually stop near the true contour of the corpus luteum.

N
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This metric is similar to MAD, except that pixels in CA
which are further away from CM contribute a greater pen-
alty to the metric.

Hausdorff distance is the greatest minimum distance
between two contours. It characterizes the maximum
deviation of one contour from another. Formally,

A smaller HD is more desirable.

Let TP denote the set of true positive pixels, that is, those
pixels that were correctly identified as belonging to a CL

region. Let TN be the set of true negative pixels correctly
identified as not belonging to a CL region. Similarly
define FP and FN to be the set of false positive and false neg-
ative pixels. The sensitivity of a segmentation is thus
defined as

and represents the percentage of pixels that truly belong to
the CL region which were correctly identified as such. The
specificity of a segmentation is the ratio

HD d p C d q C
p C

min A
q C

min M
M A

= ⎡
⎣⎢

⎤
⎦⎥∈ ∈

max max ( , ),max ( , ) .

(17)

sensitivity
TP

TP FN
=

+
(18)

specificity
TN

TN FP
=

+
. (19)

Result of segmentationFigure 8
Result of segmentation. The contour detected by the proposed method using the image and initial contour from Figure 1(c) 
as input to the level set method. The green contour is the initial contour, the purple contour is the final (automatic) contour, 
and the yellow contour is the contour determined by an experienced human interpreter.
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Specificity represents the percentage of pixels which are
not part of the CL region which were correctly identified
as such. A perfect segmentation with respect to the ground
truth will have both a sensitivity and a specificity of 1.0.

Results
The eight images in our testing set were segmented with
the algorithm described above. The manual segmenta-
tions performed by a human expert were compared with
the automated segmentations by computing the previ-
ously described metrics for each image.

Table 1 summarizes the validation metrics for each image.
Overall, the mean MAD was 0.87 mm (σ = 0. 36 mm), the
mean RMSD was 1.1 mm (σ = 0.47 mm), mean Hausdorff
distance was 3.4 mm (σ = 2.0 mm), mean sensitivity was
0.814 (σ = 0.171), and mean specificity was 0.990 (σ =
0.00786).

Figures 10 and 11 show the results of segmentation for all
test images. The green contours are the initial contours,
the purple contours are the final automatically deter-
mined contours, and the yellow contours are the contours
manually determined by a human expert.

The mean runtime for the completion of the segmenta-
tion of one image is 5 min 54s (σ = 1 min 41s). All test
images were segmented using a 2.80 GHz Pentium 4 Proc-
essor with 2 GB of RAM running Mandriva Linux (2.6.17–
14 mdv). All segmentations were executed using MATLAB
(The Mathworks Inc., Natick, MA, USA) version 7.4.0.336
(R2007a).

Smoothing with Fourier descriptors was performed on the
automatically segmented contours. Table 2 shows the

mean MAD, mean RMSD, mean HD, specificity, and sen-
sitivity over all eight test images while varying the percent-
age of descriptors used to construct the smoothed
contour. Table 2 demonstrates that as the percentage of
descriptors was decreased, all validation metrics
improved. However, the improvements were negligible;
the greatest improvement was in the RMSD metric using
1% of the Fourier descriptors, where the mean RMSD
decreased by 0.2 mm.

Discussion
Table 1 and Figures 10 and 11 demonstrate quite clearly
that the proposed algorithm typically under-segments CL;
specificity is generally excellent, while sensitivity varies
from very good (0.938) to quite poor (0.457). The high
specificity occurred because the contours were initialized
inside the CL and grew outward. The sensitivity was gen-
erally lower because of the noisy nature of the images. The
gradient information captured in kI (Equation 11) did not
perfectly match the true contour of the CL which caused
the curve evolution to stop too soon in many instances.
There are no other CL segmentation algorithms with
which this work could be compared. Given that the mean
Hausdorff distance is only 3.4 mm (σ = 2.0 mm) and the
images from Figures 10 and 11, it is clear that the regions
are being under-segmented, but the degree of under-seg-
mentation is fairly uniform about the true contour.
Smoothing with Fourier descriptors resulted in a minor
improvement, but it is concluded that the additional com-
putation is not worth the degree of improvement. The
advantages of the algorithm are that it can handle arbi-
trary contours and requires no user intervention beyond
placement of the initial contour. Moreover, no serious
boundary leaking occurred resulting in very high specifi-
city in the segmentations. Though similar to the work of

Effect of smoothing a contour by truncating Fourier descriptorsFigure 9
Effect of smoothing a contour by truncating Fourier descriptors. (a) An unsmoothed meandering contour. (b) The 
contour in (a) smoothed by retaining only the first 5% of the Fourier descriptors; the smoothed contour is drawn in black and 
the original contour is superimposed in grey. (c) Retaining only the first 3% of descriptors. (d) Retaining only the first 2% of 
descriptors, the smoothed contour now follows the "average" path rather than meandering.

(a) (b) (c) (d)
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Gooding et al. [32], our work differs in that a substantial
amount of preprocessing is needed to enhance the gradi-
ent formed by CL boundaries. Gooding et al. use a similar
gradient-based level set contour evolution method to seg-
ment ovarian follicles from 3D images. Follicles are easier
to distinguish from their environment with gradient-
based level set methods without aggressive preprocessing
because the gradient at follicle boundaries is usually quite
strong.

There are several aspects of this algorithm that could be
improved with future work. A combination of texture and
intensity properties might be able to locate a small area of
the CL with high confidence in which the initial contour
could be automatically placed. Recent work on distin-
guishing CL echotexture from that of ovarian stroma has
shown promise [33] and this work will be continued by
examining wavelet-based texture features. A challenge in
automatic contour placement will be to distinguish CL
texture not only from that of stroma, but from that of a
corpus albicans which are non-functional and are com-
prised of more dense tissue.

A more rigorous exploration of the algorithm's parameter
space (which is of high dimension) could yield a set of
parameters that produces superior results. The speed of
the contour evolution is clearly an issue. Speedup by a fac-
tor of 2–3 is likely possible by re-implementing the meth-
ods herein using a programming language such as C or
C++. Real-time speeds are not likely achievable using
level-set-based contour evolution, thus, more computa-
tionally efficient segmentation algorithms will be investi-
gated to see whether they may be suitable for CL
segmentation.

The algorithm must be tested on CL's imaged in vivo. It is
expected that the algorithm will give similar performance
on such images. Since the algorithm was successful in
locating boundaries between lutetal tissue and stroma we
expect it to perform similarly at boundaries where the pro-

truding CL is closely interfaced with organs and tissues
surrounding the ovary. Moreover, our preprocessing
causes significant blurring in order to "plug" holes in the
CL boundary through which leaks into the background
may occur which affects the potential accuracy of bound-
ary location. Images acquired in vivo may permit less
aggressive preprocessing since the area of the image sur-
rounding the ovary will be textured and not have a near-
zero gradient through which the contour can leak. In turn,
less blurring would cause less damage to the shape of the
boundary, permitting a higher accuracy in boundary loca-
tion.

The evidence that CL morphology is related to function is
conflicting, particularly between different laboratories
and species. A study by Tom et al. supported the hypoth-
esis that quantitative changes in luteal echotexture in
bovine corpora lutea are indicative of changes in its phys-
iologic status and capacity to elaborate progesterone [34].
In mares, luteal area was positively correlated with circu-
lating progesterone levels; however, the presence of a
cystic cavity within the CL did not affect the luteal gland's
ability to produce progesterone [27,35]. In humans, mean
luteal area of human CL's was shown to be positively cor-
related with serum progesterone concentrations (r =
+0.88) and serum estradiol concentrations (r = +0.62)
[36]. The human study is particularly encouraging with
regard to the prospect of non-invasive automated inter-
pretation of physiologic information from images which
could obviate blood tests in future generations. In this
context, the current study and others of its kind will be
crucial to automated, standardized analysis of CL images.
The work presented in the present study also is useful for
automated recognition of CL in the studies of CL mor-
phology and has the potential to be used in different
imaging modalities such as histology, ultrasonography
and magnetic resonance imaging [37,38]. Indeed, any
study which would benefit from automatic measurements
of CL diameter, such as that of Maldonado-Castillo et al.

Table 1: Quality of the CL segmentations analyzed by computing the absolute distance (MAD), root mean square distance (RMSD), 
and Hausdorff distance (HD) between the automatically and manually determined contours.

Image ID MAD (mm) RMSD (mm) HD (mm) Specificity Sensitivity

1 0.61 0.79 2.3 0.986 0.938
2 1.5 1.9 5.7 0.996 0.654
3 0.60 0.74 1.9 0.989 0.916
4 0.77 1.0 3.0 0.979 0.914
5 0.68 0.87 2.1 0.980 0.884
6 1.4 1.8 7.3 1.00 0.457
7 0.77 1.0 2.6 0.998 0.834
8 0.65 0.82 2.2 0.990 0.915

Mean ± σ 0.87 ± 0.36 1.1 ± 0.47 3.4 ± 2.0 0.990 ± 0.00786 0.814 ± 0.171
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[5], would be an application for automated CL segmenta-
tion algorithms.

Conclusion
This work is a first step towards a fully automated CL seg-
mentation algorithm which is quite successful when the
initial contour is manually placed. The hypothesis that
our algorithm can locate CL boundaries within 1–2 mm
on average is accepted. It is concluded that level set con-
tour evolution methods are a viable option for offline
(non-realtime) CL segmentation and warrant further
study.

The CL segmentation algorithm herein is a prototype for
the currently missing piece of a comprehensive segmenta-
tion algorithm for all ovarian structures (follicles, CL,
stroma). The work has both research and clinical impor-

tance as noninvasive gynecologic imaging becomes more
firmly integrated into standard clinical practice. Standard-
ized descriptions and image interpretations are critical in
developing standardized diagnostic algorithms and clini-
cal practice guidelines.

List of abbreviations
CL: Corpus luteum; HD: Hausdorff distance; MAD: Mean
absolute distance; RMSD: Root mean squared distance.
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Segmentation results for test images 1–4Figure 10
Segmentation results for test images 1–4. The green contours are the initial contours, the purple contours are the final 
(automatic) contours, and the yellow contours are the contours determined by a human expert. The image numbering corre-
sponds to "Image ID" in Table 1.
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Segmentation results for test images 5–8Figure 11
Segmentation results for test images 5–8. The green contours are the initial contours, the purple contours are the final 
(automatic) contours, and the yellow contours are the contours determined by a human expert. The image numbering corre-
sponds to "Image ID" in Table 1.

Table 2: Effect of smoothing by truncation of Fourier descriptors on mean quality metrics as a function of percentage of Fourier 
descriptors retained.

Percentage Used (%) MAD (mm) RMSD (mm) HD (mm) Specificity Sensitivity

100 (no smoothing) 0.87 ± 0.36 1.1 ± 0.47 3.4 ± 2.0 0.990 ± 0.00786 0.814 ± 0.171
10 0.87 ± 0.36 1.1 ± 0.47 3.4 ± 2.0 0.990 ± 0.00784 0.814 ± 0.171
7.5 0.86 ± 0.35 1.1 ± 0.46 3.4 ± 2.0 0.990 ± 0.00782 0.815 ± 0.171
5 0.86 ± 0.35 1.1 ± 0.46 3.4 ± 2.0 0.990 ± 0.00778 0.815 ± 0.172
2.5 0.83 ± 0.35 1.1 ± 0.47 3.3 ± 2.1 0.991 ± 0.00751 0.817 ± 0.175
1 0.77 ± 0.43 0.95 ± 0.54 3.1 ± 2.1 0.992 ± 0.00654 0.821 ± 0.184
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