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Abstract
The peroxisome proliferator-activated receptors (PPARs) are a family of transcription factors
involved in varied and diverse processes such as steroidogenesis, angiogenesis, tissue remodeling,
cell cycle, apoptosis, and lipid metabolism. These processes are critical for normal ovarian function,
and all three PPAR family members – alpha, delta, and gamma, are expressed in the ovary. Most
notably, the expression of PPARgamma is limited primarily to granulosa cells in developing follicles,
and is regulated by luteinizing hormone (LH). Although much has been learned about the PPARs
since their initial discovery, very little is known regarding their function in ovarian tissue. This
review highlights what is known about the roles of PPARs in ovarian cells, and discusses potential
mechanisms by which PPARs could influence ovarian function. Because PPARs are activated by
drugs currently in clinical use (fibrates and thiazolidinediones), it is important to understand their
role in the ovary, and how manipulation of their activity may impact ovarian physiology as well as
ovarian pathology.

Introduction
Peroxisome proliferator-activated receptors (PPARs) are a
family of nuclear hormone receptors belonging to the
steroid receptor superfamily. Issemann and Green identi-
fied the first PPAR in 1990 [1], and subsequently, two
other family members were discovered. To date, PPARs
have been identified in a variety of species from chickens
[2] and fish [3], to humans (reviewed in [4,5]).

Although a great deal has been learned about PPARs since
their discovery, very little is known regarding how these
factors impact ovarian function. This review describes the
expression of the PPARs in the ovary, and highlights the
roles of these transcription factors that may affect ovarian
biology. The influence of PPARs on polycystic ovary syn-

drome (PCOS) is not discussed in this review. There is a
large body of literature on the use of thiazolidinediones,
a class of drugs that activate PPARγ, in the treatment of
women with PCOS. However, because these drugs can
have direct effects on the ovary independent of activating
PPARγ [6], and indirectly influence ovarian biology by
lowering insulin levels, it is hard to discern PPARγ-
dependent versus -independent effects. Therefore, this
review focuses on the potential of PPARs to impact nor-
mal ovarian function and the development of ovarian
tumors.

PPARs
There are three PPAR family members: PPARα (NR1C1),
PPARδ [NUC-1, fatty acid-activated receptor (FAAR), β,
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NR1C2], and PPARγ (NR1C3). The PPARs share a com-
mon structure with other steroid hormone receptors (Fig-
ure 1A). The N-terminal A/B domain is responsible for
ligand-independent transactivation function (AF-1); the C
domain contains the DNA-binding domain; the D
domain – also called the hinge region, plays a role in
receptor dimerization; and the C-terminal E/F domain
contains the ligand binding domain (AF-2).

Each PPAR family member is transcribed from a specific
gene. Alternative splicing and the use of different promot-
ers give rise to different splice variants of each PPAR fam-
ily member (Figure 1B). In addition to the full length
mRNA for PPARα, in humans a splice variant has been

identified which lacks the hinge region and the entire lig-
and binding domain [7,8]. This splice variant of PPARα
can interfere with PPAR activity, and other nuclear recep-
tors, by competing for coactivators [8]. Four spice variants
for PPARs δ and γ have been identified. The splice variants
for PPARδ give rise to one primary translation product [9].
PPARγ1, γ3, and γ4 yield the same protein product [10],
whereas the protein encoded by PPARγ2 has an additional
30 (mouse) [11] or 28 (human) [12] amino acids in the
N-terminus. Additional splice variants for PPARγ have
been identified in monkey macrophages and adipocytes
[13].

Structure, relationship and splice variants of the PPARsFigure 1
Structure, relationship and splice variants of the PPARs. A) Schematic diagram of the structure common to nuclear hormone 
receptors and the PPARs, indicating the relative similarities between the various regions of PPAR isotypes across species [4] 
[139] [140]. B) Schematic of the splice variants of the PPARs. Schematic of PPARα adapted from [7] [8] [141]. The diagram of 
PPARδ splice variants was adapted from [9]. Exons IA, IB, IC, ID, and 2 are non-coding. Regarding PPARγ splice variants, exons 
1–6 are common to all PPARγ subtypes. PPARγ1 includes the untranslated exons A1 and A2, PPARγ2 contains the translated 
exon B, PPARγ3 contains the untranslated exon A2, PPARγ4 contains only exons 1–6 (adapted from [4] [10] [142]). Images not 
drawn to scale.
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Activity of PPARs
Ligand binding
There are a multitude of agents that activate the PPARs
(Table 1). Many of these agents have well established roles
in ovarian biology. For example, endogenous factors that
have been shown to activate the PPARs that also impact
ovarian function are fatty acids and prostaglandins, and
exogenous activators include herbicides, industrial plasti-
cizers, non-steroidal anti-inflammatory drugs (NSAIDs),
fibrates (a class of drugs used to treat hyperlipidemia), thi-
azolidinediones (TZDs; hypoglycemia drugs), polycyclic
aromatic hydrocarbons, organotin compounds, and tradi-
tional medicines [5,14-21]. An example of how these
exogenous PPAR agonists impact the ovary is the inhibi-
tion of ovulation and 'reversible female infertility' caused
by NSAIDs [22].

There is some specificity observed between ligands and
the PPAR subtypes. For example, fibrates (i. e. WY-14,643,
clofibrate) show a high affinity for PPARα, but at higher
concentrations can also activate PPARγ [4]. The thiazolid-
inediones (troglitazone, ciglitazone, pioglitazone, rosigli-
tazone) selectively activate PPARγ [4,23]. Long chain fatty
acids, particularly polyunsaturated fatty acids, preferen-
tially activate PPARα [24], but are also capable of activat-
ing PPARδ and PPARγ [5,23,25]. Prostaglandins activate
all PPAR family members, with PGA1 and 15-deoxy-∆12,14-
prostaglandin J2 (PGJ2) preferentially activating PPARδ
and PPARγ, respectively [5,25,26]. Prostacyclin and its

analogue, carbaprostacyclin, also binds to PPARδ
(reviewed by [16,27]). Hydroxyeicosapentaenoic acids
and leukotriene B4 are activators of PPARα [5,25]. Inter-
estingly, indomethacin and other NSAIDs that inhibit the
production of prostaglandins, are also able to activate
PPARα and PPARγ [28]. Oxidized products of LDL (9-
HODE and 13-HODE) are ligands for PPARγ (see
[4]).)[29] for a review). Structural and amino acid differ-
ences in the binding pocket of the PPAR isoforms contrib-
ute to selectivity for ligand binding [30].

DNA binding
PPARs heterodimerize with 9, cis-retinoic acid receptors
(RXRs) (Figure 2). PPAR interaction with RXRs can occur
in the absence and/or presence of ligand [31]. The het-
erodimer binds to a short sequence of DNA, a PPAR
response element (PPRE), present in the promoter regions
of target genes. The PPRE is a direct repeat of the sequence
AGGTCA, separated by one nucleotide (a DR1 sequence;
reviewed in [4,5]). In addition to the PPRE, the 5' flanking
region has been shown to be important for PPAR binding
to DNA, especially PPARα binding. The binding affinity of
the PPAR/RXR heterodimer is greatly enhanced if the
nucleotide between the two hexamers is an adenine, and
when there is an AA/TCT sequence 5' of the PPRE
(reviewed in [4,5,32]). These DNA features result in a
polarity to the bound heterodimer; PPAR binds to the
upstream hexamer while RXR interacts with the lower, 3'

Table 1: Overview of ligands, both endogenous and exogenous, for the PPAR isotypes. Asterisks denote presence in the ovary, and/or 
reported affect on ovarian cells.

Endogenous Ligands Source Specificity for PPAR isotype Reference

Polyunsaturated fatty acids* Diet Metabolism PPARα>PPARδ>>PPARγ [25]; reviewed in [5]
Eicosanoids* Inflammation PPARα, PPARδ, PPARγ [25]

8-HETE Metabolism PPARα
PGJ2 PPARγ>>>PPARα>PPARδ [17] [26]
PGA1 PPARδ>>PPARα,PPARγ [17] [25]
PGI2 PPARδ reviewed in [16]
Leukotriene B4 PPARα [23] [25]

Lysophosphatidic acid* Metabolism PPARγ [18]
Oxidized LDL Metabolism PPARγ reviewed in [29]

Exogenous Ligands Source Specificity for PPAR isotype Reference

Herbicides/fungicides Environment PPARγ [19]; reported in [1]
Plasticizers* Environment Industry [137]; reviewed in [15]
NSAIDS Pharmaceutical PPARγ>PPARα>>PPARδ [20] [28]
Fibrates* Pharmaceutical PPARα>>>PPARγ [25]
Polycyclic aromatic hydrocarbons Environment PPARα, PPARδ [21]
Herbal/plant compounds Traditional medicine PPARα, PPARγ>PPARδ reviewed in [14]

Genistein* Plants PPARγ [138]
Thiazolidinediones* Pharmaceutical PPARγ [23] [55]
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hexamer [5,32]. The integrity of the 5' sequence offers
selectivity in binding for the PPAR isotypes.

Cofactors
Similar to other steroid hormone receptors, there are coac-
tivators and corepressors that associate with the PPARs.
Corepressors, such as nuclear receptor corepressor
(NCoR) and silencing mediator for retinoid- and thyroid-
hormone receptors (SMRT), dissociate from the receptor
upon ligand binding (reported in [4,33]). The conforma-
tional change that occurs upon ligand binding also facili-
tates the recruitment of coactivators. Two coactivators that
have histone acetyltransferase activity, steroid receptor
coactivator-1 (SRC-1) and CREB binding protein/p300
(CBP), can bind to PPARs in a ligand-dependent manner.
The latter coactivators can also interact with PPARs in a
ligand-independent manner, but only transiently

(reviewed in [4]). RIP140, ARA70, and members of the
DRIP/TRAP family of coactivators also bind to PPARs (see
[34] for a review). Other coactivators that have been iden-
tified to interact with PPARs are: PPAR interacting protein
[33], PPARγ coactivator-1 (reviewed in [35]), and PPAR
binding protein (PBP; [36]). Although these coactivators
also bind other steroid receptors, deletion of the PBP gene
in mice results in embryonic lethality due to placental
insufficiency [37], the same results seen in PPARγ null
mutants [38]. These findings are consistent with the
hypothesis that PBP is a required factor for PPARγ tran-
scriptional activity. The regulated expression of these
various corepressors and coactivators and their
concentrations in tissues also offers selectivity in tran-
scriptional regulation by the PPAR isotypes.

Mechanism of action of PPARsFigure 2
Mechanism of action of PPARs. PPARs heterodimerize with RXRs both in the presence and absence of ligand. After ligand bind-
ing, PPARs undergo conformational change resulting in dissociation of corepressors, and the binding of coactivators. PPAR/
RXR heterodimers bind to a DR1 sequence in the promoter region of target genes (see text for details).
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A recent intriguing finding is that the association of core-
pressors with PPARδ can inhibit the activity of PPARs α
and γ. Shi et al. (2002) demonstrated that PPARδ
repressed PPARα and γ-mediated gene transcription. This
repressive activity of PPARδ involved DNA binding and
association with the corepressor SMRT [39]. The authors
of this study concluded that the levels of each PPAR iso-
type, as well as the ratio of PPARs α and γ to PPARδ in a
particular tissue influences the activity of each isotype.

Post-translational modifications
The activity of PPARs are modified not only by ligand
binding, but also by phosphorylation, nitration, and
ubiquitination. Phosphorylation sites have been identi-
fied on both PPARs α and γ. The impact of phosphoryla-
tion on the activity of PPARs depends on: 1) the residue
being phosphorylated, and 2) the kinase cascade that was
activated (reviewed in [40]). A modification of PPARγ that
influences its activity is nitration of tyrosine residues.
Shibuya et al. (2002) demonstrated that nitration of tyro-
sine residues in PPARγ inhibited the translocation of
PPARγ from the cytosol to the nucleus [41], thus reducing
its potential to influence gene transcription. PPARs can
also be ubiquitinated. Ligand binding to PPARγ induces
ubiquitination of the receptor [42], and therefore its deg-

radation. In contrast, ligand binding to PPARα stabilizes
the receptor by decreasing its rate of ubiquitination
[43,44].

Expression and functions of PPARs
The tissue distribution of mRNA differs among the indi-
vidual PPAR family members. PPARα is an important
player in regulating fatty acid metabolism [4,45], and it is
expressed at relatively high levels in the liver, small intes-
tine, kidney, heart, and brown adipose tissue [46,47]. It
has also been demonstrated to play a role in inflamma-
tion (reviewed in [5,35,48]). PPARδ is ubiquitously
expressed with highest levels of expression seen in the
liver, kidney, and brown adipose tissue in the mouse
[4,46,47,49]. A study of PPARδ null mice illustrated that
this PPAR subtype is involved in development, lipid
metabolism, proliferation of epidermal cells, and myeli-
nation of nerves [50]. PPARδ also plays a role in wound
healing (reviewed in [51]), embryonic implantation
[52,53], and adaptive responses to exercise in skeletal
muscle (reviewed in [54]). The expression of the various
PPARγ isoforms shows tissue specificity. PPARγ1 is the
most widely expressed and is found in most tissues
[4,49,55]. PPARγ2 is localized primarily to adipocytes, and
PPARγ3 is also found in adipocytes, as well as colonic epi-

Localization of mRNAs corresponding to PPARα (A, B, C) and PPARδ (D, E, F) in ovarian tissue collected from immature rats 48 hours post-eCGFigure 3
Localization of mRNAs corresponding to PPARα (A, B, C) and PPARδ (D, E, F) in ovarian tissue collected from immature rats 
48 hours post-eCG. Tissue sections (8 µm) were hybridized with 35S-labled antisense (A, D) and sense (C, F) riboprobes for 
each respective PPAR isotype. Figures originally published in [62].
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thelium, and macrophages [46,56]. The distribution of
PPARγ4 is unclear because it cannot be discriminated from
PPARγ1 or γ3 due to the similarity between them [10].
PPARγ has been shown to be an adipocyte differentiation
factor (reviewed in [57,58]), and also plays a role in glu-
cose homeostasis, the cell cycle, carcinogenesis, lipid
metabolism, and inflammation (reviewed in [35,59,60]).
It has been suggested that PPARs mediate dietary regula-
tion of gene expression due to the fact that various meta-
bolic and nutritional agents can activate these
transcription factors.

PPARs and ovarian function
Expression and activity
All three PPAR subtypes have been detected in ovarian tis-
sue. In the rat ovary, the expression of mRNA for PPARα
is found primarily in the theca and stroma, whereas
mRNA for PPARδ is found throughout the ovary (Figure
3). The expression of these two PPAR isotypes remains
steady throughout follicular development and the ovarian
cycle in the rat [61,62].

PPARγ has been more extensively studied in ovarian tissue
than the other two family members. It has been detected
in the mouse [63], rat [49,62], pig [64], sheep [65], cow
[66,67], and human [55] ovary. Using RT-PCR, PPARγ was
detected in granulosa cells collected during oocyte aspira-
tion from women undergoing treatment for in vitro fertili-
zation [68], and in porcine theca and granulosa cells [64].
This PPAR isotype has also been reported to be in oocytes

from cattle [69], zebrafish [3], and Xenopus laevis (trace
amounts; [70]). In cycling rats and sheep, the expression
of PPARγ is restricted primarily to granulosa cells in devel-
oping follicles [61,62,65]. However, unlike the steady
expression of PPARs α and δ, the expression of PPARγ is
down-regulated in response to the LH surge (Figure 4)
[62,65]. The expression of PPARγ decreases only in folli-
cles that have responded to the LH surge [71]. In the rat,
expression of PPARgamma is low in newly forming luteal
tissue, and higher in luteal tissue present from previous
ovulations [61]. Because PPARγ is primarily expressed in
granulosa cells, it may influence development of these
cells and their ability to support normal oocyte matura-
tion. PPARγ could also potentially affect somatic cell/
oocyte communication not only by impacting granulosa
cell develpment, but by direct effects on the oocyte. Dis-
rupting the expression of PPARγ in the ovary therefore,
could potentially affect oocyte developmental compe-
tence.

Results from a study by Cui et al. (2002) indicate that
PPARγ plays an important role in normal ovarian func-
tion. Using cre/loxP technology, the expression of PPARγ
was disrupted in the ovary, rendering 1/3 of the females
sterile, and the remaining females sub-fertile [63].
Females that were sub-fertile took longer to conceive and
had smaller litters. There were no differences found in the
number of primordial, primary, or preantral/antral
follicles, size of copora lutea, or response to exogenous
gonadotropins between control animals and those with

Localization of mRNA and protein corresponding to PPARγ in ovarian tissue collected from immature rats 0 (A, E) and 48 (B, F) hours post-eCG, and 4 (C, G) and 24 hours (D, H) post-hCGFigure 4
Localization of mRNA and protein corresponding to PPARγ in ovarian tissue collected from immature rats 0 (A, E) and 48 (B, 
F) hours post-eCG, and 4 (C, G) and 24 hours (D, H) post-hCG. Frozen tissue sections (8 µm) were hybridized with an anti-
sense riboprobe corresponding to PPARγ. Figures A – D originally published in [71]. Protein corresponding to PPARγ, identi-
fied by the brown reaction product, was localized in 4% paraformaldehyde-fixed, paraffin embedded tissue using an anti-PPARγ 
antibody (Santa Cruz).
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PPARγ disrupted in the ovary. On the day of estrus, levels
of progesterone in animals with PPARγ disrupted in the
ovary were half that found in controls. However, the dif-
ferences in circulating progesterone were not significantly
different between the two groups, most likely due to the
small sample size (n = 4/group). Implantation sites (6)
were only observed in the uterus of one of three females
examined with PPARγ disrupted in the ovary, compared
with 5 and 7 implantation sites observed in two control
females, respectively. Because the expression of PPARγ
was not disrupted in the uterus of these transgenic
females, the lesion responsible for the sub- and infertility
most likely lies within the ovary. The authors concluded
that "...ovarian function might not be sufficient to induce
implantation" [63]. The insufficient ovarian function may
relate to the ability of the corpus luteum to produce
enough progesterone, or produce enough progesterone in
a timely manner, to support the establishment of preg-
nancy. In addition, estradiol production by the ovary
around day 4 post-coitum is also an important player in
preparing the uterus for implantation. Impaired produc-
tion of estradiol by ovarian cells in the transgenic females
during this critical period may also lead to reduced
implantation. Although not tested in this study, the com-
petence of the oocyte to undergo fertilization and support
embryonic development might also be compromised in
these genetically altered mice. Further study into the role
of PPARγ in ovarian steroidogenesis and somatic cell/
oocyte interactions is needed to determine the cause of
the fertility problems in females with reduced ovarian
PPARγ expression.

Additional studies have shown that endogenous PPARγ is
active in the ovary. Granulosa cells from rats and sheep
were transiently transfected with reporter constructs
whose expression was driven by PPREs. Both in the
absence and presence of agonists for PPARγ, there was an
increase in reporter activity [65,72]. PPARγ in rat granu-
losa cells was also shown to bind DNA [73]. These find-
ings demonstrate that PPARγ is functional in granulosa
cells, and that endogenous ligand is also present within
these cells.

Regulation of Steroidogenesis
One way PPARs may influence ovarian function is by
modifying the ability of estradiol to elicit cellular
responses. PPARs are able to bind to estrogen response
elements – EREs, [74,75], and can act as competitive
inhibitors [74]. PPARγ can also stimulate ubiquitination
of estrogen receptor α, leading to its degradation [76].

The synthesis and metabolism of estradiol is also affected
by the PPARs. PPARγ can inhibit the expression of aro-
matase, the rate limiting enzyme for the conversion of
androgens to estradiol by disrupting the interaction of NF-

κB with the aromatase promoter II [77]. Activation of
PPARα decreased the expression and activity of aromatase
in granulosa cells [78,79]. In cultured human granulosa-
luteal cells [68], and granulosa cells from eCG-primed
immature rats [78], activation of PPARγ reduced the
expression of aromatase. PPARγ was also shown to par-
tially mediate the suppressive effects of phthalates on
ovarian estradiol production [78]. However, using a dif-
ferent strain of rat and culture model, agonists of PPARγ
were shown to increase estradiol secretion by granulosa
cells collected from gonadotropin-primed immature rats
[62]. Reduced levels of aromatase in granulosa cells after
activation of PPARγ was also reportedly due to increased
turnover in conjunction with decreased transcription
[80]. We reported previously that there was no correlation
between the expression of mRNAs for PPARγ and aro-
matase in granulosa cells during folliculogenesis or the
periovulatory period [71]. PPARs may also limit the syn-
thesis of estradiol by reducing production of androgenic
precursors by theca cells. PPARγ is expressed in the theca
[61,64], primarily in the theca externa and in an inconsist-
ent pattern [61]. Both endogenous (PGJ2) and exogenous
(troglitazone) agonists of PPARγ reduced basal and LH-
stimulated thecal androgen production in vitro [64,81].
One study reported that troglitazone increased mRNA for
CYP17, but not the corresponding protein [64], whereas a
second study showed no effect of the PPARγ agonists on
mRNA for CYP17, but a decrease in its phosphorylation
[81]. In both granulosa [78] and liver cells [82], agonists
of PPARα stimulated the expression of 17β-hydroxyster-
oid dehydrogenase type IV, an enzyme that oxidizes estra-
diol into the less active estrone. The expression of PPARα
in granulosa cells is very low [61,62] and therefore may be
unlikely to modify estradiol metabolism under normal
physiological conditions. Taken together, these data indi-
cate that PPARs are able to influence estradiol production,
and that age and the endocrine environment may influ-
ence how these transcription factors impact ovarian
steroidogenesis.

The activation of PPARγ can also influence progesterone
production by ovarian cells. In cultured human granulosa
cells, activators of PPARγ inhibited basal and gonadotro-
pin-stimulated progesterone production [83]. However,
activators of PPARγ stimulated progesterone secretion by
granulosa cells obtained from eCG-primed immature rats
[62]. When porcine theca cells were treated with synthetic
and natural ligands for PPARγ, progesterone production
increased [64]. Progesterone production by bovine luteal
cells treated with the endogenous ligand for PPARγ, PGJ2,
increased progesterone production over a 24 hour culture
period [67]. Our previous work has shown that there is an
inverse relationship between the expression of mRNA for
PPARγ and P450 side chain cleaveage, the rate limiting
enzyme in progesterone synthesis, in granulosa cells and
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luteal tissue from naturally cycling and gonadotropin-
treated rats [71,84]. Therefore, the effect of PPARγ on pro-
gesterone production may depend on the cell type, stage
of differentiation, stage of the cycle, and/or the species
studied.

Tissue Remodeling
PPARs regulate the expression and activity of proteases
involved in tissue remodeling and angiogenesis which are
critical processes for follicular and luteal development.
Plasminogen activators (PA) and matrix metalloprotein-
ases (MMPs) are proteolytic enzymes involved in ovarian
tissue remodeling and angiogenesis [85-87]. Activation of
PPARα and PPARγ decreases MMP-9 expression and its
activity [88-91]. The promoters for MMP-3 [92] and
MMP-9 [93] contain a PPRE, indicating that transcription
of these proteases is likely directly regulated by PPARs.
PPARγ activation can also reduce expression of MMP-13
and MMP-1 by interfering with AP-1 activation [94-96].
PPARγ negatively affects plasminogen activator by inhib-
iting its expression [97] and increasing the expression of
plasminogen activator inhibitor-1 [97,98]. However,
there are also reports of troglitazone treatment reducing
the expression of plasminogen activator inhibitor-1
[99,100]. These findings indicate that the PPARs are capa-
ble of modulating the balance of proteolytic enzymes and
their inhibitors, thereby altering tissue remodeling events.
Whether PPARs regulate these processes in ovarian cells,
particularly at the time of ovulation when MMP and PA
activities must be tightly regulated, is an important area of
investigation.

Along with the proteases, vascular endothelial growth fac-
tor (VEGF) and its receptors (Flt-1, -2) are important play-
ers in new blood vessel formation in the ovary [101,102].
The activation of PPARγ with PGJ2 inhibited the expres-
sion of Flt-1 and Flt-2 in human umbilical vein endothe-
lial cells [97]. Activation of PPARγ with its endogenous
and exogenous ligands has also been shown to inhibit
VEGF-stimulated endothelial cell proliferation and migra-
tion (reviewed in [103]). However, Yamakawa et al.
(2000) reported that activating PPARγ in vascular smooth
muscle cells results in an increase in the expression of
VEGF [104]. Therefore, the effect of PPARγ on angiogen-
esis may depend on agonist used, experimental model,
and/or cellular differences in cofactor availability [103].
Besides its effects on angiogenesis, PPARγ may influence
the ovarian vasculature by its ability to regulate endothe-
lin-1 (ET-1) and nitric oxide synthase (NOS). ET-1 is a
potent vasoconstrictor and recent studies have shown that
it is also an important player in ovarian physiology, espe-
cially luteal function (reviewed in [105]). NOS synthe-
sizes nitric oxide, a vasodilator, from arginine. Nitric
oxide has been implicated as a player in luteolysis [106],
ovarian cyclicity [107], ovulation [107-109], oocyte mat-

uration [108], and follicular development [110,111].
PPARγ decreases the secretion of ET-1 from endothelial
cells [112], and also inhibits the expression of NOS in
macrophages [90] and vascular smooth muscle cells
[113].

The ability of PPARs to affect tissue remodeling could alter
folliculogenesis and luteal development, and impact ovu-
lation. Ovarian tissue is constantly changing to accommo-
date the dynamic geometry of growing follicles which
increase in size exponentially from the primordial to pre-
ovulatory stage. For successful release of the oocyte at ovu-
lation, the granulosa cell layer, follicular basement
membrane, theca interna and externa, ovarian stroma,
tunica albuginea, and surface epithelium need to be tra-
versed. In addition, the tissue remodeling involved in
developing the increased vasculature required to support
follicular development and luteal formation requires pro-
tease activity. The ability of PPARs to regulate the expres-
sion of proteases and angiogenic factors, and the fact that
they are expressed in the ovary and in the case of PPARγ,
modulated during the periovulatory period encompassing
ovulation and luteal formation, warrant further study into
how the PPARs may influence these aspects of ovarian
biology.

PPARs are important mediators of inflammatory
responses (reviewed in [27,114-116]). The process of ovu-
lation has been likened to an inflammatory response
[117] and prostaglandins, major regulators of inflamma-
tion, have well documented roles in ovulation as well as
luteal function (see [118] for a review). The rate-limiting
enzyme in prostaglandin production is cyclooxygenase-2
(COX-2). The promoter region of COX-2 contains a
response element for the PPARs [119], indicating that
PPARs can directly influence transcription of this gene.
However, there are reports of PPARγ both stimulating
[119] and inhibiting [120,121] the expression of COX-2.
In rat granulosa cells, the expression of COX-2 is stimu-
lated within 4 hours of the ovulatory gonadotropin surge
[122], however, PPARγ is significantly reduced in this
same time frame [62]. This inverse relationship between
the expression of PPARγ and COX-2 has also been
observed in the placenta [123]. The variability in reported
effects of PPARγ on COX-2 expression could result from:
1) the use of different cell-types, 2) transfection with
COX-2 promoter constructs that did [119] or did not
[124] contain the PPRE, 3) the ability of PPARs to influ-
ence COX-2 expression by binding to its promoter region,
and/or 4) by PPARγ interfering with activation of NF-κB
[121]. The periovulatory expression pattern of PPARγ
suggests it plays an inhibitory role in COX-2 expression in
ovarian cells in vivo.
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Not only can PPARs regulate COX-2 expression, but as
discussed earlier, prostaglandins themselves are endog-
enous ligands that can activate PPARs. In addition, PGF2α
can activate kinase cascades resulting in the phosphoryla-
tion of PPARγ and inhibiting its activity [125]. Cumula-
tively, these findings imply that there is a cyclic
relationship between the presence of prostaglandins, acti-
vation and/or inhibition of PPARs and feedback to the
prostaglandin synthesizing enzyme – COX-2.

PPARs, cell cycle regulation, and ovarian tumors
The minority of follicles which successfully develop to the
preovulatory stage must balance cellular proliferation as
well as escape from programmed cell death, or apoptosis.
PPARs have well documented roles in apoptosis as well as
cell cycle control (reviewed in [35,60,126,127]). For
example, the gene encoding bcl-2, an anti-apoptotic fac-
tor, has a PPRE, and transfection of PPARγ increased bcl-2
protein and mRNA [128]. However, administration of tro-
glitazone to cultured rat granulosa cells decreased levels of
mRNA for bcl-2 and stimulated apoptosis [73]. Froment et
al. (2003) also reported that treating granulosa cells from
sheep with a PPARγ agonist decreased granulosa cell pro-
liferation [65]. One cell cycle regulator, cyclin D2, shares
a similar profile of expression to that of PPARγ, however,
there are conflicting reports of how activation of PPARγ
affects cyclin D2. In human leukemic cells, activation of
PPARγ by troglitazone or PGJ2 resulted in a decline in
mRNA and protein for cyclin D2 [129]. Like PPARγ, cyclin
D2 is expressed in granulosa cells of developing follicles
and down-regulated within 4 hours of the LH surge, but
only in follicles that responded to the gonadotropin surge
[130]. However, administration of troglitazone to
cultured rat granulosa cells had no effect on cyclin D2
[72]. Thus, more work investigating the role of PPARγ in
granulosa cell cycle progression is needed to address the
apparent dichotomy of PPARγ inhibiting cell proliferation
yet being expressed at a high level in developing follicles.

PPARγ is expressed in cells from a granulosa cell tumor
[131], and up-regulated in epithelial ovarian carcinomas
[132]. Interestingly, the expression of PPARγ was higher in
malignant tissues than in benign tumors [132]. A study
investigating the relationship between the expression of
PPARγ and COX-2 in human epithelial ovarian tumors
reported that there was an inverse relationship between
the expression of these two factors [133]. Because over-
expression of COX-2 is associated with various cancers
([133] and references therein), the authors of this latter
study concluded that PPARγ and its activation may be
beneficial in halting the progression of ovarian tumors.

Genetic susceptibility for developing ovarian and breast
cancer is linked to the BRCA1 gene. BRCA1 is a tumor sup-
pressor, and has been shown to be down-regulated in

many cases of sporadic ovarian cancer. A study by Pign-
atelli et al. (2003) has shown that there is a PPRE in the
promoter region for the gene encoding BRCA1, and both
synthetic and endogenous ligands for PPARγ increase lev-
els of BRCA1 in MCF-7 breast cancer cells [134]. Support
for PPARγ playing a role in susceptibility to ovarian cancer
in vivo comes from a study of mice heterozygous for
PPARγ. Both heterozygous (PPARγ+/-) and wildtype mice
were treated with the carcinogen 9, 10-dimethyl-1,2-ben-
zanthracene (7, 12-dimethylbenz[a]anthracene). PPARγ+/

- mice had increased occurrences of ovarian granulosa cell
carcinomas compared with wildtype littermates and the
tumors that developed in PPARγ+/- mice were more
advanced than those formed in wildtype animals [135].
Taken together, these data strongly indicate that PPARγ
may provide a protective effect against the development of
chemically induced, as well as sporadic ovarian cancer.

PPARγ is not the only PPAR isotype with differential
expression observed in ovarian carcinomas. In a subgroup
of ovarian endometrioid adenocarcinomas associated
with deregulated β-catenin, the expression of PPARδ was
significantly elevated [136]. Because of the potential for
PPARs to influence the cell cycle and apoptosis, de- or
misregulation of these factors may be one mechanism
associated with transformation of healthy cells into tumor
cells.

Future directions
The clinical use of drugs that activate the PPARs (fibrates
and thiazolidinediones) and their ability to be activated
by dietary agents warrents further investigation into the
role of these transcription factors regulating ovarian gene
expression. The inverse expression of PPARγ and P450
side-chain cleavage, and reduction in expression of PPARγ
in response to LH, suggests that down-regulation of this
transcription factor is important for ovulation and lutein-
ization of follicular cells. Investigating the impact of
PPARγ on the periovulatory period could be done by over-
expressing PPARγ in granulosa cells, or altering PPARγ to
prevent its down-regulation by LH and determining how
this affects ovulation and the differentiation of follicular
cells into luteal cells. Such information would elucidate
mechanisms involved in the terminal differentiation of
follicular cells and potentially what may go wrong leading
to sub-functional corpora lutea. Investigating the influ-
ence of PPARγ on oocyte and follicular cell growth and
maturation is also needed due to its high expression in
granulosa cells of developing follicles and the sub- and
infertility observed in mice with PPARγ disrupted in the
ovary. The use of transgenic mice lacking PPARγ in the
ovary and siRNA or similar technologies to reduce
expression of PPARγ in cultured cells coupled with micro-
array and/or chromatin immunoprecipitation analyses,
will allow for the determination of genes regulated by
Page 9 of 14
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PPARγ in the ovary. The role of PPARα in ovarian ster-
oidogenesis also needs to be better understood. Although
PPARα null-mutant mice seem to reproduce normally,
because activation of this isotype, as well as PPARγ, by
exogenous agents alters ovarian steroid production, it may
be a player and/or have a role in orchestrating ovarian
hormone production. Because PPARδ can negatively regu-
late the activity of the other PPARs and is co-expressed in
ovarian cells with PPARs α and γ, how this isotype my
modulate the activity of PPARα and/or γ needs to be deter-
mined. Altering the ratio of PPARδ to PPARγ and/or
PPARα within ovarian cells and how this affects the activ-
ity of the latter PPAR isotypes will add to the knowledge
of how these transcription factors are regulated in the
ovary. Also, understanding what triggers the expression of
the PPARs in the ovary will further elucidate how gene
expression in the ovary is regulated to support its normal,
cyclic function.

Conclusion
There are a variety of mechanisms by which PPARs could
potentially influence ovarian function, as illustrated in
Figure 5. The steady expression pattern of PPARs α and δ
in the ovary during follicular development and the perio-
vulatory period suggest that these PPAR isotypes may reg-
ulate gene expression involved in basal functioning of
ovarian cells under normal physiological conditions. The
ability of PPARγ to regulate ovarian function has been

illustrated by agonists regulating steroid production by
ovarian cells in vitro, and the sub- or infertility observed in
animals with PPARγ disrupted in the ovary. The ability of
metabolic factors (i.e. fatty acids) to activate PPARs allows
for these transcription factors to alter gene expression in
response to the nutritional status of the animal. Therefore,
PPARs can mediate the influence of nutrition on female
fertility. In addition, environmental exposure to agents
such as phthalates and polycyclic aromatic hydrocarbons
can also influence gene transcription through the PPARs.

The importance of understanding of the role(s) of PPARs
in the ovary is indicated by their identification in healthy
tissue, and altered expression in pathological ovarian tis-
sues. Manipulation of these transcription factors could
prove to be beneficial in either the treatment of ovarian
pathologies, or as a means to regulate/improve fertility. As
more is learned about the impact of PPARs on ovarian
function, it will advance our understanding of the pattern
of gene expression driving normal ovarian function, what
goes awry leading to its dysfunction, and the role of these
factors in mediating nutritional and environmental
impacts on female fertility.
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Proposed mechanisms by which PPARs may impact ovarian function and female fertilityFigure 5
Proposed mechanisms by which PPARs may impact ovarian function and female fertility. The flow chart illustrates the potential 
interactions between the activation of PPARs and various factors known to impact processes critical for normal ovarian func-
tion. See text for details. Stimulatory impact is indicated by a (+). The ability to both stimulate and/or inhibit is denoted by (+/-
). COX-2 = cyclooxygenase 2; ET-1 = endothelin -1; LDL = low density lipoprotein; MMPs = matrix metalloproteinases; NOS 
= nitric oxide synthase; NSAIDs = non-steroidal anti-inflammatory drugs; PAI-1 = plasminogen activator inhibitor -1; VEGF = 
vascular endothelial growth factor. Asterisk (*) denotes reported targets of PPARs in the ovary.
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