Reproductive Biology and

@)
Endocrinology ‘

BiolVled Central

Research

Regulation of surfactant protein D in the rodent prostate
Rebecca E Oberley*!, Kelli L Goss™2, Amado A Quintart3,
Cristina A Maldonado™3 and Jeanne M Snyderf?2

Address: 'Department of Medicine, National Jewish Medical and Research Center, Denver, USA, CO 80206, 2Department of Anatomy and Cell
Biology, University of Iowa College of Medicine, Iowa City, lowa, USA, 52242 and 3Center for Electron Microscopy, School of Medical Science,
National University of Cordoba, Cordoba, Argentina

Email: Rebecca E Oberley* - oberleyr@njc.org; Kelli L Goss - kelli-goss@uiowa.edu; Amado A Quintar - aquintar@cmefcm.uncor.eduy;
Cristina A Maldonado - cmaldonado@cmefcm.uncor.edu; Jeanne M Snyder - jeanne-snyder@uiowa.edu

* Corresponding author tEqual contributors

Published: 7 November 2007
Reproductive Biology and Endocrinology 2007, 5:42  doi:10.1186/1477-7827-5-42

Received: 5 September 2007
Accepted: 7 November 2007

This article is available from: http://www.rbej.com/content/5/1/42

© 2007 Oberley et al; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Background: Surfactant protein D (SP-D) is an innate immune protein that is present in mucosal
lined surfaces throughout the human body, including the male reproductive tract. In the present
study, we characterized the regulation of SP-D expression in the mouse and rat prostate.

Methods: Real time reverse transcriptase polymerase chain reaction (RT-PCR) and
immunostaining were used to characterize SP-D mRNA and protein in the mouse male
reproductive tract. In order to evaluate the effects of testosterone on SP-D gene expression, we
measured SP-D mRNA levels via real time RT-PCR in prostates from sham-castrated mice and
castrated mice. In addition, we used a rat prostatitis model in which Escherichia coli was injected
into the prostate in vivo to determine if infection influences SP-D protein levels in the prostate.

Results: We found that SP-D mRNA and protein are present throughout the mouse male
reproductive tract, including in the prostate. We determined that castration increases prostate SP-
D mRNA levels (~7 fold) when compared to levels in sham-castrated animals. Finally, we
demonstrated that infection in the prostate results in a significant increase in SP-D content 24 and
48 hours post-infection.

Conclusion: Our results suggest that infection and androgens regulate SP-D in the prostate.

Background

Although nonbacterial prostatitis is more common, pros-
tatitis can be caused by bacterial infection that over time
may lead to inflammation of the prostate [1]. Moreover,
patients with chronic prostatitis have important altera-
tions in several measures of semen quality and it has been
proposed that prostatitis may contribute to male infertil-
ity [2]. In spite of this, relatively little is known about
innate immune defense mechanisms within the prostate
gland. Escherichia coli is a pathogen frequently associated

with both acute and chronic bacterial prostatitis in
humans [3,4]. Although bacteria have not been defini-
tively shown to cause benign prostate hyperplasia (BPH),
a relatively common prostate disease, E. coli has been
implicated in its pathogenesis [5]. It has been speculated
that chronic low-grade colonization with E. coli can cause
prostate pathology via the release of endotoxin over a long
period of time and this, in concert with dihydrotestoster-
one (DHT), can lead to hyperplasia of the prostate [5]. For
decades, it has been known that seminal plasma and pro-
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static fluid have antimicrobial properties [6,7]. Recently,
several agents responsible for this activity have been iden-
tified and characterized in the male reproductive tract [8].

Surfactant protein D (SP-D) is a member of the collectin
family of proteins which play an important role in innate
immune responses [9]. SP-D can act as an opsonin to
increase the phagocytosis of a variety of pathogens [10-
12]. SP-D also promotes the phagocytosis of pathogens
via direct interactions with macrophages and neutrophils
[10,13]. In contrast, SP-D can inhibit the uptake of some
pathogens, for example Candida albicans and Mycobacte-
rium tuberculosis [14,15]. Recently, SP-D has been shown
to interact with the adaptive immune system by enhanc-
ing bacterial antigen presentation to dendritic cells [16].
Finally, SP-D can have direct anti-microbial effects by dis-
rupting bacterial membranes [17].

SP-D was originally described in the lung, but recent stud-
ies have shown that SP-D is expressed throughout the
body, usually at mucosal surfaces [18,19][20,21][22,23].
For example, SP-D has been detected in the digestive tract
as well as in the reproductive tract of the mouse, rat and
human species [13-18]. We have recently reported that SP-
D is present in the human prostate and that SP-D protects
prostate epithelial cells from infection by Chlamydia in
vitro [23].

SP-D is expressed constitutively in the lung and pulmo-
nary SP-D levels can vary with infection or disease [24].
Lung SP-D levels are decreased in cystic fibrosis and acute
respiratory distress syndrome [24]. In contrast, lung SP-D
gene expression has been shown to be increased 24-72
hours after intratracheal instillation of lipopolysaccha-
rides (LPS) [25]. Challenge with Pseudomonas aeruginosa,
influenza virus, or the overexpression of cytokines such as
interleukin-4 can also lead to elevated SP-D levels in the
lung [26-28].

In the present study, we found that SP-D mRNA and pro-
tein are expressed throughout the mouse male reproduc-
tive tract. We then showed that castration increases SP-D
mRNA levels in the prostate. We also demonstrate that
infection of the rat prostate with E. coli leads to an increase
in SP-D protein levels in the prostate gland 24 to 48 hours
post infection. These data are suggestive that SP-D pro-
duced in the prostate is regulated by androgens and influ-
enced by infection.

Methods

Animal husbandry

Swiss Black mice were obtained from Taconic Laborato-
ries (Hudson, NY) and bred at the Animal Research Facil-
ity at the University of Iowa following an approved
protocol. Sham-castrated or castrated Swiss Black mice
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were also obtained from Taconic Laboratories. All mice
were housed under pathogen-free conditions and allowed
food and water ad libitum.

Adult, twelve-week old male Wistar rats were housed at an
animal research facility in the Universidad Nacional de
Cordoba, Cordoba, Argentina. The rats were housed
under controlled conditions of 14 hours of light followed
by 10 hours of darkness and allowed food and water ad
libitum. All rat experimental protocols were performed in
accordance with NTH guidelines for animal care.

Castration and sham-castration experiments

Castrated and sham-castrated Swiss Black mice were
obtained from Taconic Laboratories. The animals were
housed for 12 days after surgery to ensure that testoster-
one was completely cleared. All animals, i.e., sham-cas-
trated and castrated, were then sacrificed and the prostate
(ventral and dorsal) and lungs removed. In some cases the
epididymis and bladder were removed as well. This exper-
iment was repeated three times with 3 animals per condi-
tion (a total of 9 animals per group).

Bacterial prostatitis model

We wished to determine if SP-D protein expression in the
prostate is altered with infection. A prostatitis model,
achieved via direct infection with E. coli, was used to
address this question. We chose to perform these studies
in the rat because of the greater size of the rat prostate,
which enables easier manipulation, and because the rat
prostatitis experimental model has been previously char-
acterized. A strain of uropathogenic Escherichia coli (bacte-
ria kindly provided by Dr. Pessah, Department of
Microbiology, Cordoba University), isolated from
patients with complicated urinary tract infection, was
stored at -20° C and grown overnight in tryptic soy broth
at 37°C when required for inoculations. Rats were anes-
thetized with inspired ether and subjected to laparotomy
in order to expose the ventral prostate. Prostatitis was
induced via injection of E. coli diluted in sterile PBS (200
ul total volume, 108 colony forming units per mL) or with
the same volume of sterile PBS as a sham-infected control,
using a 30 gauge needle inserted directly beneath the cap-
sule of both prostate ventral lobes. The muscle, perito-
neum and skin were then closed using a simple
continuous pattern with chromic suture material. Three
rats were sacrificed at 24, 48, or 72 hours after bacterial
inoculation. Control, sham-infected rats were sacrificed
24 and 72 hours post-operation. No morphological differ-
ences were observed in the prostates obtained at the dif-
ferent time points in the control groups. The rat prostatitis
model is based on a protocol published by Fulmer et. al.
[29] with modifications as described by Quintar et al.
[30]. This experiment was performed three times with 3
animals per group. Ventral prostates were either harvested
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and fixed in 4% paraformaldehyde and embedded in par-
affin for light microscopy immunocytochemistry or fro-
zen for biochemical analysis.

Immunostaining of reproductive tissues
Paraffin-embedded mouse reproductive tissues or rat
prostate tissues were sectioned (7 um thick), deparaffin-
ized and rehydrated serially in 100%, 95%, 75%, and
50% ethanol. For antigen retrieval, the slides were boiled
in 0.1 M sodium citrate, pH 6.0, for 10 minutes and then
cooled for 20 minutes. The slides were then rinsed in
phosphate buffered saline (PBS) and endogenous peroxi-
dase activity quenched by incubating in 0.3% H,0, in PBS
for 30 minutes. Slides were rinsed with PBS and blocked
by incubating in normal serum (1.5%) for 20 minutes.
The slides were then incubated with a SP-D polyclonal pri-
mary antibody (rabbit anti-mouse SP-D, which cross-
reacts with rat SP-D, Chemicon, Temecula, CA, 1:1000) at
4°C overnight. For negative controls, slides were incu-
bated overnight with either PBS or with normal rabbit IgG
instead of the primary antibody. The slides were rinsed in
PBS and incubated in secondary antibody (anti-rabbit IgG
conjugated to biotin, Cappel, Aurora, OH) for 30 minutes
at room temperature. Slides were rinsed, incubated in
Vectastain ABC reagent (Vector Labs, Burlingame, CA) for
one hour at room temperature, rinsed again in PBS and
then incubated in diaminobenzidine (0.7 mg/mL), a per-
oxidase substrate. After a final PBS rinse followed by a
H,O rinse, the slides were counterstained with hematoxy-
lin, dehydrated and mounted using Permount. As a posi-
tive control for the SP-D staining, adult mouse lung tissue
sections were also immunostained using the SP-D anti-
body.

Immunoblot analysis

Rat prostate tissues (3 animals for each condition; i.e.,
sham, 24 hr, 48 hr and 72 hr) were homogenized in 1 mM
phenylmethyl-sufonyl fluoride, centrifuged at 600 x g and
the supernatant collected. Protein content was deter-
mined using a Bio-Rad Protein Assay (Bio-Rad Laborato-
ries, Hercules, CA). Equal amounts of rat prostrate
homogenate proteins (40 pg) were separated by gel elec-
trophoresis on 15% Tris-HCl polyacrylamide gels. The
proteins were transferred electrophoretically at 100 V to
nitrocellulose membranes and then placed in 7% non-fat
dry milk diluted in 0.1% TNT (0.02 M Tris, 0.15 M NacCl,
0.1% Tween 20) overnight to block non-specific binding.
The membranes were subsequently incubated with the
rabbit anti-SP-D primary antibody (Chemicon) at a dilu-
tion of 1:1000 for 1 hour at room temperature, then
washed in 0.1% TNT, three times, at 15 minutes per wash.
The blots were incubated with a secondary antibody (anti-
rabbit IgG conjugated to horseradish peroxidase,
1:10,000 Cappel for 45 minutes at room temperature,
then washed in 0.1% TNT, three times at 15 minutes per
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wash, and finally incubated with enhanced chemi-lumi-
nescence solution (Amersham, Buckinghamshire, UK)
followed by exposure to X-ray film. Densitometry was
then performed on the immunoreactive bands using
Scion Image Software (Frederick, MD).

Real time RT-PCR analysis

RNA was extracted from the male reproductive tract
organs of 5-6 mice and also from the prostate and lung
tissues of 9 castrated and 9 sham-castrated mice by
homogenizing the tissues in Trizol (Invitrogen, Carlsbad,
CA). RNA was extracted using chloroform and precipi-
tated with ice-cold isopropanol. The resulting total RNA
pellet was resuspended in water and quantitated by deter-
mining the absorbance at 260 nm. Two pg of total RNA
from each sample were then reversed transcribed. The
resulting cDNAs were diluted (1/50) and replicates for
each sample were aliquoted for real time polymerase
chain reaction (PCR) analysis using a Stratogene Mx 3000
P instrument. FAM-labeled primers for mouse SP-D and
18 S ribosomal RNA (the transcriptional product of a
housekeeping gene) and Universal Tagman master mix
were purchased from Applied Biosystems, Inc. (ABI, Fos-
ter City, CA). As a control, the threshold cycle (CT) values
obtained from adding increasing amounts of RNA with
either SP-D primers or 18 S primers were plotted. The two
primer sets produced parallel curves with similar slopes.
SP-D mRNA levels were normalized to 18 S tRNA levels
and then the relative SP-D mRNA levels were determined
by the comparative quantitation method, according to the
manufacturer User Bulletin 2 (10/2001, ABI systems). For
experiments in which the levels of SP-D mRNA in differ-
ent mouse male reproductive organs were compared, the
levels were expressed relative to the average level of SP-D
mRNA in the prostate, which was made equal to one. For
experiments in which levels of SP-D were compared in
prostate and lung tissue from intact vs. castrated mice, SP-
D mRNA levels are expressed relative to levels in intact tis-
sues from sham-castrated control mice.

Statistics

All data were derived from at least three experiments. The
data were analyzed by one-way analysis of variance fol-
lowed by Student-Newman-Keuls Multiple Comparisons
Test.

Results

SP-D is present in the mouse male reproductive tract

To determine if SP-D is produced throughout the mouse
male reproductive tract, real time RT-PCR was performed
on RNA isolated from several male reproductive tract tis-
sues, i.e., testis, epididymis, vas deferens, seminal vesicle,
prostate, and coagulating gland. SP-D mRNA was detected
in all of the tissues except for the seminal vesicle (Figure
1). The levels of SP-D mRNA in the male reproductive
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Relative amount of SP-D mRNA in mouse male
reproductive tract tissues as determined by semi-
quantitative real time RT-PCR. T = testis, E = epidi-
dymis, V = vas deferens, SV = seminal vesicle, P = prostate,
and CG = coagulating gland. SP-D mRNA was detected in the
testis, epididymis, vas defrens, prostate, and coagulating gland
but was not detectable in the seminal vesicle. The data repre-
sent the mean, plus or minus the standard deviation, n = 5-6
animals. An asterisk denotes a significant decrease in SP-D
mRNA levels in the vas deferens, seminal vesicle, and coagu-
lating gland as compared to the epididymis, ANOVA, p <
0.05.

tract were considerably lower than the levels detected in
the lung, ~2,000 fold less (data not shown). The levels of
SP-D mRNA did not differ significantly between the testes,
epididymis and prostate. SP-D mRNA in the coagulating
gland and vas deferens were detectable but the levels were
lower than in the epididymis.

In the testes, peritubular tissues including vascular
endothelium and some interstitial cells (asterisks),
stained strongly for SP-D protein, however Sertoli cells
and spermatids also stained positively (Figure 2A,
arrows). The epithelial cells of the epididymis stained
weakly positively for SP-D protein (Figure 2C, arrows). In
agreement with the real time RT-PCR data, immunoreac-
tive SP-D was present in very low levels in the seminal ves-
icle (Figure 2E). SP-D protein was detected in the
epithelium of the mouse prostate (Figure 2G, arrows).

Castration alters SP-D expression in the mouse prostate

Testosterone affects the growth of the prostate gland and
other organs in the male genital tract [5]. To determine if
androgens regulate SP-D expression in the prostate, mice
were castrated or sham-castrated. The mice were then sac-
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rificed 12 days post-surgery, their prostates and lungs
removed, and SP-D mRNA levels analyzed (Figure 3). The
levels of SP-D mRNA in prostates of castrated mice were
increased significantly (~7 fold) when compared to levels
in mice that were sham-castrated (Figure 3A). SP-D mRNA
levels in the lungs from these mice; i.e., sham-castrated
and castrated, were not different from each other (Figure
3B). We also examined SP-D mRNA levels in other parts
of the male urogenital tract; i.e., the epididymis, and the
bladder and observed no change in SP-D mRNA levels
with castration (data not shown).

Rat prostatitis causes an increase in SP-D expression
SP-D protects against infection in the lung and pulmonary
SP-D levels are known to be altered by infection and other
disease states[24]. Previous work from our laboratory
indicated that SP-D can inhibit chlamydial infection of
prostate epithelial cells in vitro [23]. Therefore, we wished
to determine if SP-D protein expression is altered with
prostate infection. A rat model of prostatitis achieved via
direct infection with E. coli was used to address this ques-
tion. Infected rats were sacrificed 24, 48 and 72 hours
post-infection and their prostates removed. As a control,
some rats were injected with the vehicle alone (sham-
infected). SP-D protein was present in the epithelium of
the prostate in sham-infected rats, primarily in the apical
portion of the cells (arrows, Figure 4A). Epithelial cell SP-
D staining intensity was increased in the prostate of E. coli
infected rats at 24 and 48 hours post-infection (arrows,
Figure 4C and 4E). Many SP-D positive neutrophils were
present in the lumen of the prostatic ducts of infected ani-
mals at 24 and 48 hours. By 72 hours post-infection, the
overall level of SP-D staining in the prostate epithelium of
infected rats was less intense; however, the staining inten-
sity remained elevated when compared to levels in the
sham-infected animals (Figure 4G). We also evaluated SP-
D protein levels in the prostate tissue at the various time
points after infection using immunoblot analysis (Figure
5A). Immunoreactive SP-D in the rat prostate migrated at
~40 kDa, the previously reported molecular weight of rat
SP-D [31]. SP-D protein levels were significantly increased
in prostate tissue obtained from rats 24 and 48 hours
post-infection. However, by 72 hours post-infection the
levels of SP-D protein had declined and were not different
from controls (Figure 5B).

Discussion

Innate immune proteins have primarily been character-
ized in myeloid cells and in epithelial cells continuously
exposed to pathogens such as in the lung and digestive
tract. More recently, several investigators have demon-
strated the importance of the innate immune system in
the reproductive tract [8,32-36]. In the male urogenital
system, investigations about innate immunity have
focused particularly on the epididymis [35,36] and testis
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Figure 2

SP-D immunostaining in mouse male reproductive tissues. Photographs in the left column are tissues immunostained
for SP-D. Corresponding photographs on the right are the same tissues immunostained using normal rabbit IgG instead of the
primary antibody. A and B. Testis. The interstitial cells (asterisks) of the testis stained positively for SP-D protein. Sertoli cells
and spermatids also stained positively (arrows). C and D. Epididymis. SP-D immunostaining was observed in the epithelium of
the epididymis (arrows). E and F. Seminal vesicle. Almost no SP-D immunostaining was observed in the seminal vesicle.
Secreted material in the lumen of the gland was stained non-specifically in both the immunostained sections and in the normal
IgG control sections. G and H. Prostate. SP-D immunostaining was present in the epithelium of the prostate (arrows). Repro-
ductive tissues obtained from at least three different mice were immunostained with similar results. Magnification bar = 100

pum.
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Figure 3

Relative amount of SP-D mRNA in prostate (panel
A) or lung tissue (panel B) from sham-castrated or
castrated animals as determined by semi-quantita-
tive real time RT-PCR. A. Prostate tissue. There was a
significant increase in SP-D mRNA in the prostates of mice
that were castrated when compared to sham-castrated mice.
B. Lung tissue. SP-D lung mRNA levels were not affected by
castration. The data represent the mean plus or minus the
standard deviation, n = 9 sham-castrated animals and n = 9
castrated animals. The asterisk denotes a significant differ-
ence between the castrated and the control, sham-castrated
animals, ANOVA, p < 0.05.

[37]. In contrast, local defense mechanisms protecting the
prostate gland are poorly understood.

SP-D has been proposed as a central player in innate host
defense [9,24]. Therefore, we were interested in investigat-
ing the presence of SP-D in the murine reproductive tract.
In this study, we show that SP-D mRNA and protein are
expressed in several organs in the mouse male genital
tract, including in the prostate. SP-D is localized to the
epithelium of the prostate, epididymis, vas deferens, tes-
tes, and is also detected in interstitial cells of the testis. The
seminal vesicle was the only male reproductive tract organ
that did not contain significant amounts of SP-D. The rel-
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SP-D immunostaining of rat prostate tissue. Rats were
either sham-infected or infected with E. coli. Prostates were
removed 24, 48, and 72 hours post-infection. Photographs in
the left column are SP-D immunostaining and the corre-
sponding photograph on the right is the same tissue immu-
nostained using normal rabbit IgG as a staining control. A and
B. Sham-infected prostate. The rat prostate epithelium con-
tains SP-D protein with the staining present primarily on the
apical portion of the epithelial cells (arrows). C and D. Rat
prostate 24 hours post-infection. The epithelial SP-D staining
is present throughout the cytoplasm of the epithelial cells
(arrows). E and F. Rat prostate 48 hours post-infection. Many
neutrophils were present in the lumen of the prostate glands
at this time. The cytoplasm of the prostate epithelium stained
positive for SP-D protein (arrows) and SP-D is present in the
lumen and within neutrophils as well. G and H. Rat prostate
72 hours post-infection. SP-D staining intensity remained
high in some epithelial cells (arrows). Magnification bar = 100

pum.

ative level of SP-D mRNA detected in the male reproduc-
tive tract is much lower, ~2,000 fold less, than observed in
the lung. However, since the proportion of epithelium in
the male reproductive tract organs is substantially less
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SP-D immunoblot of rat prostate tissue. A. A repre-
sentative SP-D immunoblot of infected rat prostate tissues.
The first lane contains rat prostate protein homogenate (40
pg) from a sham-infected animal, the last three lanes contain
protein homogenate (40 Lig) from rat prostates that were
infected with E. coli and harvested 24, 48 and 72 hours post-
infection, respectively. Immunoreactive SP-D migrated at a
molecular weight of ~40 kDa (arrow). B. Densitometric anal-
ysis of SP-D immunoblots. SP-D protein levels were signifi-
cantly increased at 24 and 48 hours post-infection when
compared to the levels in sham-infected controls, which
were equal to one. SP-D levels from tissues obtained 72
hours post-infection were not significantly different from
control levels. This experiment was repeated three times, n
= 3 animals per condition. The asterisk denotes a significant
difference between the experimental condition and the con-
trol, sham-infected animals, ANOVA, p < 0.05.

than in the lung, local concentrations of SP-D on the
mucosal surfaces of the male reproductive tract may not
be as low as the real time RT-PCR data indicate. Because
of the lack of SP-D expression in seminal vesicles, which
are the major contributors to seminal plasma, it is possi-
ble that prostate-secreted SP-D may be an important anti-
microbial factor that accompanies spermatozoa in semen.

Several authors have previously shown that SP-D protein
levels can be increased by infection. For instance, SP-D
protein was increased in human gastric mucosa during
infection with Helicobacter pylori [38]. Pneumocystis carinii
infection has also been shown to increase SP-D levels in
the mouse lung [39]. Serum levels of SP-D were increased
in mice with acute and chromic inflammation of the lung
[40]. We choose to study the influence of infection using
arat model of prostatitis because the rat prostate is a larger
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size, which allows for easier manipulation when com-
pared to the mouse prostate (Quintar et al., 2006). The
ventral prostate of the mouse and rat are anatomically and
functionally similar [41,42]. The gross morphology of the
prostate glands is essentially identical in the two species,
although the rat prostate gland is larger and more com-
plex [41]. The morphogenesis of the prostate gland in the
two species is also very similar [42]. Both the mouse and
rat prostates are used as animal models for studying pros-
tatitis and prostate cancer [43-45]. In the present study,
we demonstrate that E. coli infection stimulates SP-D pro-
tein production in the rat prostate epithelium. Prostate
SP-D protein levels were significantly increased early in
the prostate infection, i.e., 24 hours and 48 hours post-
infection. However, by 72 hours post-infection, SP-D lev-
els in the infected rat prostate epithelium had declined.
This pattern of expression was expected since components
of the innate immune system are often the first responders
to infection.

Cytokines have previously been shown to regulate SP-D
expression [28]. We have recently reported that increased
levels of SP-D were correlated with inflammation in the
human prostate gland [23]. In the rat prostatitis model
used in the current study, we observed a striking increase
in neutrophils within the gland by 48 hours post-infec-
tion, which corresponded to the peak of SP-D expression.
Since SP-D has anti-inflammatory properties, we hypoth-
esize that SP-D may increase at sites of inflammation in
part to dampen the immune response [46]. However, SP-
D levels could also have been stimulated directly by the
presence of a pathogen and this in turn may cause the
recruitment of inflammatory cells to the site of infection.
LPS instillation in the lung has shown to produce an
increase in the expression of SP-D [25]. Thus, increased
SP-D expression in the rat prostate might have been
induced by E. coli LPS. Since SP-D agglutinates bacteria,
promotes phagocytosis and in some cases has direct anti-
microbial affects on certain strains of E. coli, it may be ben-
eficial for the host to increase expression of SP-D soon
after an infection has begun [17,24]. Consequently, SP-D
modulation within the prostate gland may be a key mech-
anism to guarantee effective clearing of microorganisms,
in this way preventing the progression of infection toward
more restricted sites of the male reproductive tract such as
the epididymis and the testis. Interestingly, we detected
immunoreactive SP-D protein in neutrophils present in
the ducts of the infected prostate. Other investigators have
shown that SP-D is taken up by neutrophils during
inflammation in the lung [47].

Androgen withdrawal leads to involution of the prostate
gland with alterations that include a decrease in secretion
and loss of epithelial cells by apoptosis. In the present
study, we found that castrated mice have increased SP-D
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mRNA in their prostates. Interestingly, castration of the
male mouse did not change SP-D mRNA levels in the lung
or in other tissues in the male reproductive tract of the
mouse. Although hormonal regulation of SP-D by growth
hormone has been previously reported, this is the first
study to suggest that SP-D can be regulated by androgens
[48]. In a recent paper by Sorensen et al., it was shown that
SP-D levels in serum increase with age in humans and that
SP-D levels are higher in males than in females [49]. These
data are consistent with the concept that hormones may
play a role in regulating SP-D levels. It is well established
that glucocorticoids stimulate SP-D mRNA expression in
the lung; however, the mechanism involved is not fully
understood [50]. It is also known that glucocorticoids
increase the expression of glucocorticoid receptor,
whereas androgens decrease glucocorticoid receptor levels
in the lung, ovaries, prostate and liver [51]. Therefore, it is
possible that androgens may regulate prostate SP-D
expression indirectly through the glucocorticoid receptor
pathway.

SP-D appears to be particularly important in apoptotic
cell removal from the lung [52]. Thus, it is conceivable
that the increased SP-D levels in the prostate after castra-
tion may be involved in removal of the increased apop-
totic cells that follow testosterone deprivation.

Conclusion

In summary, we detected SP-D mRNA and protein
throughout the mouse male genital tract, including in the
prostate. We determined that SP-D expression in the pros-
tate is increased in castrated male mice. We also demon-
strated that prostate SP-D gene expression increases in
response to infection. These data are the first to suggest a
role for SP-D in prostatic innate immunity in vivo and the
first to show that prostatic SP-D may be regulated by
androgens, findings that may lead to a better understand-
ing of innate immunity in the prostate gland.
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