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Abstract

Genetically identical rhesus monkeys would have tremendous utility as models for the study of
human disease and would be particularly valuable for vaccine trials and tissue transplantation
studies where immune function is important. While advances in nuclear transfer technology may
someday enable monkeys to be cloned with some efficiency, embryo splitting may be a more
realistic approach to creating pairs of genetically identical monkeys. Although several different
approaches to embryo splitting, including blastocyst bisection and blastomere separation, have
been used successfully in rodents and domestic species for production of pairs and sets of identical
offspring, efforts to create monozygotic twins in rhesus monkeys using these approaches have not
met with similar success. Aggregation of split embryos with other types of blastomeres, such as
tetraploid and developmentally asynchronous blastomeres, that could potentially increase their cell
numbers and developmental competence without contributing to term development has been
investigated as an alternative approach to creating monozygotic twin monkeys. The major
challenges encountered with respect to the efficient production of monozygotic twins in rhesus

monkeys and potential strategies to overcome these challenges are discussed.

Review

Rhesus macaques are one of the most suitable animal
model for studies of human disease because of their
genetic and physiological similarity to humans [1]. Genet-
ically identical rhesus monkeys would have tremendous
utility as models for the study of human disease and
would be particularly valuable for vaccine trials and tissue
transplantation studies where immune function is impor-
tant. Furthermore, use of genetically identical monkeys in
biomedical research would substantially reduce the num-
bers of animals required for generating statistically valid
data due to elimination of genetic variation. This is partic-
ularly important when considering the experimental lim-
itations often encountered in nonhuman primate
research.

Since the birth of Dolly [2], several mammalian species
including sheep, cattle, goats, pigs, mice, rabbits and cats
have been cloned using somatic cell nuclear transfer [3,4].
Despite the limited success of embryonic blastomere
nuclear transfer that led to birth of two unrelated rhesus
monkey infants [5], efforts to clone rhesus monkeys using
somatic cell nuclear transfer have been unsuccessful [[6-
8], Schramm, unpublished]. To date, very few blastocysts
(~1%; [[6], Schramm, unpublished] and no clinical preg-
nancies [6] have resulted from somatic cell nuclear trans-
fer in rhesus monkeys. Based upon the relative
inefficiency of somatic cell cloning in domestic species,
and limited availability of oocytes, the probability of
obtaining even a pair of genetically identical rhesus mon-
keys using this technology is exceedingly low. While
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advances in nuclear transfer technology may someday
enable monkeys to be cloned with some efficiency,
embryo splitting may be a more realistic approach to cre-
ating pairs or sets of genetically identical monkeys. Addi-
tionally, unlike clones produced by nuclear transfer,
which exhibit various degrees of mitochondrial heteroge-
neity [9], monkeys produced by embryo splitting would
be completely genetically identical with respect to nuclear
as well as mitochondrial DNA.

Twinning efforts in rhesus monkeys

In domestic species, embryo splitting has been accom-
plished by two different approaches: blastocyst bisection
[10] and blastomere separation [11]. Blastocyst bisection
has led to the birth of monozygotic twins in several mam-
malian species [12-16], while blastomere separation has
led to the birth of triplets and quadruplets [17,18], as well
as monozygotic twins mice; [19,20], sheep; [11,21], cat-
tle; [17,18,22], goats; [23], pigs; [24] horses; [25,26].
Efforts to create monozygotic twins by embryo splitting
have not met with similar success in rhesus monkeys. Ini-
tial studies on embryo splitting in rhesus monkeys dem-
onstrated that the percentage of split embryos developing
into blastocysts was reduced when blastomere separation
was performed in more advanced cleavage stage (8-16
cell stage) embryos [27]. However, demiembryos created
by blastomere separation at either the 2- or 4-cell stage
develop into blastocysts equally as well as nonmanipu-
lated control embryos [[28] Schramm, unpublished].
Although the ratios of inner cell mass (ICM) to trophecto-
derm TE) and ICM to total cells in split rhesus blastocysts
are equivalent to those of intact control blastocysts [28],
the total cell numbers are reduced by approximately 50%
[[28] Schramm, unpublished], similar to results reported
for other species [18,22,29,30] Unlike in bisected blasto-
cysts, the total cell numbers in blastocysts derived from
blastomere separation were remarkably different within a
given demiembryo pair, due perhaps to unequal distribu-
tion of cytoplasm among blastomeres at separation or dif-
ferences in polarity within an embryo [28]. Nevertheless,
while bisection of rhesus monkey blastocysts resulted in a
higher yield of demiembryos, the yield of clinical preg-
nancies per oocyte was higher following blastomere sepa-
ration, which was not limited by the need to culture
embryos to the blastocyst stage [28]. Based upon results
from the above-described studies, it does not appear that
split rhesus monkey embryos created by blastomere sepa-
ration or blastocyst bisection are less viable per se than
those of other species. However, while pregnancies have
been established following both blastomere separation
and blastocyst bisection, only singleton offspring have
resulted, regardless of whether split embryos were trans-
ferred together to the same recipient or separately to dif-
ferent recipient monkeys [27,28]. Transfer of 22 pairs of
demiembryos created by blastomere separation led to a
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33% (7/22) pregnancy rate with 2 twin pregnancies (9%)
initiated, but in neither case did both twins develop to
term [28]. Similarly, a 33% (4/12) pregnancy rate was
established with bisected blastocysts, but all pregnancies
were singletons [28].

Challenges in producing monozygotic twins in
rhesus monkeys

Two of the major issues underlying the difficulty in pro-
ducing monozygotic twins in rhesus monkeys are the sub-
optimal pregnancy rates following embryo transfer and
the inherent difficulties in supporting twin gestations in
this species. Although twin births have resulted following
transfer of nonmanipulated in vitro produced embryos
[31,32], rhesus monkeys do not normally carry twins, and
in the few cases (0.25%) of naturally occurring twin preg-
nancies, offspring rarely survive due to undefined compli-
cations in the fetal or perinatal period [33]. Pregnancy
rates following transfer of two normal (nonmanipulated)
IVE-derived embryos typically average 25-40%, with
fewer than 15% of those being twin pregnancies [[28,31],
Schramm, unpublished]. Thus, production of monozy-
gotic twins following transfer of split embryos into either
the same or different recipients, would not be expected to
be highly efficient.

The establishment of pregnancy following embryo trans-
fer is highly dependent upon the synchrony between the
embryo age (stage) and the recipient endometrium, rela-
tive to the day of ovulation. Optimal results for uterine
transfer of blastocysts are obtained following asynchro-
nous transfer into a Day 4 recipient [28,34,35], while
optimal results for oviductal transfer of cleavage stage
embryos are obtained by synchronous transfer into a Day
2 recipient [31]. Because rhesus monkeys cannot be syn-
chronized to ovulate on a specific day, optimal timing for
embryo transfer generally requires cryopreservation of
embryos. This presents an additional problem for split
embryos, because the post thaw survival of normal IVF-
derived embryos is typically only 56-78% [36], and cryo-
preservation of split embryos has not generally been suc-
cessful in any species. Therefore, the efficient production
of monozygotic twins is likely to be considerably more
challenging in rhesus monkeys than in rodents and
domestic species.

Strategies for creating monozygotic twins in
rhesus monkeys

Due to the difficulties associated with twinning efforts in
rhesus monkeys, a nontraditional approach may be
required for the efficient production of monozygotic
twins in this species. Splitting embryos into quadruplet
sets, rather than pairs, would increase the number of iden-
tical embryos available for transfer. This would be partic-
ularly important if they were to be cryopreserved prior to
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Table I: Developmental competence in vitro of split monkey embryos following aggregation of individual diploid and tetraploid

blastomeres from 4-cell stage embryos

Developmental Stage (%)

Treatment Groupab«c n Compacted Blastocyst Cell #
Quarter (I diploid 47 48.6a 17.4a 48.7a
blastomere)

Half (2 diploid 53 59.5a 39.8b 81.4b
blastomeres)

Half Chimera (I diploid and 49 65.9a,b 43.2b 94.1b
| tetraploid blastomere)

Control (nonmanipulated 41 88.0b 59.6b 165.7¢
embryos)

aQuarter = single blastomere from a 4-cell stage diploid embryo; Half = two blastomeres from a 4-cell stage diploid embryo; Half Chimera = single
blastomere from a 4-cell stage diploid embryo and a single blastomere from a 4-cell stage tetraploid embryo; Control = intact nonmanipulated
diploid embryos; Cell # = numbers of nucleated cells in blastocysts on Day 7 post insemination. °n = total number of embryos (7 replicates)
<Different letters within columns denote significant (P < .05) differences among treatments.

transfer. Unfortunately, 4-cell stage embryos split into
quadruplet sets are less competent to develop into blasto-
cysts, and exhibit substantially reduced cell numbers in
resulting blastocysts compared with demiembryos (Table
1). Interestingly, 16-cell stage rhesus embryos split into
quadruplet sets develop into blastocysts at an equivalent
rate as nonmanipulated control embryos [Schramm,
unpublished]. However, resulting blastocysts have only
one quarter of the total cell numbers of control blastocysts
and little to no ICM compared to blastocysts derived from
4-cell embryos split into quadruplet sets [Schramm,
unpublished]. Similar results were obtained from 8-cell
stage sheep embryos separated into octaves. These "eighth
embryos" developed into trophoblastic vesicles with little
to no ICM [29]. This may be because blastomeres on the
outside of the embryo (the large majority) have already
been programmed to become trophectoderm cells as early
as the 8-cell stage. Thus, creation of larger sets of identicals
(quadruplets) may be counter productive for creating
monozygotic twins unless cell numbers in resulting blast-
ocysts can be enhanced.

Aggregation of split embryos with other types of blast-
omeres that could potentially increase their cell numbers
and developmental competence without contributing to
term development may provide an alternative approach
to creating monozygotic twin monkeys. Potential types of
blastomeres that could fulfill these criteria include tetra-
ploid, developmentally asynchronous, parthenogenetic
and androgenetic blastomeres. Assuming such blast-
omeres do not contribute to term development, this
would potentially provide a means for creating quadru-
plet sets of embryos having the developmental compe-
tence and cell numbers of embryos split into pairs.
Aggregation of 4-cell stage rhesus embryos split into quad-

ruplet sets with an equal number of blastomeres from 4-
cell stage tetraploid embryos enhanced both their devel-
opmental competence and total cell numbers in resulting
blastocysts to levels similar to those of embryos split into
pairs (Table 1). Although encouraging, the ICM of result-
ing chimeric blastocysts was consistently comprised of
both diploid and tetraploid cells. This was unexpected
based upon earlier studies in diploid/tetraploid mouse
chimeras, in which the tetraploid blastomeres were either
completely excluded from the ICM [37-39] or contributed
specifically to the primitive endoderm layer of the ICM,
persisting only in extraembryonic tissues [37-41] Thus, in
mice, tetraploid blastomeres have a strong bias against
contributing to the ICM when aggregated with normal
diploid blastomeres and, with few exceptions, are clearly
excluded from the embryo proper in developing concepti.
In contrast, tetraploid blastomeres appear to be equally
capable of contributing to the ICM and TE in rhesus mon-
key blastocysts. It is unknown whether tetraploid cells in
the ICM of chimeric monkey blastocysts would be allo-
cated to specific lineages or would be preferentially
selected against during fetal development.

In similar studies of mouse chimeras produced from
aggregates of developmentally asynchronous embryos,
the more advanced blastomeres generally formed either
the ICM [42-46] or the TE [47], but not both, while the
less advanced blastomeres were allocated to the opposite
cell lineage. Similar results were obtained in sheep goat
chimeras derived from developmentally asynchronous
blastomeres [48]. In contrast, when 4-cell stage rhesus
monkey embryos were split into quadruplet sets and
aggregated with equal proportions (four) of developmen-
tally asynchronous blastomeres from 16-cell stage
embryos, resulting blastocysts were derived completely
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from the 16-cell stage blastomeres, with complete exclu-
sion of the 4-cell stage blastomeres [Schramm, unpub-
lished]. Neither the proportion developing into
blastocysts nor the total cell numbers in resulting blasto-
cysts were different from those of 16-cell stage embryos
split into quadruplet sets. Similar results were obtained
following aggregation of developmentally asynchronous
cow embryos in which the larger, less advanced blast-
omeres were excluded at compaction, resulting in blasto-
cyst formation from only the more advanced embryo
[42]. Thus, aggregation of developmentally asynchronous
blastomeres leads to similar results in the cow and rhesus
monkey, which are markedly different from those
obtained in the mouse and sheep. In the present study, it
is possible that aggregation of different proportions of
developmentally asynchronous blastomeres may have led
to different results, as previously shown for mouse chime-
ras derived from aggregation of single 8-cell stage blast-
omeres with 2-cell stage embryos [47]. However,
preliminary studies in rhesus monkeys indicated that
aggregation of a single 4-cell stage blastomere with two 8-
cell stage blastomeres resulted in blastocysts having chi-
meric ICMs (Schramm, unpublished). Therefore, due to
exclusion of the less advanced blastomeres, aggregation of
developmentally asynchronous blastomeres is unlikely to
be a viable strategy for creating monozygotic twin rhesus
monkeys, although it is possible that aggregation of differ-
ent proportions of developmentally asynchronous blast-
omeres may lead to different results.

Conclusions

Recent efforts to create monozygotic twins in thesus mon-
keys have been challenging due to suboptimal pregnancy
rates following embryo transfer and the inherent difficul-
ties in supporting twin gestations in this species. Future
efforts involving transfer of quadruplet sets of diploid/
tetraploid chimeras may prove to be an efficient means for
creating monozygotic twins, assuming preferential selec-
tion against tetraploid cells in the developing conceptus.
Similarly, creation of chimeras from aggregation of nor-
mal diploid blastomeres with blastomeres from androge-
netic [49,50] or nuclear transfer derived [42] embryos
might be a viable alternative for creating quadruplet sets
of developmentally competent identical embryos.
Although these unique strategies, or others, may enhance
the number of developmentally competent identical
embryos available for transfer, improvements in assisted
reproductive technologies, including embryo cryopreser-
vation, synchronization of menstrual cycles, and methods
for enhancing implantation rates, will be essential in
future efforts to produce genetically identical rhesus
monkeys.
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