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Abstract

Background: A short-term increase in food intake and specifically dietary energy can stimulate folliculogenesis and
increase ovulation rate in ewes. The mechanism appears to involve the insulin-glucose metabolic system and its
interaction with FSH signalling pathways in the granulosa cells of ovarian follicles. This experiment was designed
to investigate the interaction between these two systems in the granulosa cells of ovarian follicles.

Methods: Thirty six lle-de-France ewes were used in this controlled experiment to study the effects of intravenous
glucose on folliculogenesis. Eighteen ewes were infused with glucose (10 mM/h for 72 h) from day 8 of the
oestrous cycle, while the others (controls) received saline. Ovaries were collected when the infusions ended (luteal
phase) or 30 h later and after a luteolytic dose of a PGF,, analogue (follicular phase). Follicles were dissected and
granulosa cells and follicular fluid harvested. The blood concentrations of glucose, insulin, oestradiol and FSH were
monitored over the experiment. The levels of Aromatase P45y and of the phosphorylated and non-phosphorylated
forms of Akt, AMPK and ERK in granulosa cells and the concentration of oestradiol in follicular fluid, were determined.

Results: Glucose increased the circulating concentration of glucose (P < 0.05) and insulin (P < 0.05). It also increased
the total number of follicles >1.0 mm in diameter (P < 0.05) and small (P < 0.05) follicles (>1.0 to 2.0 mm in diameter)
but not medium (>2.0 to 3.5 mm in diameter) or large (>3.5 mm in diameter) follicles. Glucose decreased circulating
oestradiol (P < 0.05) but not that of FSH or progesterone. Glucose reduced aromatase P45, (P < 0.05) and decreased
the phosphorylation of Akt (P < 0.05), ERK (P < 0.05) and AMPK (P < 0.05) in granulosa cells from oestrogenic follicles.
The level of Aromatase P4so was greatest in large oestrogenic follicles and the phosphorylation of Akt (P < 0.05), ERK
(P <0.05) and AMPK (P < 0.05) was lower in small follicles compared to medium and large follicles.

Conclusions: These data suggest that the effect of glucose in small follicles is a direct action of glucose that increases
the number of small follicles while the effect of glucose in oestrogenic follicles is an indirect insulin-mediated action.
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Background

Reproduction is subject to the influence of several factors
related to the animal itself and to its environment. Among
these, nutrition is one of the main factors affecting most
aspects of the reproductive performance of the animal
[1,2]. Lindsay and his colleagues [1,2] recognized that an

* Correspondence: rex.scaramuzzi@orange.fr

"LInstitut National de la Recherche Agronomique, Unité Mixte de Recherche
6175, Physiologie de la Reproduction et des Comportements, Nouzilly 37380,
France

’Department of Comparative Biomedical Sciences, The Royal Veterinary
College, Hawkshead Lane, North Mimms, Hertfordshire AL9 7TA, UK

Full list of author information is available at the end of the article

( BioMed Central

increase in short-term food intake increased the lambing
rate in ewes by stimulating ovulation rate. Three effects of
nutrition on ovulation rate, the "acute”, "dynamic" and
"static" effects, have been described [2,3] although there is
uncertainty over the number of mechanisms involved [3].
The acute effect is an effect of diet associated with weight
change, the static effect is associated with the absolute
level of body weight while the dynamic effect is a short-
term dietary effect not accompanied by a change in weight
[reviewed in: 2, 3].

There have been numerous investigations of the rela-
tionship between diet and ovulation rate in farm animals
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and particularly sheep [2-4] and of the physiological
mechanism(s) responsible for this phenomenon [3,5,6].
The inclusion of energy-dense foods such as lupin grain
[7-13] or corn with soy meal [14] in the diet will
increase both ovulation rate and the number of follicles.
Other forms of nutritional manipulation for example,
the infusion of leptin [15] or glucose [16-18] have been
investigated and shown to increase both the ovulation
rate and the number of follicles. So clearly, there is a link
between nutrition and folliculogenesis. This relationship
could involve effects mediated by the intrafollicular
glucose-insulin system [3,5,6] and other energy sensing
mechanisms such as the AMPK system [6,19]. Although
there is an extensive literature (see references cited
above) describing the effects of dietary energy on follicu-
logenesis and ovulation rate there are relatively few
studies of the intrafollicular mechanisms that are
affected by the energy content of the diet. The level of
Aromatase P45y was reduced in follicles of ewes whose
diet was supplemented with lupin grain [20] or infused
with glucose [18] and in the former study these effects
were associated with alterations in the level of expres-
sion of the insulin receptor substrate (IRSs) proteins and
in the later study, they were associated with alterations
in the levels of Akt and AMPK; and Akt is a phosphoryl-
ation target in the insulin signalling pathway. In addition
the presence of the insulin dependent glucose trans-
porter (GLUT4 or the sugar transport facilitator
[SLC2A-4]) has been confirmed in ovine [21], bovine
[22] and rodent [23] ovarian follicles. Finally, insulin has
been identified as a factor in several malfunctions of the
ovary and its follicles in a number of ovarian pathologies
[24]. These data suggest that insulin signalling to granu-
losa cells is implicated in the effects of dietary energy on
folliculogenesis.

To improve the understanding of the interaction between
folliculogenesis and the metabolic status of ewes we studied
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the effect of intravenous glucose on the insulin-signaling
pathways in granulosa cells of follicles collected from ewes
in either the luteal or follicular phases of the oestrous cycle.
Although several potential metabolic sensors have been
identified, including the IGF system, GH, and leptin [25,26]
we have focused our attention on the insulin-glucose and
AMPK systems. A preliminary report of certain aspects of
this study has been published [27].

Methods

Animals

The experiment was conducted at the INRA laboratory
at Nouzilly in France between August and September
using 36 Ile-de-France ewes. During the experiment the
ewes were housed in group pens until they were fitted
bilaterally with catheters in their jugular veins. Following
catherization the ewes were placed in individual pens
and kept there until the end of the infusion period. Then
they were either ovariectomised immediately (the 2 luteal
phase groups) or returned to group pens where they were
left until ovariectomy 30 h after the end of infusion (the 2
follicular phase groups). During the experiment the ewes
were fed a basal diet of good quality hay at maintenance
levels [28] with ad libitum access to straw roughage and
fresh water. The experiment was carried with local ethical
approval and in accordance with French and European
regulations on the care and welfare of animals in research
and with ethical approval from the Ministry of Agriculture
(N° 006259 and 2012-01-2).

The experimental plan is shown in Figure 1, briefly,
oestrus was synchronised using progestagen sponges
(Chronogest; Intervet/Schering-Plough Animal Health,
Angers, France). Eight days after oestrus one group
(n =18) was infused with glucose at 10 mM/h for 72 h.
A second group was infused with physiological saline at
the same rate (n=18) and acted as controls. At the end
of the infusion ovaries were collected from half the ewes

Experimental plan time line
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Figure 1 The experimental plan. The oestrous cycles of 36 ewes were synchronised using a combination of progestagen sponges and
intramuscular eCG. On day 7 of the cycle following oestrous synchronisation, sampling of jugular venous blood commenced and continued

until the time of ovariectomy. The next day (day 8) intravenous infusions of either saline (n = 18) or glucose (n = 18) commenced and continued
for 72 hours. Ovariectomies were carried out at two times, the first at the end of the infusion period (luteal phase groups) and the second 30 h
later and following the injection of a luteolytic dose on PGF given at the end of the infusion period (follicular phase groups).
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in each treatment group to form the two luteal phase
groups. Luteolysis was induced with 125 pg of an
analogue of PGF,, (Cloprostenol; Intervet/Schering-Plough
Animal Health, Angers, France) in the remaining ewes
whose ovaries were collected 30 h after the end of infusion
to form the two follicular phase groups. The body weights
of the ewes were measured at the start of the infusion and
at the time of ovariectomy.

Blood collection

Two days before the start of the infusions both jugular
veins were fitted with intravenous catheters. One catheter
was used exclusively for infusions and the other exclu-
sively for sampling blood. A sterile, 18% (w/v) solution of
glucose was used and the rate of infusion was adjusted to
deliver glucose at a rate of 10 mM per hour. The controls
were infused with sterile saline at the same rate. The infu-
sions were started on day 8 of the oestrous cycle and were
continued for 72 h until day 11. Samples (5 mL) of jugular
venous blood were collected regularly throughout the
experiment as follow: For the determination of the plasma
concentrations of oestradiol-17(, progesterone and FSH
samples were taken every 6 h from -24 h relative to the
start of infusion until ovariectomy. These samples were
collected into lithium heparin tubes. For glucose and insu-
lin samples were taken 24 hours before the start of the
infusions and then at 0, 3, 9, 24, 48 and 72 hours after the
start of the infusion. These samples were collected into
fluoride/EDTA tubes. The blood samples were centrifuged
at 4°C for 20 minutes at 1,000 g. The plasma was then
decanted and stored at -20°C.

Collection and dissection of ovaries

The animals were ovariectomised under pentothal-induced,
halothane-maintained anaesthesia, by the laboratory veter-
inarian. Within a minute of removal, the ovaries were
placed in ice-cold sterile saline for transport from the
surgery to the laboratory. In the laboratory, the number of
corpora lutea was noted, the ovaries were weighed and all
follicles >1 mm in diameter were dissected out using fine
scissors and fine toothed dissecting forceps. The isolated
follicles were placed in ice-cold phosphate buffered saline
(0.72 M Nap,HPO,42H,0; 028 M Na,H,PO4.2H,0 and
0.155 M NaCl at pH 7.0) in sterile, plastic Petri dishes and
their average diameter measured to the nearest mm (for
details, see below). From this point the follicles were proc-
essed individually as described [29]. Individual follicles
were placed in a sterile plastic mini-Petri dish containing
1 ml of sterile phosphate buffered saline. Each follicle was
then hemisected and the granulosa cell layer was gently
scraped into the phosphate buffered saline using a fine
plastic loop. The follicular shell of mainly theca cells
was placed in a 1.5 mL micro-tube, snap frozen and
stored at -80°C. The phosphate buffered saline containing,
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granulosa cells and follicular fluid was then placed into
another 1.5 mL micro-tube and centrifuged at 4°C and
1,000 X g for 10 min. Following centrifugation, the super-
natant containing diluted follicular fluid was transferred
into a 1.5 mL micro-tube snap frozen and stored at -20°C.
The separated granulosa cell pellet was also snap-frozen
and stored at -80°C.

Measurement and classification of follicles

The diameter of all dissected follicles was measured in
two dimensions at 90°, using a graph paper grid placed
below the Petri dishes that contained the dissected folli-
cles and the average diameter calculated. The follicles
were then grouped into three classes based on their
diameters. These were: small >1.0-2.00 mm; medium >2.0
to 3.5 mm and large >3.5 mm. Follicles were also classi-
fied on the basis of their oestrogenicity. Oestrogenic
follicles were defined as those with a concentration of
oestradiol in follicular fluid >100 ng/mL, and non-
oestrogenic follicles as those with <100 ng/mL. These
definitions allow us to identify the following categories
of follicles:

(i) Large (diameter >3.5 mm) oestrogenic follicles

(ii) Large non-oestrogenic follicles

(iii) Medium (diameter >2.0 to 3.5 mm) oestrogenic
follicles

(iv) Medium non-oestrogenic follicles

(v) Small (diameter >1.0 to 2.0 mm) oestrogenic
follicles.

(vi) Small non-oestrogenic follicles.

The volume of follicular fluid volume was calculated
as described previously [30].

Glucose and hormone assays

The jugular venous blood samples collected in fluoride
EDTA tubes were analysed for glucose and insulin and
those collected in heparin-lithium tubes were analysed
for progesterone, oestradiol-17p and FSH. Samples of
follicular fluid were assayed for oestradiol-17f. All assays
were carried out in duplicate.

Glucose

The concentration of glucose in plasma was determined by
colourimetry using the glucose oxidase method (Glucose
Assay Kit [cat # G3660] and O-Dianisidine [cat # D2679]
Sigma Aldrich Inc., Saint-Quentin Fallavier, France). The
assay method followed the instructions provided by the
manufacturer of the kit. Plasma samples were diluted in
phosphate buffered saline (0.05 M, pH 7.6) as required,
to obtain concentrations that fell within the range of
the standard curve (2 to 8 mg of glucose per dL). The
sensitivity of the assay was 2 mg/dL and the inter-assay
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and intra-assay coefficients of variation were 8% and
3% respectively.

Insulin

The concentration of insulin in plasma was measured
using a heterologous radioimmunoassay developed in our
laboratory [31]. The antiserum was rabbit anti-porcine
insulin, the standards were ovine insulin and the second
antibody was a goat anti-rabbit IgG (all reagents from
Sigma Aldrich Inc., Saint-Quentin Fallavier, France). The
sensitivity of the assay was 0.05 ng/mL and the inter-assay
and intra-assay coefficients of variation were 10% and 15%
respectively. The cross reactivity of the antiserum with
ovine insulin was 100% relative to the homologous insulin
standard.

Oestradiol-17f3

The concentration of oestradiol-17f in plasma was deter-
mined by the radioimmunoassay of solvent extracted
plasma [32] using a commercial oestradiol assay kit (Estra-
diol-2 kit P2210; Diasorin, SA, Antony, France). The limit
of detection of oestradiol was 0.39 pg/mL and the inter-
and intra-assay coefficients of variation were 20.5% and
6.0% respectively. The concentrations of oestradiol-17( in
samples of follicular fluid were determined using the same
commercial oestradiol radioimmunoassay. Samples of fol-
licular fluid were first diluted 1:10 or 1:100 in phosphate
buffered saline (0.05 M, pH 7.6) and assayed without
solvent extraction. The concentration of oestradiol-17f
in follicular fluid was derived using the theoretical vol-
ume of follicular fluid calculated as described [30], and
corrected for dilution.

Follicle stimulating hormone (FSH)

The concentration of FSH in plasma was analysed using
an ELISA [33]. The limit detection of FSH was 0.1 ng/mL
the inter- and intra-assay coefficients of variation were
16.0% and 12.2% respectively.

Progesterone

The concentration of progesterone in plasma was deter-
mined using an ELISA [34]. The limit of detection of
progesterone was 0.25 ng/mL the inter- and intra-assay
coefficients of variation were 20.5% and 14.3% respectively.

Antibodies for Western blotting

All antibodies were obtained from commercial sources
and their details are presented in Table 1. The analysis
of Akt used a rabbit polyclonal antibody to Akt (Cell
Signalling Technology, Beverly, Ma., USA) and a rabbit
polyclonal antibody to phospho-Akt1/2/3 (Ser473; Santa
Cruz Biotechnology Inc., Heidelberg, Germany). The
analysis of AMPKal/2 used a rabbit polyclonal antibody
to AMPK «a1/2 (Cell Signalling Technology, Beverly Ma.,
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USA) and a rabbit polyclonal antibody to phospho-AMPK
(thr172; Cell Signalling Technology, Beverly, Ma., USA).
The analysis of ERK2 used a polyclonal antibody to ERK2
(Cell Signalling Technology, Beverly, Ma.,, USA) and a
polyclonal antibody to phospho-ERK1/2 (Thr202/Tyr204;
Cell Signalling Technology, Beverly, Ma., USA). A mouse
monoclonal antibody was used to analyse Aromatase Pys
(ABD Serotec, Disseldorf, Germany) and a mouse mono-
clonal antibody to vinculin was used as an internal stand-
ard (Sigma Aldrich Inc., Saint-Quentin Fallavier, France).
All antibodies were used at a dilution of 1/1000 dilution.
The secondary antibodies that were used depending on
the species used to generate the primary antibody were
either a goat anti-mouse IgG (Laboratories Eurobio,
Courtaboeuf, France) or a goat anti-rabbit IgG (Labora-
tories Eurobio, Courtaboeuf, France).

Western blotting
Western blotting was used to determine the levels of
Aromatase P50 protein relative to vinculin (an internal
standard) in granulosa cell lysates from individual follicles
greater than 2 mm in diameter [18], Aromatase Py5 was
not determined in small follicles. The levels of phosphory-
lated Akt and total Akt [18] were determined in granulosa
cell lysates from individual follicles greater than 2 mm in
diameter. The granulosa cells harvested from follicles
between 1 and 2 mm in diameter were pooled within
sheep. Similarly, the levels of phosphorylated AMPK and
total AMPK [18] and the levels of phosphorylated ERK1/2
and total ERK2 were determined in granulosa cell lysates
from individual follicles greater than 2 mm in diameter
and in granulosa cells pooled within ewes from follicles
between 1 and 2 mm in diameter. Lysates of granulosa
cells were prepared as described [18] and then analysed
by western blotting. The concentration of protein in
the supernatants was determined by colourimetry using
the BCA protein assay reagent (Interchim, Montlugon
France). Aliquots of lysate containing 30 pg of protein
were re-suspended in Laemmli buffer (glycerol 50%,
SDS 10%, Hepes 1 M-pH7.6, beta-Mercaptoethanol 25%,
bromophenol blue) and then analysed by western blotting.
Granulosa cell lysates were subjected to electrophoresis
on 10% (v/v) SDS-polyacrylamide gels for 2.5 h at 80 V, in
the running buffer (H,0,, 50 mM Tris Base, 400 mM
Glycine, 2% EDTA 0.1 M, 1% SDS 10%). The proteins
were then transferred onto nitrocellulose membranes for
1.5 h at 80 V, in transfer buffer (H,0,, 20 mM Tris Base,
200 mM Glycine, 20% Methanol, 0.1% SDS 10%). After
washing in TBS Tween (H0,, 2 mM Tris Base, 15 mM
NaCl, 0.1% Tween 20, pH 7.4), the membranes were
incubated for 1 h at room temperature with TBS Tween
containing 5% dry milk powder to saturate non-specific
sites. Subsequently, membranes were incubated overnight
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Table 1 Details of the primary and secondary antibodies used for western immuno-blotting in this experiment

Antibody  Type of antibody Species Source Final dilution

Primary Anti-cytochrome pys0 Aromatase pgso  Mouse monoclonal  ABD Serotec, Cergy Pontoise, France 1:200
Anti-Akt Rabbit polyclonal Cell Signalling (OZYME), Saint Quentin Yvelines, France 1:1,000
Anti-phospho-Akt1/2/3 (Ser473)-R Rabbit polyclonal Santa Cruz Biotechnology, Tebu-Bio, Le Perray-en_ Yvelines 1:1,000
Anti-AMPK Rabbit polyclonal Cell Signalling (OZYME), Saint Quentin Yvelines, France 1/1,000
Anti-phospho-AMPK Thr 172 Rabbit polyclonal Cell Signalling (OZYME), Saint Quentin Yvelines, France 1:1,000
Anti-Erk2 (C-14) Rabbit polyclonal Cell Signalling (OZYME), Saint Quentin Yvelines, France 1:1,000
Anti-phospho-ERK1/2 Rabbit polyclonal Cell Signalling (OZYME), Saint Quentin Yvelines, France 1/1,000
Anti-vinculin Mouse monoclonal  Sigma Aldrich, Saint-Quentin Fallavier, France 1:1,000

Secondary Anti-Mouse IgG Goat polyclonal Laboratoires Eurobio, Courtaboeuf, France 1:10,000
Anti-Rabbit I1gG Goat polyclonal Laboratoires Eurobio, Courtaboeuf, France 1:10,000

at 4°C with primary antibodies in TBS Tween containing
5% dry milk powder.

After washing in TBS Tween, the membranes were
incubated with a horseradish peroxidase (HRP)-conju-
gated anti-rabbit IgG (Final dilution 1:10 000; Laboratories
Eurobio, Courtaboeuf, France) or horseradish peroxid-
ase (HRP)-conjugated anti-mouse IgG (Final dilution
1:10,000; Laboratories Eurobio, Courtaboeuf, France)
for 2 h at room temperature in TBS Tween containing
5% dry milk powder. After washing in TBS Tween, the
signal was detected by enhanced chemiluminescence
(PerkinElmer, Life and Analytical Sciences, Courtaboeuf,
France). The membranes were exposed on GE Health-
care film (PerkinElmer, Life and Analytical Sciences,
Courtaboeuf, France), and then developed (Kodak
AL4) and fixed (Kodak LX24) and dried. The films
were analysed and the blots quantified using Scion-
Image (4.0.3.2 version, Scion Corporation, Frederick,
Maryland, USA).

Statistical analysis

Statistical analyses were performed using specialised
software for statistical analysis (SAS Statview version 5.0).
Data on hormone concentrations in plasma and body
weight were analysed by repeated measures ANOVA with
time as the repeated measure. Where it was appropriate,
post-hoc paired comparisons within time were carried out
using the Bonferroni test. Other data were analysed by
univariate ANOVA apart from the data on follicle number
which were analysed using the Chi-squared test. The data
are presented as the mean+sem and differences are
regarded as significant when P < 0.05.

Results

In a ewe from a glucose-infused group the catheter
failed and the infusion was interrupted. This animal was
excluded from the experiment.

Body weight

The average weights in the group infused with glucose
at the start of the infusion and at ovariectomy were
47.0 £0.72 and 45.6 + 0.78 kg, respectively. The average
weights in the control group at the start of infusion,
and at ovariectomy were 48.0 + 0.73 and 46.0 + 0.84 kg,
respectively. There were no significant differences in
the average weights within or between groups.

Ovarian morphology

The ewes in the two luteal phase groups had 3.11 + 0.80
functional corpora lutea (CLs) in the glucose-infused
group and 2.89 + 0.58 CLs in the control group, confirm-
ing that the ewes were as expected, in the luteal phase of
the oestrous cycle. The numbers of follicles dissected
from the ovaries of control and glucose infused ewes
are shown in Table 1. There were significantly more
small follicles in the glucose-infused groups compared to
controls at the same stage of the oestrous cycle (Table 2)
and this is reflected also in the total number of follicles.
There were no differences in follicle numbers between
stages of the oestrous cycle and the number of medium
and large follicles was not different between glucose-
infused and control ewes (Table 2).

Plasma concentrations of metabolites

Glucose

The concentrations of glucose in plasma are shown in
Figure 2, overall there was a significant effect (P =0.001)
of treatment on the concentration of glucose. The plasma
concentration of glucose was significantly elevated by 3 h
(P <0.01) after the start of the infusion of glucose and
remained elevated at 9 h (P <0.01), at 24 h (P <0.01)
and at 48 h (P <0.05) but, it had decreased to control
concentrations at 72 h. The concentration of plasma
glucose in control ewes did not vary significantly during
the experiment (Figure 2).
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Table 2 Corpora lutea (CLs) and follicles

Phase Treatment CLs Follicles
Small Medium Large Total
Glucose (n=17) Follicular (n=8) 24+032 260+192° 79+0.78 204053 369+3.57°
Luteal (n=9) 3.1+£08 27.2 +365° 108+ 1.52 1.9+£042 39.9+443°
Saline (n=18) Follicular (n=9) 1.8+032 162 +099° 69+1.85 2.1+048 255+ 1.49°
Luteal (n=9) 294058 131 +£167° 101 +£1.29 194045 251 +278°

The mean + SEM, number of corpora lutea (CLs) and follicles classified by diameter as small (1 to <2 mm) medium (2 to <3.5 mm) and large (>3.5 mm) of ewes
during the follicular and luteal phases of the oestrous cycle and following a 72 h infusion of saline or glucose (10 mM/h). Within columns, values with different
superscripts (a, b) are significantly different at P < 0.05.

PG & eCG
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120 | *

100

80
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40 |

20 |

Insulin (ng/mL)
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0.00 -
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T
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Figure 2 The mean * sem, concentrations of glucose (upper graph) and insulin (lower graph) in jugular venous plasma of ewes infused

with either saline (n = 18; dashed line with open circles) or with 10 mM/h of glucose (n=17; solid lines with closed circles) for 72 h
during the late luteal phase of the oestrous cycle. Within times, an asterisk (¥) indicates a significant difference (P < 0.05).
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Insulin

The plasma concentrations of insulin are shown in
Figure 2, overall there was a significant effect (P =0.02)
of treatment on the concentration of insulin. Paired com-
parisons revealed that the concentration of insulin was
significantly elevated by 9 h (P <0.05) after the start of
the infusion of glucose and remained elevated at 24 h
(P <0.01) and at 48 h (P <0.05) but, it had decreased to
control concentrations at 72 h. The concentration of
insulin in control ewes did not vary significantly during
the experiment (Figure 2).

Plasma concentrations of reproductive hormones
Oestradiol-17(3

The plasma concentrations of oestradiol-17 are shown in
Figure 3. The pre-treatment concentrations of plasma
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oestradiol were not significantly different between the
glucose and control groups. However, the plasma con-
centration of oestradiol was reduced in the glucose-
infused groups compared to the control group (P <0.05)
during the infusion period between 6 and 66 h after the
start of the infusions. There was also a significant effect of
time (P <0.05) following luteolysis; the plasma concentra-
tion of oestradiol increased significantly in both groups
and by 12 h after PG the glucose-infused group was no
longer lower than the control group (Figure 3).

Follicle stimulating hormone (FSH)

The concentration of FSH in plasma (0.72 + 0.040 ng/mL)
from glucose-infused ewes was not different from that in
control ewes (0.67 £ 0.036 ng/mL). There was a significant
effect of time and the concentration of FSH fell

Oestradiol (pg/mL)

PG & eCG

l

254

Infusion period

2.0 I

1.5

1.0

0.5

0.0~

FSH (ng/mL)
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0.00 - r— 1T T 1 UL
-24 -12 0 12 24

difference (P < 0.05).

Time relative to start of infusion (h)

Figure 3 The mean * sem, concentrations of oestradiol-17f3 (upper graph) and FSH (lower graph) in jugular venous plasma of ewes infused
with either saline (n =18 and n =9 after 72 h; dashed line with open circles) or with 10 mM/h of glucose (n=17 and n =8 after 72 h;
solid lines with closed circles) for 72 h during the late luteal phase of the oestrous cycle. Within times, an asterisk (*) indicates a significant

36 48 60 72 84 96 108
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significantly following the induction of luteolysis (Figure 3)
but, the interaction between time and treatment was not
significant.

Progesterone

The profiles of progesterone in plasma (all concentrations
above 2 ng/mL prior to the injection of PG and falling to
below 1 ng/mL by 30 h after PG) confirmed that all ewes
were undergoing normal oestrous cycles and that they
were at the correct stage of the oestrous cycle at the time
the ovaries were collected.

Concentrations of oestradiol in follicular fluid

The concentrations of oestradiol in follicular fluid are
shown in Figure 4. The concentration of oestradiol in
oestrogenic follicles was significantly higher compared
to non-oestrogenic follicles from all three follicle classes
(P <0.05) and in the follicular phase compared to the lu-
teal phase of the oestrous cycle (P < 0.05; Figure 4). The
concentration of oestradiol did not differ significantly
among follicle classes in non-oestrogenic follicles but, in
oestrogenic follicles the concentration of oestradiol was
higher in medium follicles compared to small follicles
(P<0.001) and higher in large follicles compared to
medium (P < 0.001) and small follicles (P < 0.001; Figure 4).
Finally the infusion of glucose reduced the concentration
of oestradiol in large (P <0.001) oestrogenic follicles
collected during the follicular phase of the oestrous cycle
and in both medium (P<0.001) and large (P <0.001)
oestrogenic follicles collected in the luteal phase of the
oestrous cycle (Figure 4). Glucose had no effect in non-
oestrogenic follicles (Figure 4).
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Aromatase Pysq

The levels of Aromatase P45y protein in granulosa cells
are shown in Figure 5. In oestrogenic follicles Aromatase
P450 was significantly (P < 0.05) higher in the follicular
phase compared to the luteal phase in both medium and
large follicles. The levels of Aromatase P,s5, were sig-
nificantly (P <0.05) lower in non-oestrogenic follicles
compared to oestrogenic follicles regardless of their size
(Figure 5). The infusion of glucose significantly (P < 0.05)
reduced the level of Aromatase P50 in oestrogenic
follicles of all sizes but, it had no effect on the level of
Aromatase P50 in non-oestrogenic follicles (Figure 5).
In non-oestrogenic follicles Aromatase Pys50 did not vary
significantly with either the stage of the oestrous cycle or
the diameter of the follicle.

Mediators of Insulin-signalling (Akt, ERK and AMPK)

The ratios of phosphorylated to non-phosphorylated forms
of Akt (Figure 6), ERK (Figure 7) and AMPK (Figure 8)
were all lower (all at P <0.05) in non-oestrogenic follicles
compared to oestrogenic follicles while in non-oestrogenic
follicles the ratios for all three were unaffected by the
diameter of the follicle, the stage of the oestrous cycle or
the infusion of glucose (Figures 6, 7 and 8). However, in
oestrogenic follicles the infusion of glucose reduced the
ratio of phosphorylated non-phosphorylated forms of all
three compared to control ewes in medium and large
follicles from the luteal phase (all at P <0.05) and in all
three follicle classes in follicles from the follicular phase
(P <0.05; Figures 6, 7 and 8). Similarly, the ratios for all
three were not significantly different in small and medium
follicles and they were significantly higher in large follicles
(all at P <0.05) compared to small and medium follicles

Oestradiol
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1.0
0.8+
0.6
0.4
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0.0 ——==x [ iy | E-
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Oestradiol
(Mg/mL) _—

Follicular phase
4.0 | a

3.0
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0.0 === e — i

Small Medium Large

Small Medium Large
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Figure 4 The mean + sem, concentrations of oestradiol-17p in follicular fluid from small (<2.0 mm), medium (2.0 to 3.5 mm) and large
(>3.5 mm) diameter oestrogenic (oestradiol >100 ng/mL) and non-oestrogenic (oestradiol <100 ng/mL) follicles from ewes during the
luteal and follicular phases of the oestrous cycle infused with saline (light grey columns) or with 10 mM/h of glucose (dark grey columns)
for 72 h during the late luteal phase of the oestrous cycle. Follicle classes with different letters (x, y and z) differ significantly at P < 0.05. Note
there is a difference in scale between the luteal and follicular phase diagrams.
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(<2.0 mm), medium (2.0 to 3.5 mm) and large (>3.5 mm) diameter
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follicle types or among follicle diameters. grey columns) or with 10 mM/h of glucose (dark grey columns) for
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. R with different letters (a and b) differ significantly at P < 0.05.
Discussion

The results of this experiment show that in cyclic ewes
during the breeding season, the intravenous infusion of
glucose increased the total number of follicles present in
their ovaries [17]. These findings agree with those obtained
when using anoestrous ewes treated with eCG [18]. Fur-
thermore the present experiment also shows that the effect
of intravenous glucose on the follicle population of the
ovary is present in both the luteal and follicular phases of
the oestrous cycle. The concentrations of glucose achieved
by the infusions peaked at 120 mg/dL or about 30% above
the upper limit of the normal reference range for sheep
(45-80 mg/dL). Additionally, this effect of glucose was also
associated with a reduction in the circulating concentra-
tions of oestradiol (Figure 3) but without any associated

change in the concentrations of circulating FSH (Figure 3)
and a reduction in the level of ovarian Aromatase P,5 in
oestrogenic follicles (Figure 5). Furthermore, the effect of
glucose was accompanied by an increase in the circulating
concentration of insulin (Figure 2) and finally it was
associated with changes in the insulin signalling and energy
sensing mechanisms (Figures 6, 7 and 8) in granulosa cells.
Very similar findings have been reported for the effects
of diets that increase the supply of energy. Feeding dietary
supplements such as lupin grain [13,17,20,35,36], a mix-
ture of soya meal and maize [14], or steamed corn flakes
[37] or administering by gavage, an energy supplement in
the form of a mixture of glycerol and propylene glycol



Scaramuzzi et al. Reproductive Biology and Endocrinology 2015, 13:6
http://www.rbej.com/content/13/1/6

Page 10 of 14

s Y
ratio p-ERK to ERK
71 Small
1.2 -
0.8 - a
B b
04 i
wi ]l EH
1.2 -
1 Medium
J a
0.8 a =
] b b
0.4 - i
Lwm [l L
_ a
1.2 q Large %
] a
0.8 ] b
J b
0.4 -
Lm [l L
Luteal Follicular Luteal Follicular
Non-oestrogenic Oestrogenic
Figure 7 The mean * sem, ratios of phosphorylated to
non-phosphorylated ERK in granulosa cell lysates from small
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[38,39] to ewes all increased the number of follicles in
their ovaries. In all these studies the nutritional treatment
increased the concentrations of glucose and insulin in
jugular venous plasma and these changes were associated
with an increased number of follicles. Some of these stud-
ies also reported reduced concentrations of oestradiol in
jugular plasma [20,35], reduced levels of Aromatase Pys5
in granulosa cell lysates [13,20] and lower concentrations
of oestradiol in follicular fluid from oestrogenic follicles
[13,20].

There is some controversy over the effects of either glu-
cose or glucogenic diets on the circulating concentrations
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Figure 8 The mean + sem, ratios of phosphorylated to
non-phosphorylated AMPK in granulosa cell lysates from small
(<2.0 mm), medium (2.0 to 3.5 mm) and large (>3.5 mm) diameter
oestrogenic (oestradiol >100 ng/mL) and non-oestrogenic
(oestradiol <100 ng/mL) follicles from ewes during the luteal and
follicular phases of the oestrous cycle infused with saline (light
grey columns) or with 10 mM/h of glucose (dark grey columns) for
72 h during the late luteal phase of the oestrous cycle. Columns
with different letters (a and b) differ significantly at P < 0.05.

of oestradiol. We have reported decreased circulating
concentrations of oestradiol following the infusion of
glucose [18] or the feeding of a lupin grain supplement
[20] and other authors have reported similar findings
[35]. However other studies from our group found that
feeding lupin grain [13] had no effect on oestradiol and
other authors have also found no effect of glucogenic
diets on the concentrations of oestradiol in jugular venous
blood [14]. Using a different experimental model, these
authors also reported that a supplement of lupin grain
increased oestradiol concentrations and reduced those of
FSH [36]. The main reason for these discrepancies is most
probably because sheep have particularly low concen-
trations of oestradiol [40] and the oestradiol assays
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employed are being used at the very limits of their
technical capability. The secretion rate of oestradiol was
reduced by feeding a lupin grain supplement to ewes with
ovarian auto-transplants [3] and in other experiments the
concentration of oestradiol in the follicular fluid was
reduced by feeding a supplement of lupin grain [13,20] or
a high energy diet [41] and in this experiment the infusion
of glucose reduced the concentration of oestradiol in
the follicular fluid of oestrogenic follicles (Figure 4). Fur-
thermore these treatments were associated with reduced
levels of Aromatase P45 in granulosa cell lysates from
oestrogenic follicles [13,18,20,42]. So on balance we con-
clude tentatively, that it is very likely that both intravenous
glucose and glucogenic diets can reduce the secretion of
follicular oestradiol from oestrogenic follicles.

The effect of glucose on ovarian follicles appears to be
dependent on the stage of development of the follicles.
In the population of small follicles the effect of glucose
was to stimulate their growth a conclusion that can be
inferred from the increased number of small follicles in
glucose-infused ewes (Table 2). Furthermore in small
non-oestrogenic follicles this effect was not associated
with any detectable change in the level of phosphorylated
Akt, ERK1/2 and AMPK (Figures 6, 7 and 8) suggesting
that this effect of glucose was not related to altered activ-
ity of insulin-signalling pathways in granulosa cells. This
leads us to conclude that it is was possibly a direct effect
of an increased supply of metabolic fuel (glucose) to the
ovary. By contrast, in medium and large follicles glucose
had little effect on the number of follicles (Table 2) but,
in medium and large oestrogenic follicles it did have
substantial effects on their physiological function through
an inhibition of the level of aromatase P4s50 (Figure 5) and
a reduction in the concentration of oestradiol in follicular
fluid (Figure 4). These actions were associated with changes
in insulin signalling pathways and so these follicles are
presumed to be responsive to both insulin and glucose and
that the effect of glucose is insulin-mediated [43].

Extrapolating further, these data indicate that oestro-
genic follicles are insulin-responsive [43] and that
non-oestrogenic follicles are not. The population of
non-oestrogenic follicles is a mixed population consisting
of a sub-population of undifferentiated, small growing
follicles and a sub-population of medium and large atretic
follicles neither of which are insulin-responsive. Our find-
ings suggest that glucose acts directly in growing follicles
to stimulate growth leading to greater numbers of small
follicles while in oestrogenic follicles which are physiolo-
gically functional but non-growing, glucose acts indirectly
through an insulin-mediated mechanism to inhibit the
synthesis and secretion of oestradiol [43].

The circulating concentration of IGF-I was not deter-
mined in this experiment. However, it was in our earlier
experiment [18] where glucose increased the jugular
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venous concentrations of IGF-1. Despite the fact that IGF-
I is a potent stimulator of both follicle growth [29] and
oestradiol secretion [29,44] we consider it unlikely that
the effects of glucose in the follicle, in this experiment
were mediated by IGF-I. IGF-I is a potent growth factor
controlled by hepatic feedback systems that are inde-
pendent of ovarian follicles [45]. Consequently there are
intra-ovartian mechanisms that regulate the activity of
IGF-I [46,47] to protect the follicle from the potentially
harmful effects of high concentrations of IGF-1. None-the-
less it is possible that the insulin-independent effects of
glucose on small follicles (Table 2) are an effect of IGF-1.
Interestingly, glucose reduced circulating (Figure 3) and
intrafollicular (Figure 4) concentrations of oestradiol sug-
gesting that the intra-follicular bio-activity of IGF-1 in
oestrogenic follicles is suppressed.

The expected effect of reduced secretion of oestradiol
(Figure 3) would be an increase in circulating FSH. How
then can we explain the absence of the expected compen-
satory increase in FSH? Published data on the effects of
glucogenic diets on the plasma concentrations of FSH
presents a mixed picture. Some authors have reported
increased concentrations of FSH and others have reported
no change. It has been suggested that the reasons for these
differences are technical and associated with the assays
employed to measure ovine FSH [45] or that they reflect
the dynamic nature of the negative relationship between
FSH and the follicle [3]. However, it is also possible that
the variation simply indicates the presence of uncontrolled
and unidentified physiological differences among animals
leading to unconscious bias in randomisation procedures.
In an attempt to control this variability, Vinoles and her
colleagues [36] used a first wave model to synchronise
follicles waves and thus theoretically, reduce between ewe
variability in the follicle population. Their results showed
that supplementation with a glucogenic diet increased
concentrations of oestradiol and reduced those of FSH in
jugular plasma. However, the control of FSH by negative
feedback from the ovary has two hormonal components
namely oestradiol and inhibin and until the effects of
glucogenic diets on the secretion of ovarian inhibin have
been described a complete understanding of the effects of
glucogenic diets on FSH will not be possible. Regrettably,
at present there in no satisfactory technique available for
measuring the concentration of inhibin in jugular venous
plasma from sheep.

It is worth noting that the population of small growing
follicles is an important source of inhibin [48]. Because
glucogenic diets increase their number then theoretically,
these diets should also increase the total secretion of
follicular inhibin and the concentration of inhibin in the
peripheral circulation. We can speculate that the resulting
increase in inhibin negative feedback on FSH may thus
compensate for any reduced oestradiol feedback and may
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explain why in some studies oestradiol decreased but FSH
did not increase. We suggest that variability of the FSH
responses to glucogenic treatments may reflect subtle
changes in the balance of the effects of glucogenic diets
on small growing (i.e. inhibin secreting) and large oestro-
genic (i.e. oestradiol secreting) follicles.

The follicle has a functional insulin-glucose system [5]
and the level of activity in the pathway can be estimated
from the ratio of phosphorylated to non-phosphorylated
forms of the various protein kinases in the pathway. Some
of the kinases activated by insulin, although not exclu-
sively, including Akt, ERK and AMPK have been
detected in ovarian follicles from ewes [18,49-52] and in
this experiment the phosphorylation ratios of all three
of these were altered by the infusion of glucose. The
Irish group [49-51] have shown that both Akt and ERK
are implicated in the mechanism of follicle selection
and this study confirms their findings [18] showing that
intravenous glucose decreased the level of phosphoryl-
ation of Akt and AMPK and furthermore, shows for the
first time that glucose reduced the level of phosphoryl-
ation of ERK. How do these effects relate to the mechan-
ism through which a glucogenic diet can increase
ovulation rate? Ovulation rate in sheep is ultimately deter-
mined by the number of gonadotrophin-dependent, ovula-
tory follicles present at the time of the LH surge. The
reduction in the secretion of oestradiol by the ovulatory
follicle suggests that the effect of glucose is to impair
FSH-stimulated synthesis of oestradiol, the reduced levels
of Aromatase P45, are consistent with such an action,
and reduce its inhibitory influence (or dominance) on
subordinate follicles in the cohort thus allowing for the
emergence of additional ovulatory follicles. Potential
mechanisms probably involve “cross-talk” [53] between the
insulin signalling and FSH signalling pathways in granulosa
and theca cells of the ovulatory follicle [5]. However, the
details of how and where these signalling pathways interact
are topics for future research.

Conclusions

These results show that an intravenous glucose that main-
tains the concentration of blood glucose slightly above the
upper end of the normal reference range increased the
number of small follicles and altered the function of
follicular granulosa cells in large oestrogenic follicles but
not in small follicles or non-oestrogenic follicles of any
size. The glucose reduced the levels of Aromatase Pys54 in
large oestrogenic follicles and this was reflected in a
reduced blood concentration of oestradiol. These reduced
levels of Aromatase P,5, were associated with reduced
levels of phosphorylated Akt, ERK and AMPK in large fol-
licles. However, glucose did not affect the phosphorylation
state of the energy sensor, AMPK and mediators of insulin
action (Akt, ERK) in small follicles. These data suggest
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that the effect of glucose in small follicles is a direct action
of glucose that increases the number of small follicles
while the effect of glucose in large, oestrogenic follicles
is an indirect insulin-mediated action that inhibits their
capacity to secrete oestradiol.
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