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Post-weaning diet determines metabolic risk in
mice exposed to overnutrition in early life
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Abstract

Background: Maternal overnutrition during pregnancy is associated with an increased risk of obesity and
cardiometabolic disease in the offspring; a phenomenon attributed to ‘developmental programming’. The post-weaning
development of obesity may associate with exacerbation of the programmed metabolic phenotype. In mice, we have
previously shown that exposure to maternal overnutrition causes increased weight gain in offspring before weaning, but
exerts no persistent effects on weight or glucose tolerance in adulthood. In order to determine whether post-weaning
exposure to a cafeteria diet might lead to an exacerbation of programmed effects, offspring born and raised by mothers
on control (CON) or cafeteria (DIO) diets were transferred onto either CON or DIO diets at weaning.

Findings: Post-weaning DIO caused the development of obesity, with hyperglycaemia and hyperinsulinaemia in males;
and obesity with hyperinsulinaemia in females and with increased cholesterol levels in both sexes. Exposure to maternal
overnutrition during pregnancy and lactation caused only subtle additional effects on offspring phenotype.

Conclusions: These results suggest that post-weaning exposure to a high-fat high-sugar diet has a more profound effect
on offspring weight gain and glucose tolerance than exposure to maternal overnutrition. These data emphasise the
importance of optimising early life nutrition in offspring of both obese and lean mothers.
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Findings

Background

Human and animal studies have shown that the environ-
ment in early life can increase the risk of later metabolic
disease [1]. There is increasing interest in the role of ma-
ternal obesity in the ‘programming’ of offspring disease
risk [2] and recent studies have shown that maternal
obesity and gestational weight gain are independently
associated with offspring cardiometabolic risk and with
all-cause mortality [3,4]. This is of substantial import-
ance given the increasing prevalence of obesity world-
wide, including amongst women of childbearing age [5].
In order to understand the mechanisms by which expos-
ure to maternal obesity leads to programming of off-
spring phenotype, animal models have been developed,
many of which recapitulate the findings in human studies,
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showing effects on offspring adiposity, glucose-insulin
homeostasis, blood pressure and appetite [6-8].

Using a mouse model, we recently reported remark-
ably few effects of maternal overnutrition on body weight
and metabolism in the directly exposed (F1) offspring [9].
Despite this, there were effects on birthweight and me-
tabolism in a second generation, suggesting that there
were persistent effects in F1 offspring leading to the
transmission of effects [9]. Since in humans, postnatal
obesity appears to be an important determinant of meta-
bolic disease [10], and post-weaning exposure to a high-
fat diet is associated with amplification of effects in some
animal models [8], we hypothesised that post-weaning
exposure to a cafeteria diet would result in amplification
of the phenotype in both male and female F1 offspring of
overnourished mothers.

Methods

Animal studies were conducted as previously reported
[9] under approval by the UK Home Office, under the
Animals (Scientific Procedures) Act. The experiments
were set up as previously described, using a new cohort
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of mice. From 5 weeks, female C57BL/6 mice were
allowed free access to cafeteria (DIO: 58 kcal% fat,
25.5 kcal% carbohydrate as sucrose) or matched control
diets (Con: 10.5 kcal% fat and 73.1 kcal% carbohydrate as
corn-starch) (Diets D12331 and D12328, Research Diets,
New Brunswick, USA). At 17 weeks, females were time-
mated with chow-fed C57BL/6 males (RMI 801002,
Special Diets Services, Witham, UK). Females remained
on experimental diets through pregnancy and lactation.
At postnatal day 1, litters were weighed and reduced
to five pups; animals remained with their biological
mothers until weaning at 3 weeks. Groups of F1 male
and female pups were selected randomly from each lit-
ter and weaned onto cafeteria (D12331) or control diets
(D12328). This gave four groups of F1 offspring (n=7-8/
group): 1) offspring of Con mothers weaned onto
control diet (CON/CON) 2) offspring of Con mothers
weaned onto cafeteria diet (CON/DIO) 3) offspring of
DIO mothers weaned onto control diet (DIO/CON) and
4) offspring of DIO mothers weaned onto cafeteria diet
(DIO/DIO).

Intraperitoneal glucose tolerance testing (GTT) and
lipid measurements were performed at 3 and 6 months
following a 6-hour fast. A fasting tail blood sample was
taken immediately prior to glucose injection after which
mice received an intraperitoneal injection of glucose
(2 g/kg body weight). Tail blood samples were collected
at 15, 30, 60 and 90 minutes, placed on ice, centrifuged
at 2.3 x g for 10 minutes at 4°C and the supernatant
plasma stored at —20°C. Plasma glucose levels were deter-
mined by the hexokinase/glucose-6-phosphate dehydro-
genase method (Thermo Fisher Scientific, UK) and plasma
insulin by ELISA (Crystal Chem Inc., Downers Grove, IL,
USA). We calculated homoeostasis model assessment of
insulin resistance (HOMA-IR; fasting plasma glucose
[mmol/L] x fasting insulin [mU/L])/22-5). Fasting plasma
cholesterol and triglyceride levels were measured by an en-
zymatic assay following the manufacturer’s instructions
(Infinity kits; Thermo Fisher Scientific, UK).

Data are expressed as mean + SEM. Groups were com-
pared by independent t-tests, Area under Curve, repeated
measures ANOVA and two-way ANOVA as appropriate.
Data for plasma parameters and organ weights were com-
pared by with pre-weaning and post-weaning diet as the
main factors using Statistica (Statsoft) or Graphpad prism
version 5.

Results

Females weaned onto cafeteria diets were heavier than
controls at mating (Con 21.5+0.3 g; DIO 28.0+14 g;
p<0.001) in agreement with our previous study [9].
There were no differences in gestation length (Con
20.2+0.2; DIO 20.4+0.2 days; p=0.5) or litter numbers
between groups or in birthweight in either sex (Table 1).
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By weaning, both male and female offspring of DIO were
heavier than offspring of Con mothers (Table 1). At 3 and
6 months, male and female CON/DIO and DIO/DIO off-
spring were heavier than either CON/CON or DIO/CON
(repeated measures ANOVA; effect of post-weaning diet:
males F(1,28) =91.3, p<0.001, females F(1,27) =97.3,
p <0.001) but there was no additional effect of exposure
to maternal overnutrition during pregnancy and lacta-
tion. At 6 months, post-weaning exposure to cafeteria
diet was associated with increased fat pad weight in both
males and females (Table 1) and there was an additional
effect of exposure to maternal overnutrition during preg-
nancy and lactation to increase retroperitoneal fat pad
weight (F(1,27) =5.79, p=0.02) specifically in female
offspring (Table 1).

At 3 months, post-weaning exposure to cafeteria
diet increased glucose, insulin (Figure 1A and B) and
cholesterol (Table 1) concentrations in males; increased
plasma insulin and cholesterol concentrations in females
(Figure 1C and D) and increased HOMA-IR in both
sexes (Table 1: males: F(1,25) = 60.9, p < 0.001; females
F(1,25) = 15.1, p < 0.001). There was an additional effect
of exposure to maternal overnutrition to reduce insulin
levels in males (Figure 1B. F(1,28) =5.2, p = 0.03) and to
reduce HOMA-IR in females (Table 1: F(1,25) = 4.48,
p = 0.044).

At 6 months, post-weaning exposure to cafeteria diet in-
creased glucose, insulin (Figure 2) and cholesterol (Table 1)
concentrations and HOMA-IR in both sexes (Table 1:
males: F(1,28) =118.7, p <0.001; females F(1,26) = 28.7,
p <0.001). There were no persistent effects of exposure to
maternal overnutrition during pregnancy and lactation on
plasma glucose, insulin or cholesterol levels or HOMA-IR
in either sex.

Discussion

Here we replicate the findings of our earlier study in
which we found that maternal overnutrition was associ-
ated with few effects in the F1 offspring [9]. Neverthe-
less, since some studies report that the programming
phenotype may only become overt, or is amplified fol-
lowing postnatal exposure to a high-fat diet [11,12]; we
reasoned that post-weaning exposure to a cafeteria diet
might result in a more obvious phenotype. As expected,
F1 males and females weaned onto the cafeteria diet
showed increased weight gain, glucose-insulin dyshomeos-
tasis and hypercholesterolaemia. There were some add-
itional effects of exposure to maternal overnutrition at
3 months which were sex-specific, with reduced insulin
levels in males and reduced HOMA-IR in females, suggest-
ing increased insulin sensitivity. However, these effects
were no longer present at 6 months, although maternal
overnutrition was associated with increased retroperitoneal
fat mass in F1 females on the cafeteria diet.



Table 1 Body weight, plasma parameters and organ weights in offspring

CON male (n) DIO male (n) p value CON female (n) DIO female (n) p value
n =22 from 9 litters n =16 from 10 litters n =18 from 9 litters n=19 from 10 litters
Birthwt (g) (litter mean) 137 +/- 0.04 1.30 +/- 0.1 0.54 1.30 +/- 0.06 1.21 +/- 007 0.39
Wean wt (g) (litter mean) 842 +/— 053 10.54 +/-0.28 0.002 791 +/-0.20 9.70 +/-0.20 <0.001
Post-wean group CON/CON CON/DIO DIO/CON DIO/DIO p value CON/CON CON/DIO DIO/CON DIO/DIO p value
male n=8 male n=8 male n=8 male n=8 female n=8 female n=8 female n=8 female n=7
3 months
Plasma cholesterol mmol/I 247 +/- 034 528 +/- 057 273 +/- 020 701 +/-039 ap < 0.001 316 +/- 050 467 +/- 053 247 +/-0.23 389 +/- 034 a:p =0.003
bp=0016 bip=ns
Plasma TG mmol/I 0.57 +/- 0.06 066 +/-0.10 0.53 +/- 0.1 063 +/- 083 ap=ns 061 +/-0.06 0.72 +/- 008 0.56 +/— 0.07 0.52 +/-0.11 ap=ns
bip=ns bip=ns
Plasma glucose AUC 985 +/— 55 1668 +/— 203 1056 +/— 108 2037+/- 139 a:p < 0.001 898 +/— 109 1087 +/— 123 1026 +/— 121 1197 +/— 97 ap=ns
bp=ns bp=ns
Plasma insulin AUC 74 +/- 6 247 +/— 22 77 +/- 11 177 +/—- 16 a:p <0.001 60 +/— 5 110 +/— 13 57 +/-3 90 +/-12 ap < 0.001
b;p=003 bip=ns
HOMA IR 155 +/-0.12 543 +/- 057 161 +/- 024 419 +/- 058 ap < 0.001 1.27 +/- 007 243 +/-033 1.16 +/— 0.06 165 +/— 022 a:p00.01
bip=ns b:p=0.044
6 months
Plasma cholesterol mmol/I 287 +/- 039 937 +/- 046 406 +/- 029 7.77 +/— 051 ap < 0.001 392 +/-038 665 +/- 055 298 +/- 041 6.26 +/— 0.26 ap < 0.001
bip=ns bip=ns
Plasma TG mmol/I 0.55 +/- 0.09 0.71 +/-0.05 0.63 +/— 0.06 0.71 +/-0.07 ap=ns 063 +/-0.08 0.83 +/- 003 0.51 +/-0.10 0.66 +/— 0.09 a:p = 0.045
bp=ns bp=ns
Plasma glucose AUC 1189 +/— 125 2287 +/— 280 1205 +/- 163 2074 +/— 143 ap < 0.001 1005 +/— 92 1420 +/—- 163 886 +/— 1487 1487 +/—- 162 ap < 0.001
bip=ns bip=ns
Plasma insulin AUC 109 +/— 17 581 +/- 61 129 +/- 14 535+/-52 a:p < 0.001 78 +/—13 169 +/— 29 66 +/— 6 173 +/- 16 ap < 0.001
bip=ns bip=ns
HOMA-IR 224 +/- 034 11.56 +/—1.17 2.77 +/- 032 1047 +/—- 092 a:p <0.001 1.57 +/= 031 341 +/- 058 138 +/-0.13 372 +/-038 a:p < 0.001
bp=ns bp=ns
Liver 411 +/-010 370 +/- 052 398 +/- 010 424 +/-038 ap=ns 402 4/-019  368+/-010 404+/-009 363+4/-016 ap=0014
bip=ns bip=ns
RP fat pad 0.29 +/- 0.08 097 +/-0.07 0.30 +/—- 0.02 0.94 +/-0.10 ap < 0.001 0.28 +/- 0.05 097 +/-0.18 031 +/- 007 1.56 +/-0.16 ap < 0.001
bip=ns b:;p=0.023
Mes fat pad 042 +/-0.09 139 +/-0.14 0.74 +/- 0.07 140 +/- 024 a:p < 0.001 037 +/-0.06 0.76 +/-0.10 045 +/-0.10 1.02 +/-0.10 a:p < 0.001
bp=ns bp=ns
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Table 1 Body weight, plasma parameters and organ weights in offspring (Continued)

SC fat pad 096 +/-0.11 292 +/-0.20 0.92 +/- 0.06 274 +/- 024 ap < 0.001 0.75 +/-0.09 244 +/- 023 0.80 +/-0.12 244 +/-0.11 ap < 0.001
bip=ns bip=ns
Epi fat pad 090 +/-0.13 226 +/-0.14 0.87 +/—0.14 228 4/-0.15 a:p <0.001
bp=ns

Organ weights expressed as a% of body weight (TG = triglycerides, RP = retroperitoneal fat, Mes = mesenteric fat, SC = subcutaneous fat, Epi = epididymal fat). a = effect of postnatal diet, b = effect of maternal obesity
for all groups compared to CON/CON.
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Figure 1 Glucose tolerance tests in offspring at 3 months of age. Plasma glucose and insulin concentrations in males (Figure 1A and B)
and females (Figure 1C and D). Data are mean + SEM and were analysed by ANOVA analysis of Area Under Curve, (n = 7-8/group) *p < 0.05,
**¥*0 < 0.01 for CON/DIO and DIO/DIO vs CON/CON.
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Figure 2 Glucose tolerance tests in offspring at 6 months of age. Plasma glucose and insulin concentrations in males (Figure 2A and B)
and females (Figure 2C and D). Data are mean + SEM and were analysed by ANOVA analysis of Area Under Curve, (n = 7-8/group), *p < 0.05,
***p < 0.01 for CON/DIO and DIO/DIO vs CON/CON.




King et al. Reproductive Biology and Endocrinology 2014, 12:73
http://www.rbej.com/content/12/1/73

Our results differ from those in number of animal
models which document effects of exposure to a mater-
nal high-fat diet on offspring obesity and glucose-insulin
homeostasis [7,13,14]. Nevertheless, our findings are
consistent with reports in some models which show
little additional effect of maternal overnutrition on the
phenotype induced by post-weaning exposure to an
obesogenic diet [15-18]. Notably, in one of these studies,
maternal consumption of a high-fat diet was protective
against the development of obesity induced by a sucrose-
rich diet [17,18]. Potential mechanisms for the apparent
‘protection’ from the adverse consequences of early life
exposure to overnutrition may include differences in the
species or strain of animal used, the degree of maternal
obesity and/or gestational weight gain, age at mating and
whether first or second litters are used. The diets utilised
in different studies differ in macro- and micronutrient
content and this may be of particular importance in deter-
mining effects on the offspring [17,19,20]. We used diets
matched for micronutrient content, which may represent
an additional source of difference between groups in other
studies. For example, Couvreur et al. showed that the
offspring of females fed a high-fat diet were protected
from the development of obesity postnatally, whereas the
offspring of mothers maintained on a highly palatable diet
were not [17]; whilst another group reported that different
fat sources in the maternal diet had very different influ-
ences on the susceptibility of offspring to body weight
gain, with prenatal exposure to some fat types providing
relative protection from the development of obesity [21].
We have previously documented in our model that mater-
nal protein intake does not differ between groups [9],
however it is possible that in other studies, the dietary pro-
tein content differs between obesogenic and control diets,
so that plausibly, some of the programmed effects might
instead be due to in utero protein restriction which
has known programming effects [22]. Additionally, unlike
other studies which use an obesogenic diet alongside
standard laboratory chow, or which supplement diets
with highly palatable substances to increase calorie avail-
ability [7,23], we used diets matched for micronutrient
content, which may represent an additional source of
difference between groups in other studies. A further
possibility is that there may a ‘ceiling effect’ from such a
high-fat diet (58% fat), and that more subtle effects may
be seen with more moderate diets.

Another explanation for the lack of phenotype in our
model could be that the moderate degree of maternal
obesity engendered by the cafeteria diet was not severe
enough to affect offspring development, however the
weights of the dams in our study are consistent with
those reported in other studies in which effects on off-
spring body weight, appetite, glucose-insulin homeo-
stasis and blood pressure are reported [7,24] and we have
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previously shown in this model that pregnant females are
hyperinsulinaemic and hypercholesterolaemic in late ges-
tation [9]. We have previously suggested that one explan-
ation might be maternal adaptations which occurred
during pregnancy, so that although prior to conception,
DIO dams were heavier and hyperglycaemic and hyperin-
sulinaemic when compared to control dams, they gained
less weight and were no longer hyperglycaemic or hyper-
lipidaemic in late gestation [9,25]. Finally, although other
studies report effects are present in F1 offspring by
6 months, it is possible that a phenotype might become
more apparent in our model with ageing [26].

Sex differences in the response of males and females
to diet-induced obesity are well-described in the litera-
ture [27] and sex specific effects in prenatal program-
ming paradigms are also common [28-31]. The potential
mechanisms have been recently reviewed [32] and may
include sex differences in developmental trajectories and
timing and the effects of sex steroids. Additionally, in
our study, the effects of post-weaning exposure to an
obesogenic diet were sex-specific. Whilst both sexes
gained more weight on the cafeteria diet and had a sub-
stantial increase in fat pad weight compared to controls,
there was a more severe metabolic phenotype in obese
males, which showed profound hyperglycaemia and hyper-
insulinaemia on glucose tolerance testing whilst females
developed less severe hyperinsulinaemia and hyper-
glycaemia. Although it is well recognised that there are
gender differences in cardiovascular disease risk associ-
ated with obesity in humans [33], most studies aimed at
dissecting the mechanisms linking obesity and cardiovas-
cular disease and at developing treatment strategies to
ameliorate these consequences have been performed in
males [33]. The processes accounting for these gender
differences are not well defined but sex steroids presum-
ably play a key, albeit complex role [34].

Conclusions

In conclusion, we show that although post-weaning
exposure to a cafeteria diet results in increased adiposity
and metabolic derangement in both sexes, exposure to
maternal overnutrition in early life has little effect to
exacerbate this phenotype. Further studies designed to
increase our understanding of what factors lead to the
differences between models may help us understand the
link between overnutrition in early life and later disease
risk in humans and suggest ways to intervene to prevent
the complications of exposure to overnutrition in early life.
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