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Abstract

Background: |7alpha-Estradiol has been considered as the hormonally inactive isomer of |7beta-estradiol.
Recently, nongenomic (smooth muscle relaxation) and genomic (light estrogenic activity) effects of |7alpha-
estradiol have been reported, but no reports have yet determined its possible antiestrogenic activity. Therefore,
this study investigated: the nongenomic action of |7alpha-estradiol on uterine contractile activity and its potential
agonist-antagonist activity on uterine growth.

Methods: Uterine rings from rats were isometrically recorded. Different concentrations (0.2-200 microM) of
| 7alpha-estradiol were tested on spontaneous contraction and equimolarly compared with |7beta-estradiol. To
examine the mechanism of |7alpha-estradiol action, its effect was studied in presence of beta2-antagonist
(propranolol), antiestrogens (tamoxifen and ICl 182,780) or inhibitors of protein synthesis (cycloheximide) and
transcription (actinomycin D). Moreover, contractions induced by high potassium (KCI) solution or calcium in
depolarized tissues by KCl-calcium free solution were exposed to |7alpha-estradiol. Collaterally, we performed
an uterotrophic assay in adult ovariectomized rats measuring the uterine wet weight. The administration for three
days of 0.3 microM/day/Kg | 7beta-estradiol was equimolarly compared with the response produced by |7alpha-
estradiol. Antiuterotrophic activity was assayed by administration of 0.3 microM/day/Kg |7beta-estradiol and
various doses ratios (I:1, 1:3, 1:5, and 1:100) of |7alpha-estradiol.

Results: The estradiol isomers elicited an immediate relaxation, concentration-dependent and reversible on
spontaneous contraction. |7alpha-Estradiol presented lower potency than |7beta-estradiol although it did not
antagonize | 7beta-estradiol-induced relaxation. Relaxation to |7alpha-estradiol was not inhibited by propranolol,
tamoxifen, ICI 182,780, cycloheximide or actinomycin D. The KCI contractions were also sensitive to |7alpha-
estradiol-induced relaxation and calcium contractions in depolarized tissues were markedly prevented by
| 7alpha-estradiol, implying a reduction of extracellular calcium influx through voltage-operated calcium channels
(VOCCG:s). Uterotrophic assay detected significant increase in uterine weight using |7alpha-estradiol, which was
significantly minor as compared with |7beta-estradiol. |7alpha-Estradiol, at all doses ratios, significantly
antagonized the hypertrophic response of |7beta-estradiol.

Conclusion: |7alpha-Estradiol induces a relaxing effect, which may be independent of the classical estrogen
receptor, nongenomic action, apparently mediated by inactivation of VOCCs. |7alpha-Estradiol is also a weak
estrogen agonist (uterotrophic response); likewise, | 7alpha-estradiol may act as an antiestrogen (antiuterotrophic
response). The overall data document a nongenomic relaxing action and a novel antiestrogenic action of |7alpha-
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estradiol, which are relevant in estrogen-mediated uterine physiology.

Background

170-Estradiol (17a-E2) has long been considered as the
hormonally inactive isomer of 17f-estradiol (17p3-E2)
useful in determining the hormonal specificity of
response to 17B-E2 [1,2]. Consequently, it has been gen-
erally accepted that 170-E2 is devoid of genomic estro-
genic effects [3-6]. Nevertheless, in the past few years it
has been documented that 170.-E2 may induce genomic
effects such as partial estrogenic activity [7-11]. In addi-
tion, this estrogen possesses important nongenomic
(membrane) actions by inducing neuroprotective [12,13]
and mitochondrial protective [14] effects, as well as relax-
ing effects in isolated vascular [15-17], uterine [18] and
urinary [19] smooth muscle. In this respect it is reasona-
ble to assume that, 170.-E2 may play a relevant physiolog-
ical role, but little attention has been paid to examine its
potential regulatory function.

On the other hand, the available data have shown that
170-E2 is the predominant estrogen in some mammals,
whereas only few studies exist concerning the detection of
170-E2 in humans which has only been found in the
urine and serum at low concentrations [reviewed in
[20,21]]. However, is important to highlight that 17a-E2
is used as an ingredient of estrogen replacement therapy
and hormone replacement therapy applied in the treat-
ment of peri- and post-menopausal women [22].

Therefore, the present study was designed to explore the
feasible actions of 170-E2 in the uterine tissue. Specifi-
cally, we have examined the possible effects of this hor-
mone on both nongenomic and genomic actions in the
rat uterus: (1) some studies were performed on uterine
contractile activity by using a well established isometric
system for isolated tissue. The effects were observed by
application of 170-E2 on the spontaneous and KCI-
induced myometrial contraction. The mechanism of
action of 170-E2 was delineated to determine if its poten-
tial relaxing effect on uterine contractility is genomically
mediated or if this estrogen is interacting with membrane
proteins (calcium channels and/or adrenoceptors); and
(2) on the basis that some natural stereoisomers, as in the
case of testosterone and epitestosterone which elicit non-
genomic uterine relaxing action [23] and only epitesto-
sterone has antiandrogenic activity [24-26], the estradiol
isomers, 17a- and 17B-E2, should also induce agonist-
antagonist activities. Thus, we have quantified estrogenic-
ity and antiestrogenicity in a classical sense, determining
these actions on uterine wet weigh. Accordingly, this study
set out to investigate the potential antagonist (antiestro-

genic) activity of 170-E2 on the uterotrophic response
induced by 173-E2.

Methods

Animals

Female Wistar rats weighing 180-220 g were obtained
from Charles River Breeding Laboratories (Wilmington,
MA), housed in our animal facility under controlled light-
ing (lights-on from 0700-1900 h) and temperature
(21°C) conditions, and given ad libitum water and food.
The project was approved by our Animal Care Committee,
and experiments were conducted in accordance with the
published Guiding Principles in the Care and Use of Ani-
mals approved by the American Physiological Society. The
vaginal smears of these animals were inspected daily for 2
weeks, and animals showing regular 4-day estrous cycle
were selected on the day of diestrus.

Myometrium contractile activity

The rats were killed and the uterine tissues were immedi-
ately removed and transferred to warmed (37°C), oxygen-
ated (0,/CO, 95:5) Krebs-bicarbonate solution of the
following composition (mM): NaHCO, (25), NaCl (119),
KCI (4.6), KH,PO, (1.2), MgSO, (1.2), CaCl, (1.5) and
glucose (12), with the pH adjusted to 7.4. The uterine
horns were isolated, cleaned of surrounding fat and loose
connective tissue, and transversally bisected into two
rings, approximately 1 cm in length.

The uterine rings were placed vertically in a 10 ml tissue
chamber and bathed in Krebs-bicarbonate solution,
under optimum resting force of 10 mN (1 g tension), and
allowed for 30 min before starting the experiment. The
contractile response of each tissue was recorded isometri-
cally using transducers (FTO3C; Grass Instruments,
Quincy, MA) connected to a polygraph (79; Grass
Instruments).

After a stabilization period (1 h) of the tissues in Krebs-
bicarbonate solution, the spontaneous uterine contrac-
tion was recorded for 10 min, and this was taken as the
control value (100%). Immediately, 170-E2, dissolved in
absolute ethanol and added to the bath tissue in a final
volume of 0.1%, was tested by adding increasing concen-
trations in a non-accumulative manner (in concentrations
ranging from 0.2 to 200 uM; each concentration never
exceeded 0.1% v/v of vehicle). Only one concentration
was used for each uterine ring from different animals. The
estrogen effects were also recorded for 10 min, and the
response was compared with the control. In a separate
group of experiments, uterine tissue was exposed to
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vehicle alone (0.1 % ethanol). The concentration-
response curves to estrogen on spontaneous contraction
were plotted, and the medium inhibitory concentration
(ICs; value for estrogen concentration at which 50% of
the maximum inhibition of uterine contraction was
achieved) was calculated as described by Litchfield and
Wilcoxon [27]. In order to evaluate the inhibitory
response of 17a-E2, its potency was compared with that
of 17B-E2, which was used as a positive control under the
same experimental conditions.

In a series of experiments the tissues were incubated with:
antiestrogens, 1 UM tamoxifen (estrogen receptor antago-
nist) or 1 uM ICI 182,780 (the pure estrogen receptor
antagonist), as well as 10 uM actinomycin D (inhibitor of
gene transcription) or 100 uM cycloheximide (inhibitor
of protein synthesis), 30 min before of 17a-E2 addition at
89.39 uM (ICs;). The effect of 170-E2 was evaluated for
10 min in presence of each drug, and compared with the
effect that this estrogen produces alone. In addition, the
final volume of vehicle (0.1% absolute ethanol) by each
substance added was observed in independent
experiments.

To examine the potential blocking effect of 17a-E2 on
17B-E2-induced inhibition, the effect of both 173- and
170-E2 was also studied on the spontaneous contraction.
The tissue was pretreated with 173-E2 at 8.42 uM (ICs,),
10 min before of 17a-E2 addition (89.39 uM; IC,,), and
then the response was recorded for 10 min. The relaxing
response induced by both estrogens was evaluated and
compared when 170-E2 was not present. In the same way,
the opposite treatment (89.39 UM 170-E2 before 8.42 uM
17B-E2 addition) was also determined.

The effect of 17- and 170-E2 was also studied on the con-
traction induced by high potassium (KCl 40 mM) solu-
tion, after replacing normal Krebs-bicarbonate solution
with an equimolar substitution of 40 mM KCl and 84 mM
NaCl. Thus, KCI solution induces a tonic contraction and
after a stable contractile tension was attained (~20 min)
each estradiol, 17f3- or 170-E2, at 200 uM (highest con-
centration tested on spontaneous contraction) was sepa-
rately added and the effect was recorded for 10 min. This
effect was compared with their inhibitory responses at
200 uM on spontaneous contraction. Finally, the tissues
were washed and a next contraction induced by KCI was
observed for 60 min to check the tissue recovery. Collater-
ally, the contraction induced by KCl was exposed to vehi-
cle (0.1% ethanol) alone.

Some additional experiments were carried out to analyze
the possible interaction of 170-E2 with the B-adrenocep-
tors. For this purpose, 5 uM of noradrenaline (f3,-adreno-
ceptor agonist) was applied 10 min after the KCI stimulus
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and its relaxing effect was evaluated for 10 min. Previ-
ously, we observed that the relaxation induced by 5 uM of
noradrenaline on KCl contraction was completely
blocked when the tissues were preincubated 5 min before
with 20 uM propranolol (,-adrenoceptor antagonist).
Following the same protocol, the effect of 170.-E2 at 89.39
UM was observed with 20 uM propranolol preincubation.

Other uterine rings were depolarized with a high potas-
sium-calcium free solution; depolarizing solution (KCl)
modified by addition of 2 mM EGTA and without CaCl,.
A transient contraction was obtained by high potassium-
calcium free solution and when the baseline was reached,
1 mM CaCl, was added to evoke a tonic contraction,
which was recorded for 20 min. This process was repeated
until a reproducible response was obtained (control);
then, the tissues were preincubated with 170-E2 at 89.39
uM (IC5, on spontaneous contraction) 5 min before the
addition of CaCl, at 1 mM. Under this conditions, the
contraction induced by CaCl, was recorded for 20 min in
the presence of 170-E2, which was compared with the
control. Subsequently, the tissues were washed out and a
CaCl,-induced contraction was elicited again. The wash-
out was done after all calcium contractions, three times,
with depolarizing free-calcium solution. This protocol
was used to test the potential voltage-operated calcium
channel blocking properties of 17a-E2.

Uterotrophic and antiuterotrophic activity

Other rats in diestrus were ovariectomized under ether
anesthesia. Fifteen days later, the animals were divided
into seven groups (n = 6 each), and they were injected
subcutaneously, once daily for three days, with 0.4 ml/Kg
body weight of vehicle (corn oil; group I), 0.3 pmol/Kg
body weight of 17B-E, or 170a-E2 (group II and III, respec-
tively), and in combination with varying concomitant
doses of 173-E2/170-E2 (umol/day/Kg body weight): 1:1
(0.3:0.3; group 1V), 1:3 (0.3:0.9; group V), 1:5 (0.3:1.5;
group VI) and 1:100 (0.3:30; group VII), all dissolved and
administered in 0.4 ml/day/Kg of the vehicle. The rats
were weighed 24 h after the last dose, and vaginal smears
were taken and examined under the microscope. Autopsy
was performed and the uteri were carefully dissected out,
blotted and the organ wet weights were recorded.

Data presentation and statistical analysis

The total contractile activity (the area under the curve
inscribed by the frequency and amplitude of contraction)
was measured during each 10-min interval by using Poly-
View system 2.1 (Grass Instruments Division/Astro-Med.
Inc, West Warwick, RI) data acquisition and playback soft-
ware. The data for compound action on the uterine con-
tractility were calculated as mean value of more than 6
independent determinations, each from different experi-
ments and expressed as percentages + SEM. In order to
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evaluate the inhibitory response of 170-E2, its potency
was compared with the inhibitory effect of induced by
17B-E2. The gain in uterine weight of each group was cal-
culated as mg uterine weight/100 g body weight. 170-E2
(group IIT) was compared with the vehicle (group I) and
17B-E2 (group 1I) effect. The treated groups at different
doses range of 173-/170.-E2 were compared with the uter-
otrophic effect of 17B-E2 alone (uterine growth induced
at 0.3 umol/day/Kg body weight = 100%). Non-paired
Student's t-test was utilized to compare the responses
between two groups. We used two-way-ANOVA to com-
pare the concentration-response curves in isolated tissues.
For multiple comparisons, one-way-ANOVA with Bonfer-
roni correction was used for antiuterotrophic assay. A
value of P < 0.05 was accepted as statistical significance.

Chemicals

The following compounds were used: 1,3,5(10)-
estratriene-3,17f3-diol (17f-estradiol; 17B-E2), 1,3,5(10)-
estratriene-3,170-diol (170-estradiol; 170-E2), tamoxifen
(estrogen receptor antagonist), ICI 182,780 (the pure
estrogen receptor antagonist), actinomycin D (transcrip-
tion inhibitor), cycloheximide (protein synthesis inhibi-
tor), propranolol hydrochloride (,-adrenoceptor
antagonist; P) and noradrenaline hydrochloride
(noradrenaline; NA). With the exception of ICI 182,780
(obtained from Tocris Cookson, Ellisville, MO, USA), the
remaining compounds used in the present study were all
purchased from Sigma Chemical Co., St. Louis MO, USA.
In isolated tissue preparations, all compounds were pre-
pared as stock solution (for each concentration) in abso-
lute ethanol and added to the bath chamber in a final
volume of 0.1% (absolute ethanol), except for NA and P
which were dissolved in distilled water. Actinomycin D
and NA were kept in the dark until use in order to avoid
light-induced degradation. With respect to the in vivo
experiments, the estrogens were dissolved and adminis-
tered in the same volume of corn oil (0.4 ml/Kg).

Results

Inhibitory effect of 170~E2 on spontaneous contractility
As shown in Fig. 1A, the vehicle of estrogens, ethanol
(0.1%; a final volume identical to those added as solvent
for estrogens), did not significantly modify spontaneous
uterine contractility (2.95 + 0.25% of inhibition, n = 6, P
>0.05). 170 and 17B-E2 caused a concentration-depend-
ent inhibition of spontaneous uterine contractility (Fig.
1B), with an IC;,value of 89.39 and 8.42 uM, respectively.
Therefore, the effect of 173-E2 was 10.6 fold more potent
than 170-E2 to inhibit the spontaneous uterine contractil-
ity. As shown in Fig. 1B, the concentration-response
curves to 170~ and 17B-E2 were significantly different
between them (P < 0.0005). The inhibitory effect of 170
E2 and its 17f isomer was observed within 1 min after the
uterine tissue was exposed to the estrogen (Fig. 1A) and
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the spontaneous contractility was reversed after estrogen
was removed (washed out) from the tissue. We also
observed that addition of 89. 39 uM 17a-E2 did not stop
the previous inhibitory effect induced by 178-E2 at 8.42
uM. On the contrary, 17p-E2-induced inhibition (30.6 +
1.08%) was significantly enhanced after addition of 170.-
E2 (70.53 + 1.77% of inhibition; P < 0.0005). Further-
more, the opposite treatment (170-E2 before 17(3-E2
addition) revealed that the inhibitory effect of 173-E2 was
not antagonized by 170.-E2 pretreatment, but was also sig-
nificantly enhanced (73.97 + 1.97% of inhibition; n = 6,
P < 0.0005). Thus, this observation implies that both
inhibitory effects were synergized.

Effect of estrogens on KCl-induced uterine contraction
The tonic contraction induced by KCl was also inhibited
by each estradiol at the highest concentration tested on
spontaneous contraction (200 uM), the development of
the relaxing effect in precontracted tissues also started
within a few seconds (~30 sec) after addition of each
estrogen (Fig. 2A). Likewise, after washout the amplitude
and tone of the next KCl-induced contraction was totally
recovered. As shown in Fig. 2B, the relaxing efficacy of
170~ and 17B-E2 was not significantly different in both
spontaneous and KCl-induced contraction; however, the
relaxing effect induced by 178-E2 was higher than that
induced by 170-E2 in both contractile responses. The
vehicle of estrogens (ethanol 0.1%) did not significantly
affect (1.39 + 0.17% of relaxation; n = 6, P > 0.05) the
tone of KCI contraction, but the effect induced by each
estradiol was significantly different (P < 0.0005) from the
vehicle control (Fig 2A).

Inhibitory effect of 170~E2 in presence of different drugs
These results are illustrated in Fig. 3. The inhibitory effect
elicited by 170-E2 (89.39 uM) was not blocked by gene
transcription (Fig. 3A) or protein synthesis (Fig. 3B)
inhibitor. Likewise, we observed that the estrogen recep-
tor antagonists (tamoxifen or ICI 182,780) failed to affect
170-E2-induced uterine inhibition (Fig. 3C and 3D,
respectively). Moreover, the response to 17a-E2 has rapid
time-courses, and the spontaneous uterine contractility
was totally recovered after estrogen was removed from the
tissue (washout). As shown in Fig. 3E, the control vehicle
(absolute ethanol; final volume 0.1%) by each drug
(inhibitor and estrogen) did not significantly modify the
spontaneous contractility (3.47 + 1.14% of inhibition; P
> 0.05). Propranolol at 20 uM blocked the inhibitory
effect of 5 UM noradrenaline, but this B,-adrenoceptor
antagonist (at the same concentration) did not block the
relaxation induced by 170-E2 on KCl-induced contraction
(Fig. 3F).
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Inhibitory effect of 170~ and 17B3-E2 on spontaneous uterine contractile activity of rats in diestrus. A) The vehicle
utilized to dissolve each estradiol, ethanol (ETOH 0.1%), did not significantly modify (P > 0.05) the spontaneous contractility.
|7a- and 17B-E2 induce inhibition of contractile activity. Note their different efficacy when they are added at the same concen-
tration (20 uM). B) Concentration-response curves to |70~ and 173-E2 on spontaneous contractility, which were significantly
different (P < 0.0005) between them. Each point represents the mean + SEM of six independent experiments. Statistical signifi-
cance between concentrations: *P < 0.005, **P < 0.0005. The effect induced by both estradiol isomers at all concentrations
tested were significantly different (P < 0.0005) from the vehicle control.

Effect of 17~E2 on calcium-induced contraction

The uterine tissues were depolarized by high potassium-
calcium free solution. Under these experimental condi-
tions, a tonic contraction was induced by CaCl, (1 mM),
which was antagonized when tissues were preincubated
with 89.39 uM 170-E2 (71.03 + 1.93% of inhibition, n =
6), observing that the amplitude was significantly
decreased (Fig. 3G). The calcium antagonistic effect
induced by 17a-E2 was reversible upon washing out the
tissue and removing the estrogen (see Fig. 3G; third CaCl,
addition). Importantly, the prevention of this calcium
contraction by 170-E2 turned out significantly higher (P <
0.0005) than its inhibitory effect on spontaneous contrac-
tion (52.12 + 2.05 %). The final volume of estrogen vehi-

cle (0.1% absolute ethanol) did not significantly prevent
calcium-induced contraction (3.55 + 0.45%; n = 6, P >
0.05).

Agonistic and antagonistic activity on uterine growth

170-E2 action on the gain uterine weight was significantly
different (P < 0.05) to vehicle group (corn oil), thus this
hormone presented a light uterotrophic activity in con-
trast with the potent uterotrophic activity induced by its
17p isomer at the same dose (Fig. 4). However, the anti-
uterotrophic activity of 170-E2 was assayed and we
observed that this hormone had a significant antagonistic
effect on the uterotrophic action of 173-E2 at all doses
ratios (Table 1 and Fig. 4). Additionally, the vaginal
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Effect induced by 170~ and 173-E2 on uterine contraction achieved by high potassium (KCI 40 mM). A) The vehi-
cle of estrogens, ethanol (ETOH 0.1%), did not significantly modify KCl-induced contraction (P > 0.05) whereas this tonic con-
traction was significantly inhibited by 170~ or 173-E2 and this response was also significantly different from the vehicle control
(P < 0.0005). The black circles represent the time of washout. B) Comparison of inhibitory effect at equimolar concentration
(200 uM) of 170~ and 17B-E2 on spontaneous and KCI(40 mM)-induced contraction. The student's t test demonstrated that
the relaxing efficacy of 170~ and 17B-E2 was not significantly different (P > 0.05) on spontaneous or KCl-induced contraction.
The plotted values represent the mean + SEM of six independent experiments.

smears from rats treated with 173-E2 showed that the vag-
inal cornification was decreased as 170-E2 dose was
increased (data not shown).

Discussion

The results of the present study demonstrate that 170.-E2
is a natural estrogen hormonally active in the rat uterine
tissue. Our findings show that this estrogen is capable of
inducing both nongenomic (antiuterotonic effect) and
genomic (estrogenic/antiestrogenic effect) action. This
evidence may, in fact, account for its potential regulatory
biological function.

In particular, 170-E2 elicits inhibition of uterine contrac-
tile activity by inducing antiuterotonic responses on spon-
taneous and KCl-induced contraction. These findings are

in line with a previous study in isolated rat uterus, which
reported that 170-E2 has the ability to produce relaxation
on contractions induced by KCI, calcium and vanadate
[18]. We observed that 170-E2-induced inhibition was
significantly different as compared to its 17f isomer, with
about 10-fold lower potency than 17B3-E2, implying a par-
tial agonist effect of 170-E2 on uterine contractile activity.
Nevertheless, this inhibitory effect could be relevant to
promote uterine quiescence during pregnancy. Admit-
tedly, the concentrations of the inhibitory responses to
170~ and 17B-E2 may be in pharmacological ranges; how-
ever, these are close to the therapeutic doses used.

Regarding the mode of action of 170-E2-induced uterine
relaxation, it is important to emphasize that the instanta-
neous relaxing effect of 17a.-E2, plus the evidence that the
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Original recordings demonstrating typical effect of 170-E2 on uterine contractions. The inhibitory effect of 170-E2
on spontaneous contractility was not blocked by preincubation with inhibitors of transcription, 10 uM actinomycin D (A) and
protein synthesis, 100 UM cycloheximide (B) or antiestrogens, | UM tamoxifen or | uM ICI 182,780 (C and D, respectively).
The vehicle utilized to add each compound, absolute ethanol (ETOH 0.1%), did not affect (P > 0.05) the spontaneous contrac-
tility (E). KCl-induced contraction was inhibited by addition of 5 LM noradrenaline (NA), which was antagonized by preincuba-
tion with 3,-adrenoceptor antagonist, 20 UM propranolol (P), while |170.-E2-induced relaxation was not antagonized by P (F).
The relaxing efficacy of estrogen was not modified in tissues pretreated with these blocking agents. The calcium-induced con-
traction at | mM (Ca?*) in tissues previously depolarized by high potassium-calcium free solution (KCI-Ca2*$) was notably pre-
vented by |70-E2 (G). The solid black line indicates the incubation time with 170-E2 at 89.39 uM. Note the contraction
recovery after washout (represented by the black circles), showing that the estrogen effect was reversible.
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Figure 4

Action of 170~ and 17B3-E2 on uterine mass in adult
ovariectomized rats. |170-E2 significantly increased the
uterine weight as compared with the vehicle (corn oil; *P <
0.05), although this increment was significantly less than
those of 17B-E2 (*P < 0.00005). In rats treated with 173-E2
plus different doses of 170-E2, less uterotrophic effect of

| 7B-E2 was evident. Statistical significance: **P < 0.005, ***P
< 0.0005, ****P < 0.0001. The analysis shows that the treat-
ment |:1 (a) was different from [:3, 1:5and 1:100 (b; P <
0.05), which were not different between them (b; P > 0.05).
Each bar represents the mean £ SEM, n = 6 rats per group.

effect disappears after the estrogen is removed from the
tissue, are uncharacteristic of classical genomic activities.
Thus, this effect is presumably through nongenomic
(membrane) actions. This idea is supported by the fact
that the observed effect of 17a-E2 on uterine contractility
occurred within 1 min of its addition, and 1 min is not
enough time for genomic effects to occur [28]. Another
approach to discriminate between genomic and nong-
enomic action is to use antihormones that bind to the
intracellular steroid receptor, but that do not block the
rapid membrane effects. Our results show that 17a-E2 on

http://www.rbej.com/content/3/1/30

rat uterus does not seem to be mediated by genomic
events since the antiestrogens, tamoxifen or ICI 182,780,
and the transcriptional and translational inhibitors did
not antagonize the uterine inhibitory effect of 17a-E2.
This observation is in partial agreement with the study of
Gutiérrez and coworkers [18], where it was also found
that the relaxation induced by 170-E2 on KCl-induced
contraction was not blocked by tamoxifen, but differed by
the fact that 170-E2-induced relaxation was blocked by
cycloheximide and actinomycin D, where an interaction
with transcriptional ways was suggested. This apparent
discrepancy may be explained because their evaluation
was done under special experimental conditions; rats were
estrogen-primed for 24 h. In this way, the administration
of 17B-E2 results in changes of density and distribution of
several receptors (proteins), called estrogen-dependent
receptors, which are enhanced under conditions of estro-
gen dominance and, consequently, this treatment may
modify the physiological response. In contrast, our data
were obtained on spontaneous contractility of rats in die-
strus, a model close to the physiological condition. Never-
theless, it should be kept in mind that the relaxing effect
of 170-E2 is too fast and reversible, a point of discussion
to distinguish if the transcriptional process is or not
involved.

Indeed, our findings indicate that 17a-E2 has a nong-
enomic action to induce myometrial relaxation, as previ-
ously reported to progestins and androgens in rat [29] and
humans [30,31]. Likewise, our study has shown different
sensitivity of uterine tissue to 17a- and 173-E2-induced
relaxation, suggesting a specific relaxing efficacy for each
isomer. In this sense, we have reported before the pres-
ence of large differences in uterine relaxing potency in a
series of closely related steroids, such as androgens and
progestins, some of them without effect [29-32], pointing
to a defined structure-activity relationship. Nevertheless,
it is important to consider that not only is the uterine
muscle the target of 170.-E2 to induce relaxation but also
other types of smooth muscles such as those in the blood
vessels [15-17] and bladder [19] are relaxed by this
estrogen.

In view that the uterine relaxing effect of 170.-E2 can be
explained by a nongenomic action, this effect may be
associated with different sites of action at the cell surface
(e.g. membrane proteins). In this respect, the possibility
of an interaction of 17a-E2 with inhibitory 3,-adrenocep-
tors can be dismissed since its specific antagonist (pro-
pranolol) did not block the uterine relaxing effect of 170.-
E2. This evidence indicates that 170-E2 induced a non-
adrenergic inhibitory response on uterine contractility.

Since the involvement of 3,-adrenoceptors seems improb-

able, the possibility has to be discussed finally that the
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Table I: Antiuterotrophic activity of 170-E2 in adult ovariectomized rats.

Dosage of 170-E2 (umol/day/
Kg body weight)

Ratio? of 17B3-E2:170-E2

Uterine wet weight/100 gb % inhibition¢

0.3 I:1
0.9 1:3
1.5 I:5
30.0 1:100

266.1 £82 18.55
2299 + 10.7 29.63
2283 £ 10.4 30.11
213.1+78 34.77

aFixed dose of 17B-E2 used = 0.3 umol/day/Kg body weight.
bData from six independent experiments * SEM (six rats per group).
¢As compared with uterotrophic effect of 173-E2.

nongenomic-relaxing effect of 170-E2 involves a
diminution on the intracellular concentration of calcium
in the smooth muscle cells. In this connection, our pre-
liminary results show that the efficacy induced by 170-E2
was more prominent to antagonize contractions induced
by calcium in depolarized tissues than to inhibit the spon-
taneous contractility. In this context, it is known that KCl
depolarizes the membrane and opens voltage-operated
calcium channels, resulting in calcium entry. Conse-
quently, the inhibition induced by 170-E2 in uterine rings
precontracted by KCI and the marked antagonism of cal-
cium entry in depolarized tissues are implying a direct
reduction of extracellular calcium influx by producing
inactivation of voltage-operated calcium channels. This
hypothesis has also been proposed to the nongenomic
relaxing effect of progestins and androgens in uterine [29-
32] and vascular [33] smooth muscle. In support of this
view, it has been reported that 170a-E2 might behave as a
calcium channel antagonist in vascular cells [17,34] and
this estrogen may also induce a reduction on voltage-
dependent calcium currents in vascular smooth muscle
cells [35,36]. Obviously, further patch-clamp experiments
on uterine smooth muscle cells will be required to evalu-
ate this issue.

It is also tempting to suggest that the nongenomic relaxing
effect of 170.-E2 could be mediated through a subpopula-
tion of the classical estrogen receptor (ER), ERo and ERp,
that is located at the plasma membrane [37,38] and spe-
cifically identified in caveolae and cell membranes from
endothelial cells [39]. However, this possibility appears
not to be supported by the fact that endogenous mem-
brane and nuclear ER was found to be the same protein
[40] and a much weaker affinity of 17a-E2 to the human
ER compared to 17B-E2 has been shown [41]. In this con-
text, our experimental evidence that two ER antagonists
(tamoxifen or ICI 182,780) did not block 170-E2-induced
uterine relaxation implies that the estrogen binding site at
the myometrial cell membrane could be a protein unre-
lated to the ERa or ERB. Thus, the present findings indi-
cate that 17a-E2 also acts at the cell surface of myometrial

cells to initiate rapid, nongenomic, responses and this
action may be mediated by interaction of estrogen with
calcium channel proteins, which produces inactivation of
voltage-operated calcium channels. Taken together these
findings, it is important to consider that a nonspecific
effect may also occur for the uterine relaxing effect of 17a-
E2, such as changes in membrane fluidity.

Although 17a-E2 had been considered without estrogenic
activity [3-6], we confirmed that 170-E2 presents a signif-
icant weak estrogenic activity by inducing increase on
uterine weight; this activity is much less potent than that
induced by 17B-E2 and did not achieve full estrogenicity
at higher doses. Consistent with this observation, it has
also been reported that 170-E2 induces light estrogenic
activity [7-11]. However, to our knowledge, no evidence
had been shown on the action of 17a-E2 as antagonist.

Remarkably, we have now demonstrated that 170-E2 pos-
sesses antiestrogenic properties by antagonizing the uter-
otrophic response of 178-E2, and we believe it plays an
important role in estrogen-mediated uterine physiology.
Furthermore, there is also the possibility that 170-E2
should induce antiestrogenic activity in several tissues as
well as in other species, including human; however, addi-
tional experiments are needed in order to address this
question. The uterotrophic response of 173-E2 was signif-
icantly antagonized by 170-E2 at all doses ratios,
although its antagonism was not dose-dependent at a dos-
age of 0.9 to 30 uM/Kg, with a maximal effect of ~30% of
inhibition. Indeed, this may indicate that 17a-E2 acts as a
partial antagonist of ER. Interestingly, the antiutero-
trophic efficacy of 170-E2 turned out similar to the
antiuterotrophic action of tamoxifen, in a range of doses
ratios from 1:2 to 1:10, as previously reported [42].

It is of note that the reduced efficacy of 170-E2 to induce
uterine relaxation and estrogenic activity, as compared
with 17B-E2, is similar to that induced by tamoxifen,
which deserves further consideration. In the first instance,
tamoxifen is also capable of eliciting uterine relaxation
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[43-45]; consequently, this antiestrogen has been
reported to have some nonreceptor-mediated effects [46]
by unclear mechanisms. Moreover, since the ER is essen-
tial for 17B-E2-induced uterine proliferative responses
[47], the present data suggest that 17a-E2 appears to reg-
ulate its slight agonist (estrogenic) and antagonist (anties-
trogenic) activity through the same mechanism as
tamoxifen. Recently, it has been documented that
tamoxifen displays partial agonist-antagonist activities in
different tissues and cells, and these differences may be
related to the milieu of ER coactivators and corepressors
in these tissues. The ER has two transcriptional activation
domains, AF-1 and AF-2; thus, AF-1 activity is stimulated
by tamoxifen binding to induce its partial agonist activity
but AF-2 is inhibited when tamoxifen acts as antagonist
[48-51]. With this line of evidence, could be reasonable to
speculate that the mode of action of tamoxifen could be
analogous for the agonist and antagonist properties of
170-E2. Obviously, further studies that fall beyond the
scope of the present investigation will be required to
explore the agonistic-antagonistic mechanism of 170-E2.

The present study revealed that both estradiol isomers,
170~ and 17B-E2, possess the same nongenomic action by
inducing uterine relaxation but 170-E2 is incapable of
antagonizing the 173-E2-induced uterine relaxation. Col-
laterally, these two isomers may also induce the same
genomic action by eliciting an estrogenic uterotrophic
response; however, the estrogenic activity of 17B-E2 is
antagonized by 17a-E2. In this context, this evidence is
correlated with the biological action emerged to other nat-
ural isomers, such as testosterone and epitestosterone
which present the same nongenomic relaxing action [23],
but only epitestosterone possesses a genomic antiandro-
genic activity [24-26].

Finally, we also noted that the different structural confor-
mation of both estradiol isomers could be important to
induce diverse responses. The differences between both
molecules is the o/trans or B/cis configuration at C-17.
Thus, estrogen antagonistic activity of 170-E2 could be
presumed by its o/trans configuration, in contrast to the 3/
cis which is responsible for the marked antiuterotonic and
estrogenic activity induced by 17B-E2.

Conclusion

The preliminary investigation presented here reveals inter-
esting features of the uterine function regulated by 17a-
E2. The data indicate that this estrogen is an agonist
inducing nongenomically mediated uterine relaxation,
but also appears to have mixed agonist-antagonist activity
on uterine growth, presumably through genomic proc-
esses. This study shows that a rapid nongenomic action
(antiuterotonic response) of 170.-E2 takes place before its
genomic action (uterotrophic-antiuterotrophic response).

http://www.rbej.com/content/3/1/30

Additionally, this evidence could account for our
knowledge of effects produced by 170-E2 and some sul-
fate derivatives, which are components applied in the
treatment of peri- and post-menopausal women.
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