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Abstract
Background: RNA interference (RNAi) is a valuable tool in the investigation of gene function. The
purpose of this study was to examine the availability, target cell types and efficiency of RNAi in the
mouse seminiferous epithelium.

Methods: The experimental model was based on transgenic mice expressing EGFP (enhanced
green fluorescent protein). RNAi was induced by in vivo transfection of plasmid vectors encoding
for short hairpin RNAs (shRNAs) targeting EGFP. shRNAs were transfected in vivo by
microinjection into the seminiferous tubules via the rete testis followed by square wave
electroporation. As a transfection reporter, expression of red fluorescent protein (HcRed 1) was
used. Cell types, the efficiency of both transfections and RNAi were all evaluated.

Results: Sertoli cells were the main transfected cells. A reduction of about 40% in the level of
EGFP protein was detected in cells successfully transfected both in vivo and in vitro. However, the
efficiency of in vivo transfection was low.

Conclusion: In adult seminiferous epithelial cells, in vivo post-transcriptional gene silencing
mediated by RNAi via shRNA is efficient in Sertoli cells. Similar levels of RNAi were detected both
in vivo and in vitro. This also indicates that Sertoli cells have the necessary silencing machinery to
repress the expression of endogenous genes via RNAi.

Background
RNA interference (RNAi) describes any process in which
double stranded RNA (dsRNA) triggers post-transcrip-
tional gene silencing. Strategies for inducing gene silenc-
ing, either for the study of gene function or in a
therapeutic context, have been developed [1]. Small inter-
ference RNAs (siRNAs) and short hairpin RNAs (shRNAs)
have been used in vitro and in vivo for interfering with RNA
[2-5]. siRNAs are dsRNAs of 21–23 base pairs (bp) gener-
ated by chemical synthesis [6], enzymatic cleavage [7] or
expression systems [8], while shRNAs are dsRNA mole-
cules that mimic endogenous pre-micro RNAs (pre-miR-

NAs). shRNAs consist of two palindromic sequences of
19–29 nucleotides (nt) with a short loop of single-
stranded RNA (4–10 nt) at one end [9]. The RNAse III
family of nucleases known as 'Dicer' binds and cleaves
both pre-miRNAs and shRNAs into their mature 21–25 bp
forms [9-12]. One strand of these miRNAs or siRNAs is
incorporated into the RNA-induced silencing complex
(RISC), which then either identifies, binds and cleaves the
complementary messenger RNA [13,14] or induces trans-
lational repression [15]. Recent work indicates that shR-
NAs are more potent inducers of RNAi than siRNAs [16].
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Silencing of specific mRNAs by RNAi has been used in vivo
in the eye [17,18], brain [19-22], lung [23-26], skeletal
muscle [27-30], liver, kidney, spleen [31-39] skin [40],
and pancreas [41]. In the testis, the seminiferous epithe-
lium of adults is organized into a complex structure com-
posed of the germ cells and Sertoli cells. Sertoli cells, a
somatic cell type, extend from the basement membrane of
the seminiferous tubules to reach the lumen. The architec-
tural pattern of these cells provides a structural framework
for Sertoli cell-Sertoli cell and Sertoli cell-germ cell inter-
actions. These interactions are based on intimate contacts
through different types of junctions (e.g. occluding junc-
tions, anchoring junctions and communicating junc-
tions), supporting a specific microenvironment required
by developing germ cells [42-45].

To transplant spermatogonial stem cells into the seminif-
erous epithelium, Brinster and Avarbock [46] developed
an in vivo technique involving microinjection into the
lumen [47]. Following this microinjection, Shoji et al.
[48] introduced shRNAs expression vectors into the sem-
iniferous tubules reporting gene silencing in the sperma-
togenic cells of prepubertal mice. However, in animals in
which all seminiferous epithelium architectural structures
are fully established, RNAi has yet to be studied.

This work reports the use of a transgenic mouse model
expressing EGFP to determine which cells of the seminif-
erous epithelium are preferentially transfected by shRNA-
coding plasmids for the induction of gene silencing and
its efficiency. In vitro experiments were also performed to
verify the efficiency of RNAi in Sertoli cells, the main
transfected target cell seen in in vivo transfections.

Methods
Experimental animals
All the mice (Mus musculus) used in these experiments
were bred at the Animal Care Facility of the Centro de
Investigaciones Biológicas (CIB-CSIC) on a 12L:12D
cycle. Male mice of the C57BL/6J wild type were used to
investigate in vivo transfection efficiency. The C57BL/6
TgN(act-EGFP)OsbC14-Y01-FM131 (FM131) [49] trans-
genic mouse line, which constitutively expresses EGFP,
was provided by RIKEN BRC (Japan). All procedures were
performed according to the guidelines of the CSIC Bioeth-
ics Committee.

Plasmids
Plasmid pEGFP-N1 (Clontech, Palo Alto, CA, USA),
expressing EGFP as a reporter, was used as an in vivo trans-
fection control. Plasmid pGtoR (a kind gift of Dr. Masaru
Okabe, University of Osaka, Japan) was used to induce
RNAi in EGFP. pGtoR contains the RNA polimerase III
promoter H1 driving the expression of an shRNA contain-
ing 21 nt sense and antisense sequences homologous to

an EGFP encoding region (shRNA-EGFP), as well as the
CAG promoter controlling the expression of HcRed1 pro-
tein [50].

A vector called pRed, used as a negative control, was gen-
erated by digestion of pGtoR with BamH1 and HindIII
followed by religation to eliminate the H1-shRNA-EGFP
cassette. Consequently, pRed only expresses the HcRed1
protein.

In vivo electroporation
Male mice of 30–45 days post-natal (dpn) were anaesthe-
tized by an intraperitoneal injection of Rompun (Bayer,
Kiel Germany)/Ketolar (Pfizer, Dublin Ireland) solution
(315 μl/Kg; 84 mg/Kg respectively). After opening the
abdominal cavity, the testes were exposed under a binoc-
ular microscope as previously described [47]. Approxi-
mately 20 μl of plasmid DNA in TE buffer (10 mM Tris,
and 1 mM EDTA, pH adjusted to 7.5) (3 μg/μl) containing
nigrosine (1 mg/ml) as a tracer was slowly microinjected
into the rete testis using a 40–70 μm in diameter glass
micropipette (Fig 1). Trypan blue, the standard tracer for
procedures of this kind, was ruled out due to its autofluo-
rescence. For in vivo electroporation, each testis was held
between tweezer-type electrodes (model 520, 7 mm diam-
eter, BTX, San Diego, CA) briefly soaked in PBS, and two
sets of four electric pulses of square wave were applied
(using an electric pulse generator ECM 830 [BTX]). Each
pulse provided 50 V for 50 ms; the interval between the
pulses was 950 ms [51]. The testes were then returned to
the abdominal cavity and the skin stitched closed. Four
days later the mice were sacrificed and the testes removed
for analysis.

Cytological examination
The testes were fixed with 4% paraformaldehyde in PBS,
and passed through a series of 10, 20 and 30% sucrose.
The samples were then placed in Tissue-Tek OCT (Sakura
Finetek, The Netherlands) and frozen on dry ice. Cryosec-
tions (10 μm thick) were processed for histological exam-
ination by fluorescent microscopy using an inverted
microscope (Nikon ECLIPSE TE300) (Tokio, Japan). In
each experimental condition 10 mice were examined and
50 to 100 sections of the whole testis were assessed per
mouse. A histopathological evaluation of the testis sec-
tions was performed on each specimen. Cultured Sertoli
cells were also analysed by fluorescence microscopy. In
both cases, Hoechst 33258 was used to counterstain the
cell nuclei with 5 min incubation of the dye in PBS at 15
μg/ml.

Isolation of primary Sertoli cells and their culture
Sertoli cells were isolated from FM131 mice as previously
described [52] with minor modifications. As mature Ser-
toli cells can not be efficiently cultured, testes from 17
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days post-natal (dpn) males were decapsulated in PBS, cut
into small fragments and digested in DMEM:Ham's F12
medium (1:1, Gibco BRL, Eggenstein, Germany) contain-
ing 2% foetal bovine serum (FBS) (ICN Biomedical, Costa
Mesa, CA, USA), 0.2 mg/ml collagenase-dispase (Roche,
Mannheim, Germany) and 0.1 mg/ml DNAse I (Roche)
for 30 min at 32°C. The resultant seminiferous tubule
fragments were washed with DMEM:F12 followed by two
additional digestions under the same conditions, and
then washed again with DMEM:F12. This material was
repeatedly passed through an 18 1/2 G needle and the dis-
aggregated cells were collected by filtration through a 70
μm Cell Strainer (BD Falcon, Lexington, TN, USA). The
cells were incubated with continuous shaking in
DMEM:F12 containing 2% FBS, 0.4 mg/ml hyaluronidase
I-S (Sigma St Louis, MO, USA) and 0.1 mg/ml DNAse I for
30 min at 32°C. The sample was then centrifuged at 200
g for 10 min. The Sertoli cells obtained were resuspended
in DMEM:F12 with 10% FBS and allowed to settle (20
min at 32°C). The settled cells were cultured at 32°C in a
5% CO2 atmosphere for three days in DMEM:F12 supple-
mented with 10% FBS, 100 U/ml penicillin, 100 μg/ml
streptomycin and 1× insulin-transferrin-sodium selenite
media supplement (ITSS) (Sigma). The germ cells that
had residually attached to the Sertoli cells were removed
by hypotonic treatment with 20 mM Tris-HCl, pH 7.4 at
20°C for 3 min, and were cultured in supplemented
DMEM:F12 medium.

To discern the presence of potential contaminant cells,
analysis of transferrin (Trf) expression, as a Sertoli cell
marker, was carried out by RT-PCR. As we previously
reported to detect other potential contaminant cells RT-
PCR analysis was performed for the expression of Hsd17
(17beta-hydroxysteroid dehydrogenase) as a Leydig cell
marker and S16 (ribosomal protein) were also assessed as
negative and positive controls respectively [53].

In vitro transfection
Sertoli cells growing in vitro in wells were transfected with
the different plasmids using 0.4 μg of plasmid per well
(1.9 cm2) by FUGENE™6 reagent (Roche) according to the
manufacturer's instructions. The cells were harvested
three, five and seven days post-transfection. Each experi-
ment was performed three times.

Flow cytometry analysis
Monocellular suspensions of the testis cells were obtained
from in vivo electroporated testes and controls by diges-
tion of the tubules following a procedure similar to that
performed for the isolation of the Sertoli cells. After
hyaluronidase digestion, the monodispersed cells from
the seminiferous epithelium were resuspended in PBS.
Sertoli cells from in vitro cultures and monocellular sus-
pensions of seminiferous tubule cells were then analysed

Different phases of in vivo microinjection of vectors into tes-tis tubules through the rete testisFigure 1
Different phases of in vivo microinjection of vectors 
into testis tubules through the rete testis. Nigrosin was 
used as tracer.
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in a Becton-Dickinson FACS Vantage flow cytometer
(Mountain View, CA, USA). The average number of cells
analysed per flow cytometry run in each experiment was 3
× 104 cells. Each experimental condition was repeated at
least three times. Transfected cells were detected by the
presence of HcRed1 excited at 630 nm and emission
recorded at 660 nm. Green fluorescence intensities were
measured in transfected cells by excitation at 488 nm and
emission recorded at 530 nm and compared to both
pGtoR and pRed transfected populations. Each value rep-
resents the mean of three individual experiments. Statisti-
cal analysis was performed using the Student t test for
independent data. The significance was set at p < 0.05.

Results and Discussion
In vivo transfection
To evaluate the efficiency of in vivo gene silencing in
mouse testis, after completing the first wave of sperma-
togenesis, we first characterized the efficiency to deliver
plasmid DNA into the cells of the seminiferous epithe-
lium. To determine which cell types were preferentially
transfected either pEGFP-N1 or pGtoR was used. The cyto-
logical detection of green or red fluorescent proteins indi-
cated that Sertoli cells (Fig. 2) were the cell type most
commonly transfected (less than 1% of germ cells were
also transfected). However, the efficiency of transfection
of Sertoli cells was always less than 10% although no dif-
ferences were found between the plasmids used. As previ-
ously described, altering the experimental conditions, i.e.,
increasing voltage and/or the number of electrical pulses,
was found to damage the seminiferous epithelium as
assessed by histopathological analysis (data not shown)
[51].

In vivo gene silencing of seminiferous epithelial cells
Since shRNA molecules can induce potent gene silencing
[9,16,54-56], vectors expressing shRNA were used in the
present work to confirm the efficiency of silencing of a
specific gene both in vivo in seminiferous tubule cells and
in in vitro cultures of Sertoli cells.

The vector pHcRed1-shRNA-EGFP (pGtoR) [50] allows
detection of transfected cells expressing shRNA-EGFP,
based on the co-expression of the red fluorescence protein
HcRed1. Nevertheless, in tissue sections, an accurate
measure of the fading of green fluorescence at the cellular
level is difficult to detect due to the frequent superposi-
tion of adjacent cells and to the variability of EGFP expres-
sion between different cell types of the seminiferous
epithelium [57]. To quantify the level of post-transcrip-
tional silencing of EGFP in transfected cells, the reduction
in green fluorescence from monocellular dispersions of
seminiferous tubule cells from in vivo transfected testis
was measured by fluorescence activated cell sorting
(FACS). Red fluorescent cells were selected four days after

transfection, and a reduction of 41.94% of green fluores-
cence was detected in the cells transfected with pGtoR
compared to those transfected with pRed (used as a con-
trol). A significant difference in green fluorescence (t test;
p = 0.047) was observed between red fluorescent cells
depending on the vector used (pGtoR or pRed) (Fig. 3).
This difference can only be interpreted as a specific silenc-
ing of EGFP mediated by shRNA-EGFP.

Gene silencing in primary cultures of Sertoli cells
Since Sertoli cells were the main cell type transfected in
vivo, transfection and gene silencing were assessed in cul-
tured primary Sertoli cells. Sertoli cells from C57B/6J mice
were independently transfected with pEGFP-N1, pGtoR or
pRed vectors. Comparative analysis of the transfection
efficiency showed that 38% of the cells had been trans-
fected with pEGFP-N1 and 25% with pRed or pGtoR.

In order to compare gene silencing by RNAi in cultured
primary Sertoli cells and in in vivo transfected cells, Sertoli
cells isolated from the EGFP transgenic mouse line FM131
were cultured. A reduction in green fluorescence due to
EGFP protein was observed in the red fluorescent cells
transfected with pGtoR compared to those that were not
transfected (Fig. 4).

To indirectly quantify the silencing of EGFP, EGFP fluo-
rescence intensity in transfected Sertoli cells was deter-
mined by using flow cytometry. Compared to the cells
transfected with pRed, a significant reduction in EGFP flu-
orescence intensity was seen in the cells transfected with
pGtoR at three (p = 0.0165), five (p = 0.0199) and seven
days (p = 0.0171) post-transfection. The reduction of
EGFP fluorescence was more significant at seven days
(41.77%) and five days (36.55%) than at three days post-
transfection (28.63%) (Fig. 5).

The efficiency of vector transfection in vivo after electropo-
ration, the method employed here, was relatively low with
all the vectors used. This might be attributed to an intrin-
sic characteristic of these cells or to the nature of the con-
structs used in these experiments. However, a preference
for Sertoli cells and a similar transfection rate were
observed with both the pEGFP-N1 and pGtoR vectors.

McCaffrey et al. [32] performed the first RNAi in vivo anal-
yses in mammals. These authors used hydrodynamic
injections to deliver siRNAs and shRNAs to the liver, but
this method is limited to a number of highly vascularized
tissues [31-39]. Other methods have been tested to deliver
siRNAs to different organs, including lipid-based strate-
gies [22-24,58] involving the use of siRNAs complexes
with polyethyleneimine (PEI) [22], atelocollagen [59]
and cholesterol [37]. Electroporation has also been used
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Seminiferous tubules of testis from C57BL/6J wild type mice after in vivo transfection with the pEGFP-N1 vectorFigure 2
Seminiferous tubules of testis from C57BL/6J wild type mice after in vivo transfection with the pEGFP-N1 vec-
tor. A and C) Merge image of partial view of tubule sections showing EGFP-positive Sertoli cells (with the well-known arbo-
rescent-like cytoplasm) as preferentially transfected cells. Nuclei were stained with Hoechst 33258 dye. Spermatocytes (Sp) 
round spermatid (Rd) are indicated (C). The red lines indicate the basement membranes of seminiferous tubules. B and D 
show enlarged images of EGFP fluorescence taken 24 hours after transfection. Bars represent 50 μm.
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to efficiently deliver siRNA to the kidney [60], brain [61],
eyes [62] and muscle [29].

In the mature mouse, Sertoli cells occupy approximately
15–20% of the volume of the seminiferous epithelium
and a large proportion of the Sertoli cell surface is in con-
tact with elongated spermatids and the tubular lumen
[63]. If the access of seminiferous epithelium cells to
transfecting molecules is via the tubular lumen, and the
internalization of foreign DNA is mediated by the binding
of DNA to the membrane [64], the Sertoli cells should be
the most readily transfected cell type.

In vivo gene transfer to seminiferous epithelium cells has
been conducted in the past using different strategies and
with different purposes [51,65-74]. Yomogida et al. [51]
used in vivo electroporation to introduce transgenes into
Sertoli cells as a tool to investigate gene function during
mammalian spermatogenesis. These authors microin-
jected the testis of 12 dpn (days post natal) mice because
of the low number of differentiating germ cells in prepu-
bertal animals, and obtained transfection of Sertoli cells
and, to a small extent, of germ cells. In contrast, Shoji et
al. [48] transfected tubular cells in mice aged 5–15 dpn
mice, and found that most of the cells transfected were
germ cells. Using similar experimental protocols, but in
adult mice, we found a preferential transfection of Sertoli
cells. Some of the different experimental conditions used
in the in vivo testis transfection procedure might lay
behind the differences in the proportion of cell types that
were transfected. Furthermore, specific and complex struc-

tures define both the Sertoli-Sertoli and Sertoli-germ cell
interactions within the mammalian seminiferous epithe-
lium in adults, which cannot be controlled. The Sertoli-
Sertoli and Sertoli-germ cells junctions may prevent other
cell types from gaining access to the transfecting mole-
cules. After Sertoli cells, elongated spermatids are the
germ cells most likely to be transfected. However at this
stage, elongated spermatids are in an advanced state of
chromatin condensation and in the process of eliminating
their cytoplasm, which reduces their volume by approxi-
mately 25%. This confers characteristics upon them that
disables the entrance of transfecting molecules to the cyto-
plasm [75]. These dynamic interactions such as adhesion,
attachment and communication between adjacent cells
[42,76] explain the differences in the capacity of different
cell types to be transfected in vivo during testis develop-
ment.

Hasuwa et al. [50] developed a transgenic approach to
deliver EGFP-targeted shRNAs into mice ubiquitously
expressing EGFP. In this way, they studied the effective-
ness of transgene-mediated gene silencing in different
cells and tissues, however, no analysis in the testis was
performed. We used the same vector and, as expected, the
Sertoli cells were the main target cell type for transfection
and EGFP silencing.

As the low efficiency of transfection of nonviral vectors is
a technical limitation in the use of this approach to silence
genes in seminiferous epithelium, alternative methodolo-
gies are also being explored.

Comparative results from flow cytometry analysis of EGFP-expression in seminiferous epithelium cells transfected in vivo with pRed or pGtoRFigure 3
Comparative results from flow cytometry analysis of EGFP-expression in seminiferous epithelium cells trans-
fected in vivo with pRed or pGtoR. (A) Representative traces of flow cytometry using pGtoR vector. 1) R2 corresponds 
to non-transfected cell population; R3 represent the transfected cells (red fluorescent). 2) M1 represents the level of green flu-
orescent (EGFP) of R2 cell population 3) represents the level of EGFP in transfected cells (R3). B) The histogram shows the 
mean (Mean ± SE) intensity of green fluorescence of the cells (EGFP) transfected in vivo with pRed or pGtoR, as determined by 
flow cytometry four days after transfections. Asterisk shows statistically significant differences as measured by p < 0.05.
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Comparative results from flow cytometry analysis of EGFP-expressing cultured Sertoli cells in vitro transfected with the pGtoR or pRedFigure 5
Comparative results from flow cytometry analysis of 
EGFP-expressing cultured Sertoli cells in vitro trans-
fected with the pGtoR or pRed. The graph shows the 
mean (Mean ± SE) of green fluorescence intensity in cells 
transfected in vitro with the pRed or pGtoR, determined by 
flow cytometry at 3, 5 and 7 days after transfection. Asterisk 
shows statistically significant differences as measured by p < 
0.05.

Primary culture of Sertoli cells from EGFP transgenic mice (FM1Figure 4
Primary culture of Sertoli cells from EGFP transgenic m
performed at 120 h (A, B and C) and 140 h (D, E and F) after 
nm) (A and D). Red fluorescence (B and E). Merge (C and F). 
indicated by arrows. Bar represents 10 μm.
Conclusion
In conclusion, gene silencing by RNAi via shRNA, was
demonstrated both in vivo and in primary culture of Ser-
toli cells. In Sertoli cells from the mouse model used, the
reduction of 40% in the amount of target (EGFP) was sig-
nificant. This also indicates that Sertoli cells have the nec-
essary silencing machinery to repress the expression of
endogenous genes via RNAi.
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