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Abstract
Background: In vitro maturation (IVM) of oocytes followed by fertilization in vitro (IVF) and
embryo transfer offers an alternative to conventional IVF treatment that minimises drug
administration and avoids ovarian hyperstimulation. However, the technique is less efficient than
maturation in vivo. In the present study, a non-human primate model was used to address the
hypothesis that the number of oocytes is increased and their nuclear and cytoplasmic maturity after
IVM are improved when maturation is initiated in vivo by priming with hCG.

Methods: Young, adult cynomolgus monkeys were given recombinant human (rh) gonadotropins
to stimulate the development of multiple follicles, and oocytes were aspirated 0, 12, 24, or 36 h
after injection of an ovulatory dose of rhCG. The nuclear status of oocytes was determined at the
time of recovery and after culture for a total elapsed time of 40–44 hours after hCG.

Results: Priming with hCG significantly increased the number of oocytes harvested, especially after
delaying aspiration for 24 h or longer. Nuclear maturation after the full period in culture was also
enhanced by priming: 71.5, 83.6, and 94.6% of oocytes collected at 0, 12, and 24 h hCG had
progressed to MII by the end of the culture period, compared to 87.8% of oocytes that were
retrieved at 36 h. A large proportion of oocytes reaching the MII stage had either or both abnormal
spindles (>40%) and misaligned chromosomes (>60%), judging by immunofluorescence microscopy,
but these abnormalities were independent of culture time. The mitochondria were evenly
distributed throughout the cytoplasm at all stages of maturation. Importantly, there was no
microscopic evidence that the duration of culture had any injurious effects on the cells.

Conclusion: In conclusion, the evidence supports this non-human primate as a model for human
IVM and the practice of priming with hCG to promote developmental potential.

Background
In vitro maturation (IVM) is a culture technology that ena-
bles a high proportion of fully-grown oocytes at the ger-
minal vesicle (GV) stage to reach metaphase II (MII).
When mature, the oocytes may be fertilised in vitro and

they become available for transfer to a physiologically
synchronised reproductive tract after reaching the cleav-
age or blastocyst stage. While pregnancy rates after IVM
can be impressively high in some laboratory and farm ani-
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mal species [1-6], applications for human reproductive
medicine are just now gathering momentum.

The first human birth reported after IVM was achieved
after controlled ovarian stimulation [7]. More than two
decades later, several hundred live births have resulted
from IVM-IVF, often in cycles lacking FSH stimulation
rather than rescuing immature gametes after conventional
ovarian stimulation, as in the case above [8]. There is still
no standard protocol for IVM, but protocols normally
avoid the use of FSH in the interests of simplifying treat-
ment, reducing drug administration and avoiding ovarian
hyperstimulation syndrome in women with polycystic
ovaries [9]. A single injection of 10,000 IU hCG has been
advocated for initiating maturation in vivo before trans-
ferring oocytes to culture, because it increased the number
and quality of the gametes obtained [10-12]. Pregnancy
and implantation rates for IVM-IVF are, however, gener-
ally lower than after conventional IVF treatment in the
same centers, and the incidence of miscarriage is usually
higher. This experience has encouraged the practice of
transferring on average slightly more embryos to compen-
sate for the lower pregnancy rates, but this unfortunately
raises the risk of multiple pregnancy. Optimal protocols
for recovery and culture are needed to increase the success
of IVM with the ultimate aim of single embryo transfer.

Progress with IVM has been hindered by the scarcity of
suitable human oocytes for research. A non-human pri-
mate model is highly desirable because the physiology of
the menstrual cycle and embryology are more comparable
to humans than other model species. Schramm & Bavister
[13] reported the first simian blastocysts created after IVM,
and four years later the first live-born infant was
announced by the same center [14]. Several culture media
have been used in humans and monkeys, and the rates of
oocyte maturation to MII have been in the range 60–80%
in most reports [7,15-20]. More disappointingly, the rates
of blastocyst formation and pregnancy were only 10–40%
and 15–30%, respectively, implying that developmental
competence was impaired [17-19,21]. It was not clear
whether the excess reproductive wastage was due to chro-
mosomal aberrations, which are common in human
oocytes. The ability to undergo nuclear maturation is nec-
essary but not sufficient for fertility, which requires faith-
ful congression of chromosomes on the spindle equator
and other less well-understood changes that have been
collectively called "cytoplasmic maturation". Neverthe-
less, it is evident that culture conditions are not yet able to
faithfully mimic the intrafollicular environment [22].

Accordingly, oocytes that initiated maturation in vivo
before transfer to culture should produce better quality
gametes. There is bi-directional flow of signals between
oocytes and granulosa cells via trans-zonal projections

and the extracellular fluid [23]. Cellular stress resulting
from manipulation, changing environments and mechan-
ical injury to delicate processes (especially during the early
hours of maturation) could impair the balanced coordi-
nation of nuclear and cytoplasmic maturation [24]. We
further propose that the aforementioned benefit of hCG
priming of human ovaries is due to the initiation of phys-
iological events associated with a critical period of matu-
ration before oocytes are exposed to sub-optimal
conditions in vitro. This hypothesis was tested by collect-
ing cynomolgus monkey oocytes before and at specific
times up to 36 h after hCG treatment. In an ideal model,
the quality of oocytes would be as susceptible as in
humans to errors generated during meiosis [25,26].
Although rarely studied, cytogenetic errors have been
reported in monkey oocytes, supporting their value as a
model for human reproductive biology and technology
[27]. The integrity of the spindle apparatus and the distri-
bution of mitochondria have been studied here, because
they provide indications of oocyte competence after expo-
sure to culture conditions [28-31].

Materials and methods
Animals
Adult female cynomolgus monkeys (Macaca fascicularis)
aged 8.5 ± 0.3 years were studied under the approval of
the Institutional Animal Care and Use Committee at the
Eastern Virginia Medical School and in accordance with
the NIH Guide for the Care and Use of Laboratory Ani-
mals. Monkey chow (Agway, Elizabeth City, NJ) was pro-
vided twice per day and water was available ad libitum.
Animals were maintained as social pairs with a light:dark
cycle of 12:12 h at 23°C. The animals had regular men-
strual cycles and were inspected daily for signs of the onset
of menstruation.

Ovarian stimulation and oocyte collection
A total of 39 ovarian stimulation cycles from 18 animals
was performed. Each animal was stimulated from 1 to 3
cycles with at least two months intervals. A standard pro-
tocol for controlled ovarian stimulation was used to
obtain multiple oocytes [32]. Blood samples were col-
lected by femoral venepuncture under ketamine chemical
restraint. Stimulation started within 1–3 days after initia-
tion of menses by administering 60IU recombinant-
human FSH i.m. (r-hFSH, Serono Reproductive Biology
Institute, Rockland, MA) twice daily for 6–8 days, fol-
lowed by 60 IU r-hFSH and 45 IU r-hLH twice daily for 2
days to stimulate multiple follicle growth. The GnRH
antagonist, Antide, was administered daily (0.5 mg/kg
body weight in propylene glycol: water (1:1); Serono) to
prevent an endogenous LH surge. Follicle development
was monitored by serum oestradiol concentrations and
ultrasonography. Follicle aspiration was performed dur-
ing aseptic surgery with a syringe and a 23 g needle by
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either laparotomy or laparoscopy on anaesthetised mon-
keys either without hCG priming (recorded as 0 h) or 12,
24, or 36 h after receiving 1000 IU r-hCG i. m. [33]. In the
laboratory, follicular aspirates were diluted in Talp-Hepes
medium containing 0.3% bovine serum albumin (BSA),
and oocytes were mechanically removed with the aid of a
dissecting microscope. Only oocytes that appeared mor-
phologically normal and surrounded by cumulus cells
were studied in culture.

Oocyte culture
The oocytes were cultured in 50 µl droplets of M-199
medium (Gibco Cell Culture, Invitrogen, Carlsbad, CA)
under a layer of embryo-tested mineral oil (Sigma) at
37°C in an atmosphere of 5% CO2 and 95% air for a total
40–44 h post-hCG. This time was chosen because oocytes
are routinely retrieved 36 h after hCG in patients, and IVF
or (more typically) ICSI is performed at least 4 h after-
wards. The medium was supplemented with 10% fetal
bovine serum (Hyclone, Logan, UT), 1 µg/ml oestradiol-
17β (Sigma) and 75 µIU/ml of both r-hFSH and r-hLH
(Serono). The stage of maturation was evaluated under an
inverted phase contrast microscope based on the degree of
cumulus expansion and emission of the first polar body,
confirming that oocytes had reached MII. Oocytes with a
GV nucleus were assumed to be still at prophase I, and
those with neither a nucleus nor a polar body were classi-
fied as GVBD (germinal vesicle breakdown) and pre-
sumed to be at the metaphase I (MI) stage. At the time of
retrieval, very few oocytes appeared dark and/or con-
tracted (presumably degenerated) or contained pronuclei
or had cleaved spontaneously.

Immunocytochemistry of spindles and mitochondria
The cumulus cells were removed after brief exposure to 30
IU/ml hyaluronidase (Sigma) in M-199 medium under
oil. For spindle analysis, oocytes were fixed according to a
protocol modified from Baka et al. [34]. Oocytes were
fixed in microtubule-stabilising buffer containing 3.7%
formaldehyde and 0.5% Triton X-100 (Sigma) at 37°C for
30 min. To reduce background cytoplasmic staining, fixed
oocytes were incubated in a blocking solution overnight
at 4°C, which containing 2% BSA (Sigma), 2% Carnation

powdered skim milk (Nestle USA, Glendale, CA), 2% nor-
mal rabbit serum (Sigma), 0.1 M glycine (Sigma) and
0.01% Triton X-100 in PBS. For spindle staining, oocytes
were incubated for 1 h at 37°C with a mouse monoclonal
anti-α-tubulin antibody (Sigma) diluted 1:100 in PBS
containing 0.1% BSA and 0.02% sodium azide (Sigma).
They were then incubated in blocking solution for
another hour. To visualise spindles, oocytes were stained
with rabbit anti-mouse immunoglobulin (IgG) conju-
gated with fluorescein (FITC; Sigma). Chromosomes were
stained with 10 µg/ml 4',6'-diamidino-2-phenylindole
(DAPI; Sigma) in PBS for 15 min at room temperature.
After mounting in glycerol:PBS (9:1, v:v) containing 100
mg/ml of 1,4-diazabicyclo(2.2.2)-octane (DABCO;
Sigma), the antifading reagent, they were examined with a
Nikon fluorescence microscope.

To examine the distribution of mitochondria, oocytes
were fixed in 3.7% formaldehyde for 20 min at room tem-
perature after removing cumulus cells using hyaluroni-
dase (30 IU/ml). They were stained in 140 nM
MitoTracker® Red 580 (Molecular Probes, Eugene, OR)
for 20 min at room temperature. The DNA was stained
with DAPI. Oocytes were mounted on slides as described
above, and the distribution of mitochondria was analysed
by standard fluorescence and confocal microscopy.

Statistical analysis
Comparisons between groups of oocytes were performed
using Chi-square, Fisher's exact test and ANOVA with
Tukey-Kramer Multiple Comparison Test as a post test.
Results were considered significantly different if p ≤ 0.05.

Results
A total of 424 oocytes were retrieved from 18 animals,
with a mean number of oocytes at 10.9 per animal and per
cycle. The numbers of oocytes recovered increased signifi-
cantly with time elapsed after the injection of hCG (Table
1). At retrieval, the developmental stage of the oocytes
could be clearly defined by the presence or absence of the
GV nucleus and/or polar body. The large majority in the
group that did not receive hCG priming (i.e. 0 h)
remained at the GV stage (93.2%). The proportions at the

Table 1: Number and developmental stage of oocytes at retrieval at different times after hCG injection.

Time of oocyte retrieval post-hCG 
(time in culture) (h)

Number of oocyes Oocytes per cycle* GV(%) GVBD(%) MII(%)

0(40–44) 147 8.2 ± 0.8 137(93.2) 5(3.4) 5(3.4)
12(38–42) 74 9.3 ± 1.1 61(82.4) 11(14.9) 2(2.7)
24(16–20) 80 13.3 ± 3.8 6(7.5) 74(92.5) 0 (0)
36(4–8) 123 17.6 ± 2.3** 4(3.3) 11(8.9) 108(87.8)

GV: germinal vesicle, GVBD: germinal vesicle breakdown, MII: metaphase II *Mean ± SEM. ANOVA was performed, and **: P < 0.01 compared with 
group at 0 h, P < 0.05 compared with the group at 12 h
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GV stage declined significantly as the interval between
hCG and oocyte recovery increased, with a corresponding
rise in those progressing to the GVBD stage (Table 1).
Between 12–24 h post-hCG, more than half of the oocytes
were scored as GVBD. Only 2.3% of the oocytes (7/301)
had reached the MII stage before 36 h, and these were
likely to have been in atretic follicles. However, by 36 h
after hCG priming, the majority of oocytes (87.8%) were
MII at aspiration and presumably ripe for fertilization.

After transfer to culture, most GV and GVBD oocytes
resumed maturation towards the MII stage (Table 2). The
smallest percentage reaching MII was in the group that
was cultured for longest (0 h post-hCG), i.e., only 98/137
(71.5%) reached MII. In the 12 h post-hCG group, which
were in culture for a correspondingly shorter time, there
were initially 61 GV oocytes, of which 55 underwent
GVBD during the subsequent 28–32 h in culture; and 51
of total (83.6%) finally reached MII. A majority of oocytes
collected 24 h post-hCG were at the GVBD stage and went
forward during the 16–20 h culture period to the MII stage
(94.6%). Oocytes recovered from follicles 36 h post-hCG
had 87.8% (108/123) reached the MII stage without
undergoing parthenogenetic activation or showing any
obvious signs of degeneration. On the other hand, in total
of five oocytes and another four that were cultured for
longer period underwent these respective changes (Table
2). It was unlikely that by extending the culture period for
a few hours the proportion of mature oocytes would have
increased in either the 0 or 12 h post-hCG groups, because

most immature gametes were still at the GV stage (Table
2). All five oocytes retrieved at the GVBD stage without the
benefit of hCG priming, and 10 of 11 GVBD oocytes col-
lected at 12 h completed maturation after transfer to cul-
ture. But only one of the six GV oocytes collected at 24 h
post-hCG developed to GVBD, and the rest remained
arrested. Among the GV oocytes collected 36 h post-hCG
and cultured for 4–8 h, only 1 of 4 underwent GVBD, and
4 of 11 at GVBD arrested at anaphase I. It appeared, there-
fore, that there is little to gain by culturing oocytes after
hCG priming, either because the oocytes are meiotically
incompetent or culture conditions are suboptimal. Over-
all, the data indicated that the longer the period of matu-
ration in vivo (or the shorter the culture period) the
greater the harvest of mature gametes. Nevertheless, a
respectable proportion of >70% of GV oocytes reached
nuclear maturity, even in the group cultured for the max-
imum time.

Normally, MII monkey oocytes have a bipolar, barrel-
shaped spindle with chromosomes aligned uniformly at
the equator plate (Figure 1A, a). Various abnormal forms
were observed in this study, including asymmetric, tripo-
lar and depolymerised spindles, as well as displaced, lag-
ging and disorganised chromosomes. There were more
oocytes with abnormal chromosome alignments than
abnormal spindles, and only 23% (65/280) of oocytes
were normal in both respects. The high incidence of
anomalies was striking: less than half of the oocytes had a
normal spindle and only a third had well-aligned chro-

Table 3: Spindle structure and chromosome alignment in MII oocytes analysed 40–44 h after hCG priming and variable times in 
culture

Time of oocyte 
retrieval post-hCG 
(time in culture) (h)

Number of oocytes Spindle structure (%) Chromosome alignment (%)

Normal Abnormal Normal Abnormal

0(40–44) 89 44 (49.4) 45 (50.6) 30 (33.7) 59 (66.3)
12(28–32) 44 25 (56.8) 19 (43.2) 15 (34.1) 29 (65.9)
24(16–20) 58 18 (31.0) 40 (69.0)* 21 (36.2) 37 (63.8)
36(4–8) 89 40 (44.9) 49 (55.1) 28 (31.5) 61 (68.5)

Fisher's exact test was performed. * P < 0.05 compared with groups at 0 and 12 h

Table 2: Number of oocytes resuming development in culture and analysed 40–44 h after hCG priming and variable times in culture

Stage of Oocytes after Culture

Time of oocyte retrieval post-
hCG (time in culture) (h)

Number of oocytes 
(stage at initiation of culture)

GV(%) GVBD (%) Anaphase I (%) MII (%)

0(40–44) 137(GV) 13(9.5) 10(7.3) 1(0.7) 98(71.5) 4(2.3) 3(2.2)
12(28–32) 61(GV) 6(9.8) 2(3.3) 1(1.6) 51(83.6)* - 1(1.6)
24(16–20) 74(GVBD) - 3(4.1) - 70(94.6)** 1(1.3) -
36(4–8) 108(MII) - - - - -

Fisher's exact test was performed. *P < 0.05; and **P < 0.001 compared with 0 h group
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mosomes. There were apparently fewer normal spindles at
24 h, and the difference was marginally significant com-
pared to the data at 0 h (p = 0.040) and 12 h (p = 0.015,
Table 3). None of the oocytes arrested at the GVBD stage
after culture in any of the experimental groups had a nor-
mal MI spindle and chromosome congression at the equa-
tor plate (Figure 1F, f). There were four oocytes with
abnormal, tripolar spindles, which may be an indication
of defective cellular polarity.

A total of 99 oocytes at GV, GVBD and MII stages were
stained for mitochondria (Table 4). These organelles were
evenly distributed throughout the cytoplasm of the cells.
There was no obvious congregation of mitochondria
around the GV nucleus or the spindle of MI and MII
oocytes (Figure 2), and their distribution did not differ
between GV and MII stages or in relation to time in cul-
ture.

Discussion
This study has demonstrated that the timing of oocyte col-
lection after stimulating cynomolgus monkey ovaries
with hCG has a striking effect on the prospects for IVM.
The main effect was on the numbers of oocytes recovered,
a larger harvest being obtained when the collection was
delayed after hCG priming. This result can be accounted
for by a lower efficiency of aspirating immature oocytes
with unexpanded cumulus masses. The efficiency of col-
lection from unstimulated human ovaries has been
improved by curetting follicles with a modified needle
and a lower aspiration pressure [15]; technical modifica-
tions may also improve oocyte harvests in unstimulated
monkey ovaries.

These data confirmed that the time taken for monkey
oocytes to reach MI and MII are comparable to humans
[35-37]. More than 12 h was required to undergo GVBD,
compared with only 2–4 h in the mouse, and MII was not
reached until 36 h, compared to 12–16 h [38,39]. The
data indicated that the proportion of oocytes becoming
mature was significantly increased after hCG priming
(Table 2). Without continuous observation in vitro, it was
not possible to assess variations between gametes in the
time taken to mature, which ranges from 24–48 h for

Table 4: Number and developmental stage of oocytes stained to 
reveal the distribution of mitochondria 40–44 h after priming 
with hCG and variable times in culture

Time of oocyte retrieval post-
hCG (time in culture) (h)

Number of 
oocytes

GV GVBD MII

0(40–44) 29 10 5 14
12(28–32) 25 6 2 17
24(16–20) 18 4 2 12
36(4–8) 27 3 6 18

Spindle formation and chromosome alignment in oocytesFigure 1
Spindle formation and chromosome alignment in oocytes. A, 
B, C, D, E and F showing spindles in green after staining with 
an anti α-tubulin antibody, and a, b, c, d, e and f showing 
chromosomes in blue after DAPI staining (chromatin). Nor-
mal bi-polar spindle and well-aligned chromosomes were 
present in MII oocytes (0 h) after 40–44 h entirely in culture 
(A and a), or in an oocyte 36 h post-hCG (B and b); asym-
metric spindle and displaced chromosomes around the spin-
dle equator plate in a MII oocyte after 40–44 h in culture (C 
and c); an oocyte retrieved at 36 h post-hCG was arrested at 
anaphase I (D and d); MI oocyte retrieved 36 h post-hCG 
possessed abnormal spindles and disorganised chromosomes 
(E and e); a cultured oocyte retrieved at 24 h post-hCG was 
arrested at GVBD with an abnormal spindle and disorganised 
chromosomes (F and f). Magnification bar in (A) = 5 µm
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human oocytes [15]. Priming with hCG accelerates the
maturation of human oocytes in vitro [40,12], but this
finding was based on patients with unstimulated poly-
cystic ovaries, and it is not known if this applies to normal
ovareis. Overall, human and simian studies appear to be
concordant insofar that they reveal that hCG treatment
can be beneficial, although the end-points were different.

The number of oocytes available for fertilization and
transfer is a key predictor of pregnancy rates after IVM in
humans [41]. Although fertilization and progression to
the blastocyst stage were not addressed in the present
study, our results revealed that a longer post-hCG interval
decreased the percentage still at the GV stage, and only
3.3% were still arrested at 36 h. The intrafollicular envi-
ronment is evidently more effective at supporting matura-
tion than culture conditions that were based on a formula
widely used in humans and domestic animals [42-44].
There are several formulas for human IVM but, with few
exception [16], they all contain serum, and efforts to pro-
duce an optimal medium, and preferably chemically-
defined, have been thwarted by the lack of research mate-
rial. Culture medium supplemented with steroids and
growth factors, including oestradiol, progesterone, EGF,
IGF-1 and VEGF, have been reported to improve matura-
tion and developmental competence in various animal
species [45-50]. However, optimal conditions probably
vary between species and even at different phases of the 36
h incubation period, reflecting the evolving physiological
state of the preovulatory follicle. The challenge of improv-
ing the clinical success rate with IVM is most acute when
oocytes are most limiting, as in the case of natural cycles
[51] and cancer patients for whom only one harvest may
be feasible [52]. Moreover, that challenge would be also

beneficial in the case of somatic cell nuclear replacement,
especially in non-human primates and human.

Human oocytes often have small, aberrant spindles with
unaligned chromosomes whose frequency rises with
maternal age [53,54]. Since they are prone to meiotic
errors [54], it has been suggested that oocytes lack a spin-
dle checkpoint to control the fidelity of the metaphase/
anaphase transition during the first meiotic division [55].
A remarkably high frequency of abnormal spindles and
displaced chromosomes was found in the present study,
even though the monkeys were only about eight years old,
which is long before reproductive senescence in this spe-
cies [27]. The high association between spindle integrity
and chromosome misalignment indicated that spindle
morphology is predictive of aneuploidy, as has been dem-
onstrated in rodent models [30], and it is likely that the
same relationship holds in primates. Overall, such find-
ings suggest that spindle defects compromise the quality
of monkey oocytes, it is important to note that the inci-
dence was not increased with duration of culture in the
present study. However, the effects of ovarian stimulation
regimes, such as GnRH, FSH, LH and hCG, on spindle for-
mation and chromosome alignment in non-human pri-
mate oocytes may be a focus in the future study.

Mitochondria play an essential role in oocyte and embryo
metabolism [31]. Spindle assembly and function are
likely to be impaired if ATP production is impaired locally
or globally within the cell [30], which could arise from
mitochondrial DNA deletions and/or rearrangements
[56,57]. No evidence has yet been published to show a
harmful effect of culture on mitochondrial DNA during
IVM, although changes observed in the cytoskeleton

The distribution of mitochondria in oocytes after 40–44 h in culture (0 h group) and staining with the mitochondrial dye, MitoTracker® Red 580Figure 2
The distribution of mitochondria in oocytes after 40–44 h in culture (0 h group) and staining with the mitochondrial dye, 
MitoTracker® Red 580. A. Mitochondria surrounding the nucleus (GV) in a freshly-retrieved oocyte. B. Oocyte still arrested at 
GVBD with mitochondria evenly distributed in cytoplasm. C. Oocyte at MII with mitochondria congregated around the region 
of spindle and in cytoplasm. Magnification bar in (C) = 50 µm.
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could impact the distribution and, hence, local activity of
these organelles [28,58]. The distribution of mitochon-
dria varies over time and between species during oocyte
maturation and embryo cleavage [28,59-61]. In the
present study, the distribution of mitochondria was even
throughout the cytoplasm during the process of matura-
tion, confirming an earlier report [62], and was not
affected by time in culture. In view of these findings, it is
doubtful if the distribution of these organelles can serve as
a useful biomarker for developmental competence of
monkey oocytes.

Overall, this study affirms the value of the non-human
primate model for optimizing IVM protocols in clinical
applications. The findings confirmed the hypothesis that
initiation of maturation after priming with hCG is benefi-
cial and provided evidence that the high background inci-
dence of potential cytogenetic errors in cynomolgus
monkey oocytes is not raised by culture conditions.
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