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Abstract

Background: The Asian seabass (Lates calcarifer) is a protandrous hermaphrodite that typically matures as a male at
approximately 2–4 years of age and then changes sex in subsequent years. Although several sexual maturation
stages have been described histologically for both testis and ovary, the underlying gene expression profiles remain
lacking. The development of a gene expression platform is therefore necessary to improve our understanding of
the gonad development of this cultured teleost species.

Methods: Thirty Asian seabass gonads were collected from farms in Singapore, examined histologically and staged
according to their sex and gonadal maturation status. Partial coding sequences of 24 sex-related genes were cloned
using degenerate primers and were sequenced. Additional 13 cDNA sequences were obtained through
next-generation sequencing. A real-time qPCR was then performed using the microfluidic-based Fluidigm 48.48
Dynamic arrays.

Results: We obtained 17 ovaries and 13 testes at various stages of sexual maturation. Of the 37 genes that were
tested, 32 (86%) showed sexually dimorphic expression. These genes included sex-related genes, sox9, wt1, amh,
nr5a2, dmrt1 and nr0b1, which showed testis-enhanced expression similar to other vertebrate species. Known
male- and female-enhanced germ cells markers, which were established from studies in other species, similarly
showed testis- and ovary-enhanced expression, respectively, in the Asian seabass. Three pro-Wnt signaling genes
were also upregulated in the ovary, consistent with existing studies that suggested the role of Wnt signaling in
ovarian differentiation in teleosts and mammals. The expression patterns of genes involved in steroidogenesis,
retinoic acid metabolism, apoptosis and NF-κB signaling were also described. We were able to classify gonads
according to sex and gonadal maturation stages, based on their small-scale transcriptomic profiles, and to uncover
a wide variation in expression profiles among individuals of the same sex.

Conclusions: The analysis of a selected set of genes related to reproduction and in sufficient number of individuals
using a qPCR array can elucidate new insights into the molecular mechanisms involved in Asian seabass gonad
development. Given the conservation of gene expression patterns found in this study, these insights may also help
us draw parallels with other teleosts.
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Background
The Asian seabass (Lates calcarifer), which is also com-
monly known as barramundi, is a protandrous hermaph-
rodite. Typically, this perciform teleost matures as a
functional male at 2–4 years of age and subsequently
changes sex to female at subsequent spawning seasons
[1-3]. Due to this process, Asian seabass females are
generally larger than males.
Primary females that do not appear to go through the

male phase, as well as males that do not undergo sex
change, may also exist, and these possibilities have been
inferred from the presence of young, small-sized females
and old males, respectively [1,3]. In addition, despite the
late sexual maturation age of the species, early testis dif-
ferentiation can be found in Asian seabass that are
grown in intensive freshwater recirculation systems at as
early as 9 months old [4].
Although the development of Asian seabass gonads has

been well studied morphologically and histologically, the
underlying molecular data regarding their development is
lacking [1-4]. This lack is despite the identification of sev-
eral Asian seabass orthologs from the NCBI nucleotide
database, including the ovarian aromatase, follistatin and
vitellogenin, which are conserved in several teleost spe-
cies. Next-generation sequencing technologies have only
been recently used to provide functional genomics ana-
lyses of other aspects of the Asian seabass biology, such
as temperature adaptation and the response to stress
[5,6].
To date, several important genes have been found to

be required for testis or ovary differentiation in a num-
ber of model organisms. These sex-related genes include
sox9, wt1, amh, nr5a2, dmrt1 and nr0b1, which produce
proteins that are required for testis differentiation and
have enhanced expression in the testis of several verte-
brate species (see Additional file 1: Table S1 for full gene
names) [7-13]. For ovarian differentiation, several studies
have suggested the role of Wnt signaling in both mam-
mals and teleosts [14-17].
Genes that are involved in steroidogenesis also play a key

role in gonad differentiation because these genes lead to
the production of sex steroids. Several studies have shown
that artificial sex reversal can be easily induced in teleosts
through the application of hormones or endocrine-
disruptors [18,19]. Several steroidogenic genes, such as
the ovarian aromatase (cyp19a1) and 11ß-hydroxgenase
(cyp11c1), tend to show sexually dimorphic expression in
teleosts [9,20-23]. Other than sex steroids, recent studies
of the Japanese flounder (Paralichthys olivaceus) and
pejerrey (Odontesthes bonariensis) have also shown that
cortisol may (a steroid hormone) have a role in testis
differentiation [24,25].
Germ cells are key components of the gonads, and

their numbers in the early teleost gonads have been
suggested to affect sex determination [26]. Several germ
cell markers, such as piwil1 in the zebrafish (Danio
rerio) and sycp in the medaka (Oryzias latipes), displayed
sexually dimorphic expression in the gonads [27,28].
This observation could be due to the structural func-
tions that some germ cell markers have in specific germ
cell types, such the role of ODF proteins in forming the
cytoskeletal structure of the human sperm tail [29]. Germ
cell markers can also play other non-structural roles,
such as sperm receptors (zona pellucida genes) or the
maintenance of transposon silencing in the germline
(piwi-like genes) [30,31]. In addition to key sex-related
genes, steroidogenic genes, Wnt signaling genes and
germ cell markers, other genes that are involved in retin-
oic acid signaling, apoptosis and NF-κB signaling have
also been implicated in teleost sex differentiation [32,33].
Based on our current state of knowledge regarding sex

differentiation, we shortlisted genes that are involved in
the pathways or functions that have been described above
for gene expression analysis. In this study, we generated a
set of real-time qPCR primers for 37 genes and per-
formed gene expression profiling of Asian seabass testes
and ovaries on a mid-throughput microfluidic-based
qPCR platform. Our analysis showed that several genes
with known reproductive function(s) (e.g., Wnt pathway
genes and germ cell markers) exhibited expression pat-
terns in the Asian seabass that were similar to those of
other teleosts. We were also able to classify gonads
according to sexual maturation status by hierarchical
clustering analysis using expression profiles of these
genes. In addition, the expression analysis revealed inter-
esting aspects of the Asian seabass gonads and uncovered
new insights into their sexual maturation.

Methods
Fish
Adult Asian seabass individuals that ranged from 44 – 65
cm standard length were collected from the Marine
Aquaculture Centre of the Agri-Food and Veterinary
Authority of Singapore. The fish were reared and
maintained according to protocols that were approved
by the AVA Institutional Animal Care and Use Committee
(approval number: AVA-MAC-2011-01). The fish were
sacrificed, and gonads were collected for histology and
RNA extraction.

RNA isolation and cDNA synthesis
Total RNA was extracted from the gonads using the
RNeasy Mini Kit (Qiagen). For the real-time qPCR ex-
periment, RNA quality and quantity were assessed using
agarose gel electrophoresis and a NanoDrop spectro-
photometer, respectively. Total RNAs were reverse tran-
scribed using an iScript cDNA Synthesis Kit (Bio-Rad
Laboratories) following the manufacturer’s instructions.
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Histology and staging of gonads
Gonads were fixed in 10% formalin overnight at room
temperature. After dehydration by ethanol, samples
were embedded in plastic resin (Leica Biosystems), and
then serial cross-sections of 5–10 μm were cut using a
microtome (Leica Biosystems) and dried on slides at 42°
C overnight. The sections were stained with hematoxylin
and eosin and then mounted in Permount (Thermo Fisher
Scientific).
The Asian seabass gonads were classified according to

sexual maturation status as described by Guiguen and
colleagues [2]. We obtained 17 ovaries, with four at the
F1 stage, seven at the F3 stage and six at the F4 stage, as
well as 13 testes, with three at the M1 stage, two at the
M2 stage, six at the M3 stage and two at the M4 stage
(Table 1, see Additional file 2: Figure S1 for the gonad
histology).

Isolation, cloning and sequencing of genes with
sex-related function
Partial coding sequence of Asian seabass genes with sex-
related function were obtained using degenerate primer-
based amplification and cloning. Several known homolo-
gous cDNAs from other teleost species were clustered
using ClustalW, and degenerate primers were designed
at conserved regions using the software Primer Premier
v5.0 (Premier Biosoft) [34]. PCR was then performed on
pooled cDNA, which originated from Asian seabass
testes and ovaries. The degenerate primer sequences and
annealing temperatures that were used for PCR are listed
in Additional file 3: Table S2. The PCR products were
run on a 2% agarose gel and stained using GelStar nucleic
acid gel stain (Lonza). The band of the expected size was
cut from the gel, and then the amplified product was iso-
lated using the QIAquick Gel Extraction Kit (Qiagen)
and cloned into the pGEM-T Easy Vector (Promega).
The validity of the sequence and the identification of the
Asian seabass orthologous gene were completed by run-
ning the BLAST algorithm (blastn) against the NCBI
RefSeq database (Additional file 1: Table S1).
Table 1 Classification of gonadal samples based on histology

Sex type Index Gonadal maturation stage Hist

Female F1 Pre-vitellogenesis Mos

F3 Vitellogenesis Vite

F4 Atretic Pres

Male M1 Testis gonia Mos

M2 Spermatogenesis Mos

M3 Spermiation Mos

M4 Post-spawning Abs

Total number of samples
Transcriptome sequencing
Total RNAs, which were obtained from Asian seabass tes-
tes and ovaries, were depleted of ribosomal RNA using a
RiboMinus Eukaryote Kit for RNA-seq (Invitrogen) and
verified using an Agilent 2100 Bioanalyzer. The rRNA-
depleted total RNA was sent to a service provider for tran-
scriptome sequencing on a SOLiD 3+ platform (Applied
Biosystems). Similarly, another rRNA-depleted sample,
which was pooled from RNA that was extracted from vari-
ous Asian seabass organs, was sent to another service pro-
vider for transcriptome sequencing on a 454 FLX Titanium
platform (Roche). Reads that were obtained from SOLiD 3
+ and 454 sequencing were assembled de novo using the
programs Velvet, CLC Genomics Workbench (CLC Bio)
and Sequencher (Gene Codes) [35]. The reads and assem-
bled transcriptome have been deposited into the NCBI
SRA and TSA databases, respectively [SRA accession num-
bers SRR944005, SRR944006 and SRR949061; TSA acces-
sion numbers GAML01000000 and GAMU01000000].

Real-time qPCR
Real-time qPCR was performed using a BioMarkTM HD
system (Fluidigm Corporation). cDNA from Asian sea-
bass testes and ovaries were used for specific target ampli-
fication using the TaqMan PreAmp Master Mix (Life
Technologies) and loaded onto Fluidigm’s Dynamic Array
Integrated Fluidic Circuits (IFC) according to Fluidigm’s
EvaGreen DNA Binding Dye protocols. The gene sym-
bols, their corresponding accession numbers and gene
names are listed in Additional file 1: Table S1, and the
primer sequences that were used are listed in Additional
file 4: Table S3.
Four 48.48 Dynamic Array IFC plates were used to

analyze the expression levels of selected genes in Asian
seabass testes and ovaries. Triplicates were analyzed for
each biological sample, and four samples were used as
inter-plate controls.
Eight genes (18 s, bactin, ef1a, gapdh, rpl8, tuba, catD

and ubq) were included into the qPCR array to select for
endogenous reference genes using the geNorm algorithm
ological criterion Number of samples

tly pre-vitellogenic oocytes 4

llogenic oocytes more than half of section 7

ence of atretic oocytes 6

tly gonia 3

tly spermatocytes and spermatids 2

tly spermatozoa 6

ence of spermatozoa in testicular lobules 2

30
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[36]. Of these genes, rpl8, ef1a and ubq had the highest
gene expression stability and were used as reference
genes (see Additional file 5: Figure S2 for the stability
values).

Results and discussion
The vast majority of genes showed sexually dimorphic
gene expression pattern between male and female
gonads
Several genes, which have important reproductive func-
tions in mammals and other vertebrates, have been in-
cluded in this qPCR array. Of the 37 genes chosen in
this study (not including the eight reference genes), 86%
(32/37) of these genes showed sexually dimorphic ex-
pression (p-value < 0.05 and fold-change ≥ 1.5 or ≤ -1.5)
when ovaries of F3 and F4 stages were compared against
testes of M3 and M4 stages (Table 2). The expression of
25 of these genes was enhanced in testes, with 13 genes
showing more than 10-fold upregulation when com-
pared with ovaries. In contrast, seven genes were found
to have ovary-enhanced expression, of which zp2 showed
the highest upregulation (7.1-fold) in ovaries compared
with testes.

Conserved expression patterns of sex-related genes and
pathways in the Asian seabass with other teleosts and
even mammals
Known sex-related genes
Among the genes in the array, there were genes with
“pro-male” functions, such as amh, sox9, dmrt1, wt1,
nr5a2 and nr0b1, which displayed conservation of testis-
enhanced expression in the Asian seabass that was similar
to other vertebrates (Table 2). For example, in humans,
anti-Müllerian hormone (AMH), which is produced by
fetal Sertoli cells, is responsible for the regression of
Müllerian ducts during testis differentiation, and its
mutation results in the presence of uteri and Fallopian
tubes in males [37]. Amh also inhibits follicular growth
and aromatase expression in mouse ovaries [38,39]. In
teleosts, amh displayed a higher expression in zebrafish
testes than in ovaries, and likewise, we detected a strong
testis-enhanced expression of amh (19.7-fold upregula-
tion) in the Asian seabass [9,21]. Similarly, sox9, dmrt1,
wt1, nr5a2 and nr0b1 were also found to have increased
expression in Asian seabass testes compared with ovar-
ies, and earlier, their orthologs were shown to have roles
in testis development in other teleosts and even in
mammals [7-13].

Germ cell markers
We have also included several germ cell markers in this
array. One of these markers, piwil1, has a role in maintain-
ing transposon silencing in the germline genome and has
higher expression in testes of adult zebrafish compared
with the ovaries [27,30]. Similarly, piwil1 was found to have
higher expression in Asian seabass testes (Table 2). An-
other set of germ cell markers, Tudor domain containing
proteins or Tdrds, are associated with the nuage or germi-
nal granules of germ cells and have been found to be highly
expressed in adult mouse testes [40]. In our array, tdrd1
and tdrd7 also showed testis-enhanced expression in the
Asian seabass.
The other four germ cell markers, odf3, sycp3l, sept6

and sept7, are known to be expressed in the spermatids
and spermatozoa of other teleost and mammalian species.
ODF proteins form the main cytoskeletal structure of the
human sperm tail and are found to be essential for male
fertility in the zebrafish [29,41]. Because of this structural
function, odf3 expression levels had the highest fold
difference (2,628-fold) in Asian seabass testes compared
with ovaries (Table 2). SCP3 is essential in meiosis pro-
gression and in the formation of spermatozoa in mice
[42]. In the medaka, sycp has been shown to have higher
expression in testes than ovaries, and likewise, we
detected a 25.8-fold upregulation in Asian seabass testes
(Table 2) [28]. Septins are a family of GTP-binding
proteins that forms a component of the cytoskeleton in
eukaryotes [43]. These proteins have been shown to be
required for sperm development in mouse and have sexu-
ally dimorphic expression in zebrafish gonads [22,44]. In
Asian seabass, sept6 and sept7 have 7.5-fold and 1.5-fold
higher expression in testes compared with ovaries, re-
spectively (Table 2). Additionally, the germ cell markers
that we have investigated have displayed conservation in
gene expression patterns with other vertebrate species.

Steroidogenesis-related genes
In teleosts, 17β-estradiol (E2) and 11-ketotestosterone
(11-KT) are the key female and male hormones, respect-
ively, and sex differentiation can be easily influenced by
steroids or endocrine-disruptors, which result in sex
reversal [18,19,45,46]. Both E2 and 11-KT are synthesized
from testosterone, and cyp11c1 converts testosterone to
11-KT [45]. Therefore, cyp11c1 has an important role in
testicular development, and this role is reflected in its
testis-enhanced expression in teleosts, including the
European seabass (Dicentrarchus labrax) and zebrafish
[20,22]. Accordingly, in the Asian seabass, cyp11c1 has
over 300-fold upregulation in the testis (Table 2).
In contrast, cyp19a1a, or ovarian aromatase, is involved

in the conversion of testosterone to E2. During zebrafish
gonadal transformation from juvenile ovaries to testes,
cyp19a1a is downregulated, whereas its expression
remains high in adult ovaries [9,21,23]. The overexpres-
sion of aromatase can also result in ovary development in
genetically male chicken embryos [47]. However, con-
trary to our expectation, an upregulation of gonadal
aromatase was found in Asian seabass testes compared



Table 2 Genes that were analyzed between Asian seabass testes (M3 and M4) and ovaries (F3 and F4) and classified
according to functions and pathways

Gene symbol Accession Fold-change (Ovary vs. Testis) p-value

Known sex-related

sox9 KF444460 −51.8 4.95E-04

wt1 KF444464 −25.0 0.024

amh GAMU01071817 −19.7 9.49E-10

nr5a2 KF444453 −15.2 0.007

dmrt1 KF444450 −7.8 0.000

nr0b1 KF444458 −7.6 0.013

Germ cell markers

odf3 GAMU01119126 −2628.1 2.64E-13

sycp3l GAML01036838 −25.8 1.16E-06

tdrd7 GAML01004579 −15.4 1.37E-08

piwil1 GAML01007253 −10.6 4.26E-10

sept6 KF444459 −7.5 2.27E-10

vasa KF444462 −3.2 1.18E-04

tdrd1 GAML01005267 −2.2 0.002

sept7 GAML01001618 −1.5 0.026

zp2 KF444465 7.1 0.003

Steroidogenesis

cyp11c1 KF444447 −377.8 1.56E-15

hsd3b KF444455 −42.1 0.038

hsd11b2 KF444456 −12.8 0.025

cyp19a1 AY684256.1 −5.5 1.47E-04

cyp17a1 KF444448 −5.0 0.005

hsd17b1 KF444457 −4.2 0.786 (N.S.)

Wnt signaling

foxl2 KF444454 −4.9 0.434 (N.S.)

axin1 KF444443 −3.1 0.242 (N.S.)

ctnnbip1 KF444446 1.5 0.072 (N.S.)

ck2a KF444444 2.0 0.042

ctnnb1 KF444445 3.5 0.001

dvl2 KF444451 4.5 0.001

Retinoic acid signaling

cyp26b1 KF444449 −36.3 5.61E-06

stra6 GAML01004693 1.3 0.079 (N.S.)

cyp26a1 GAML01005182 1.8 0.030

NF-κB-related

nfkb2 GAMU01013914 −3.1 2.74E-04

nkap GAML01003947 −3.0 0.001

Apoptosis

tp53 KF444461 2.0 0.020

Others

esr1 KF444452 −25.1 6.68E-05
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Table 2 Genes that were analyzed between Asian seabass testes (M3 and M4) and ovaries (F3 and F4) and classified
according to functions and pathways (Continued)

ar KF444442 −4.9 2.29E-06

psap GAML01003564 −2.1 0.001

vtgr KF444463 2.9 0.009

N.S. - Not significant (fold-change < 1.5 or > -1.5 or p-value ≥ 0.05).
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with ovaries (Table 2). One possible explanation is that,
although cyp19a1 was overexpressed by 5.5-fold in the
testis, cyp11c1, which is the gene that regulates the 11-
KT level, was overexpressed by more than 300-fold.
Given that both cyp19a1 and cyp11b act on the same pre-
cursor, which is testosterone, this result may indicate that
estrogen levels may remain low relative to those levels of
androgens in males. In addition, Cyp19a1 may also be
regulated at the post-transcriptional level in the seabass
gonads. It was also recently found that, in some cichlid
lineages, both the ovarian and brain aromatases can have
testicular function, and as a result, the sex steroid path-
way has been suggested to be less conserved among tele-
osts [48]. Nevertheless, the unexpected testis-enhanced
expression of cyp19a1 in the Asian seabass is worth fur-
ther investigation in the future.
In recent years, cortisol has been shown to be in-

volved in teleost sex differentiation. For example, in
the Japanese flounder (Paralichthys olivaceus) and in
pejerrey (Odontesthes bonariensis), elevated cortisol
levels that are caused by increased temperature can
result in female-to-male sex reversal [24,25]. Therefore,
in this qPCR array, we have also included two genes that
are involved in the metabolism of cortisol, which is also
an important component of the stress response in fish
[49]. Although the interrenal tissues of the head kidney
are known to be the major site of cortisol production in
teleosts, it is, nevertheless, worthwhile to investigate the
gonadal expression of the two genes hsd11b2 and hsd3b
[50].
Hsd11b2 plays a role in the conversion of the physiolo-

gically active cortisol to inactive cortisone [51]. It has
been suggested that 11ß-hydroxysteroid dehydrogenases
protect the teleost gonads from the inhibitory effects of
cortisol, such as the inhibition of testicular androgen pro-
duction [52,53]. In contrast, hsd3b is involved in the early
steps of the steroidogenic pathway, which results in the
production of not only glucocorticoids but also mineralo-
corticoids and sex steroids [54]. The hsd3b gene was also
found to be expressed in both the interrenal tissues of
the head kidney and in the gonads of zebrafish [54].
In the Asian seabass, both genes were overexpressed in

testes compared with ovaries. The gene of the cortisol-
producing enzyme hsd3b displayed over 40-fold upregu-
lation, whereas the gene of the cortisol-degrading
enzyme, hsd11b2, exhibited 12.8-fold overexpression
(Table 2). Therefore, cortisol might also have reproduction-
related roles in the Asian seabass because of the sexually
dimorphic expression of both genes.
Wnt signaling pathway
Canonical Wnt signaling has been known to be involved in
mammalian ovary development, and the overexpression of
WNT4 in humans has been associated with XY sex reversal
[15,16,55]. Similarly, Wnt signaling has already been impli-
cated in a reproductive role in teleosts, including the black
porgy (Acanthopagrus schlegeli), rainbow trout (Oncorhyn-
chus mykiss) and zebrafish [14,17,56,57]. It has been further
shown that Wnt signaling could promote ovarian differ-
entiation through the upregulation of gonadal aromatase
[56,58].
Among the sexually dimorphic genes in the Asian

seabass, there were three members of the Wnt family:
β-catenin 1 (ctnnb1), dvl2 and ck2a. β-catenin is the
central molecule in the canonical Wnt signaling path-
way. In the absence of Wnt ligand binding, cytoplasmic
β-catenin is degraded by the ubiquitin-proteosome
pathway and prevented from entering the nucleus and
associating with Lef1 to activate Wnt target genes
[59,60]. Dishevelled is a positive transducer of Wnt
signals and functions to activate both canonical and
non-canonical Wnt signaling pathways [61]. In mouse,
Ck2 phosphorylates β-catenin and, therefore, protects
β-catenin from being degraded by the ubiquitin-
proteosome pathway [62]. Ck2 has also been found to
be activated by Wnt3a [63]. All three “pro-Wnt signal-
ing” genes were upregulated in Asian seabass ovaries
compared with testes, and this result suggested that,
similar to mammals and other teleost species, the Wnt
signaling pathway has a pro-female function in this
species as well (Table 2).
Retinoic acid (RA) signaling pathway
RA is catabolized by both Cyp26a1 and Cyp26b1 [64]. In
mice, Cyp26b1 is required to retard or block germ cells
from entry into meiosis in the testes and to prevent the
apoptosis or conversion of the male germ cell fate
[65,66]. Cyp26b1 expression in mice is also thought to be
activated by Sox9 and Sf1 in the testes and inhibited by
Foxl2 in the ovaries [67]. Although little is known regard-
ing the role of Cyp26a1 in reproduction, the exposure of
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mice to RA resulted in the apoptosis of spermatogonia
and in the increased expression of this gene [68].
In the Asian seabass, cyp26b1 was strongly upregulated

in testes compared with ovaries, whereas there was only
a slight downregulation of cyp26a1 (Table 2). Thus, the
sexually dimorphic expression of cyp26b1 and cyp26a1
suggest the possibility of retinoic acid signaling involve-
ment in testes development in the Asian seabass.

Genes with apoptosis-related function
During gonadal transformation in zebrafish, apoptosis is
required to remove the unwanted female cells to ‘clear up
space’ for the developing testicular cells [69,70]. In zebra-
fish, the main function of fancl is to ensure the survival of
female germ cells. As a result, its mutation causes zebrafish
to develop as males, and its effects can be rescued through
the mutation of the tp53 tumor suppressor gene, which is
a well-known pro-apoptotic gene [71,72]. Our results dem-
onstrated that tp53 was upregulated by two-fold in Asian
seabass ovaries compared with testes. It is possible that this
result is due to the atresia that occurs in the F4 ovaries and
that the testes that are not undergoing transformation to
ovaries are unlikely to have higher levels of apoptosis.

NF-κB pathway
NF-κB is a ubiquitous transcription factor that has been
known to be involved in several biological processes,
which include the immune response [73-75]. In mammals,
NF-κB was shown to interact with SF-1 and to prevent
SF-1 from activating Amh, thus inhibiting Amh expression
[76]. In the zebrafish, NF-κB has been shown to inhibit
apoptosis during gonad transformation, and thereby, to
promote female bias [77]. In contrast, NKAP is an activator
of NF-κB, is also shown to repress Notch signaling and is
necessary for T-cell development [78,79]. Although the
NF-κB pathway seems to be a “pro-female” pathway, both
genes (i.e., nfkb2 and nkap) were downregulated in Asian
seabass ovaries compared with testes. In the adult
gonads of Asian seabass, NF-κB may have additional
reproduction-related roles as suggested by the sexually
dimorphic expressions of nfkb2 and nkap.

The expression profiles of 36 genes were sufficient to
distinguish between male and female gonad types in the
Asian seabass
A one-way ANOVA was performed, and all the genes that
were tested, except foxl2 and the reference genes, showed
significant differences in their expression levels across the
various gonad types (p-value < 0.05). The expression
profiles of these 36 genes were used to generate a hier-
archical clustering map using the Partek Genomics v6
Suite (Partek Inc.) software (Figure 1).
From the hierarchical clustering map, we can observe

that the ovaries and testes samples were clustered into
two separate primary clades, and within the ovary clade,
the F3 ovaries were clustered into their own sub-clade
(Figure 1). This result indicated that the F3 ovaries had a
distinct gene expression profile from that of ovaries from
other stages. In particular, although F3 and F4 ovaries
looked similar under histology, 70% of the tested genes
(26/37) were differentially expressed between these two
stages.
The genes that were upregulated in F4 ovaries com-

pared with F3 ovaries included germ cell markers, such as
vasa, piwil1, tdrd1 and sycp3l; testis-enhanced genes, such
as dmrt1, amh, nr0b1; Wnt signaling member genes, such
as axin1, dvl2, ctnnb1, ck2a and ctnnbip1; apoptosis-
related genes, such as tp53 and genes that are involved in
the retinoic acid pathway (cyp26a1 and stra6) (Additional
file 6: Table S4). The key histological feature that separates
F3 and F4 ovaries were the presence of atretic oocytes
(Additional file 2: Figure S1). The pro-apoptotic gene tp53
was upregulated by 2.6-fold in the F4 ovary compared
with the F3 ovary, and this upregulation may be a conse-
quence of atresia in the F4 ovary. In addition, the upregu-
lation of 24 genes and the downregulation of only three
genes in F4 ovaries compared with F3 ovaries suggest that
the former may be more transcriptomically active than the
latter.
We can also observe from the hierarchical clustering

map that individual differences in gene expression exist
within each group, which shows the complexity and
variability in the process of gonad development. Studies
regarding gonad differentiation in the zebrafish have also
reported such a trend [80,81]. The individual variability
of gonad development hence dictates that more bio-
logical samples would be required to obtain a more rep-
resentative result for any sex-related experiment. In this
sense, the use of a 48.48-type qPCR array would prove
useful because this method allows the analysis of only
the important genes in several individuals (up to 13) in
parallel. This result also demonstrated that the analysis
of a moderate number of well-selected genes that are
relevant to the area of interest (reproduction in our case)
and in a sufficient number of individuals could be a
powerful tool for improving our understanding of the
molecular regulation of these complex processes.

Female-like expression levels of amh and germ cell
markers in M1 testes
Similarly, from the hierarchical clustering map, we can
see that, within the testes clade, the inactive M1 testes
were clustered in their own sub-clade. M1 testes contain
predominately gonia, and these cells are inactive and in-
capable of spawning. Gene expression analysis showed
that these M1 testes have female-like expression levels
of the testis-enhanced germ cell markers, odf3, sycp3l,
septin6 and tdrd7, as well as amh (Figure 2). This result



Figure 1 Separation of the male and female Asian seabass gonads under the hierarchical clustering map. The expression profiles of 36
sex-related genes with p-value (gonad type) < 0.01 under a one-way ANOVA analysis were used to generate the hierarchical clustering map. Male
and female gonads were clustered into two different clades. Within the female gonad clade (top section), F3 and F4 ovaries were further divided
into two sub-clades, which indicated that their gene expression profiles were different. Red boxes indicate high expression, whereas blue boxes
indicate low expression. White boxes within the clustering map indicate missing values for a particular sample and gene.
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is likely to be a direct consequence of the lack of sper-
matids and spermatozoa in the M1 testes because these
germ cell markers, odf3, sycp3l and septin6, are involved
in the formation of the spermatozoa, as shown in other
species, whereas tdrd7 is associated with male germ cells
[29,40,42,44]. In the case of amh, it has been demon-
strated in the black porgy (Acanthopagrus schlegeli) that
active testes have higher expression levels than inactive
ones, which potentially indicates that a higher level of
amh might be required to initiate spermatogenesis [82].

Increased variation of testicular zp2 expression because
of the presence of pre-vitellogenic oocytes in some of the
Asian seabass testes
Zona pellucida glycoproteins, which are composed of
zp1, zp2 and zp3 in mammals, are found on the extracel-
lular matrix of oocytes and serve as receptors for the
binding of sperm; their orthologs were found in fish oo-
cytes [31,83,84]. As expected, in the Asian seabass, zp2,
which is an oocyte marker, had a 7.1-fold upregulation in
the ovaries compared with testes. However, although zp2
expression showed consistently high expression values
across all the female gonads, there was a high variation
among the male gonads, with some M3-testes showing
increased zp2 transcript levels compared with the other
male gonads (Figure 3). The high zp2 expression vari-
ation may be related to the presence of pre-vitellogenic
oocytes that can be found in the histological sections of
some M3 testes (Figure 4), which confirms previous de-
scriptions by others [2].

The sexually dimorphic expression of cyp11c1 and esr1 is
independent of the gonadal maturation status of gonads
Two of the studied genes, cyp11c1 and esr1, were found
to be expressed in a distinctly sexually dimorphic man-
ner between the gonads of the male and female sex,
regardless of their sexual maturation stage (Figure 5).
Both genes showed testis-enhanced expression, even at
the inactive M1 and M2 stages, whereas their expression
levels were uniformly low across the F1, F3 and F4 ovaries.
This result indicated that the consistently testis-

enhanced expression of cyp11c1 and esr1 could be good
expression markers for testes and suggested the import-
ance of the two genes in maintaining the male sex of the
gonad. Although the upregulation of esr1 in testes may
seem counter-intuitive, given the importance of estrogens
in ovary development, estrogen receptors (ER) have been
suggested to have a role in the control of testicular



Figure 2 M1 testes of the Asian seabass showed female-like expression levels. amh (A), odf3 (B), sycp3l (C), sept6 (D) and tdrd7 (E) genes.
Dot plots overlaid with box plots of the relative log2 gene expression values are shown (reference genes: rpl8, ef1a and ubq). The M1 testes are
labeled with cyan dots.

Figure 3 The expression of zp2, which is an oocyte marker, showed a wide variation and an increased level of expression in some
M3-type testes in Asian seabass. The relative log2 gene expression values of zp2 are shown. Female gonads (F1, F3 & F4; pink, red & orange)
are on the left, whereas male gonads (M1-M4; light to dark blue) are on the right.
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Figure 4 Pre-vitellogenic oocytes can be found lining the tubular walls in the M3 testis of an Asian seabass individual (SB335).
Abbreviations: po – previtellogenic oocytes; sp – spermatozoa; st – spermatids; ssc – secondary spermatogonia; psc – primary spermatogonia.
Pre-vitellogenic oocytes are indicated with asterisks.
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function because both ERa and ERb are expressed in the
human testis [85]. Similarly, we do find two paralogs of
estrogen receptors in the Asian seabass, but have only
analyzed the expression pattern of esr1 in this study. A
higher testicular expression level of esr1 compared with
that of the ovary was also observed in both the medaka
and sea bream (Sparus aurata) [86-88].
Figure 5 The expression levels. cyp11c1 (A) and esr1 (B) are distinctly se
regardless of their sexual maturation stage. Dot plots that are overlaid with
(reference genes: rpl8, ef1a and ubq).
Zebrafish as a model for reproductive studies in Asian
seabass
We propose that the zebrafish can be a model for Asian
seabass reproductive studies and possibly even for other
sequential hermaphrodites because of the conserved role
of several sex-related genes that were described in this
study.
xually dimorphic between male and female gonads in Asian seabass,
box plots of the relative log2 gene expression values are shown



Ravi et al. Reproductive Biology and Endocrinology 2014, 12:5 Page 11 of 14
http://www.rbej.com/content/12/1/5
All zebrafish develop a juvenile ovary before future
males undergo gonadal transformation to form the testis
[69,70,89]. Therefore, unlike the Asian seabass, the ovary
undergoes gonadal transformation to become the testis,
and the process occurs during early differentiation.
However, although the zebrafish and Asian seabass sys-
tems are developing in the opposite directions (ovary to
testis vs. testis to ovary, respectively), we found a largely
overlapping set of genes that showed differential expres-
sion in the zebrafish and Asian seabass. As such, it
seems that the underlying molecular mechanisms that
are involved in gonad transformation are conserved in
both systems. Therefore, we have developed a working
hypothesis for future studies of gonad transformation in
the Asian seabass, which are based on the zebrafish
model (Figure 6).
In this working model, genes or pathways that are in-

volved in the zebrafish ovary-to-testis transformation are
simply “reflected” during Asian seabass testis-to-ovary
transformation, in the sense that the same genes and path-
ways are also involved, except their expression changes in
the opposite direction. For example, if a gene or pathway
is upregulated during zebrafish ovary-to-testis transform-
ation, then the corresponding ortholog should be down-
regulated during seabass testis-to-ovary transformation
and vice-versa. (Note here that apoptotic genes might be
an exception because apoptosis is expected to be higher in
Figure 6 Working hypothesis for the gonad transformation process. A
gonadal transformation to form the testis. Several pathways and genes hav
proposed that the same pathways and genes are also involved in the testi
reversal of direction. The Asian seabass system is, hence, a mirror image of
top - blue) and/or expected (Asian seabass; bottom – pink) up- or downreg
transformation process.
the gonad type that will undergo the transformation com-
pared with the other type that will be produced because of
the transformation.) Hence, future studies of gonad trans-
formation in Asian seabass can take reference from the
well-studied zebrafish model because of the conservation
of expression patterns of several genes between the two
systems.

Conclusions
We have generated a platform that allowed us to look at
a moderate set of sex-related genes, which were carefully
chosen based on earlier data from other species. Our
study is the first to report such mid-throughput molecu-
lar data regarding gonad maturation in the Asian sea-
bass. The results in our study show that several genes
that are known to be involved in reproductive functions
are also conserved in their gene expression pattern in
the Asian seabass. Our data also indicate that the
process of gonad maturation has high individual variabil-
ity and complexity. The expression patterns of our cus-
tom gene set also reflected interesting aspects of the
Asian seabass gonads and provided new insights into
their sexual maturation and development. In the future,
sequencing the complete transcriptome of the species
and the use of a whole-transcriptome expression micro-
array (or RNAseq), together with the working hypothesis
that was developed using the zebrafish model, will help
ll zebrafish develop a juvenile ovary before the future males undergo
e been known to be involved in this process. Based on our results, we
s-to-ovary transformation process in the Asian seabass, despite the
the zebrafish model. The arrows show the observed (zebrafish;
ulation of the genes or pathways during the gonadal
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us further understand the molecular mechanisms that
are involved in gonad transformation and also help us
draw parallels with other systems. The use of early un-
differentiated and transforming gonads in future studies
would also be desired to more accurately identify the
genes or pathways that are involved in testis and ovary
differentiation, respectively.

Additional files

Additional file 1: Table S1. Gene symbols, with corresponding NCBI
accession numbers, and full names of the genes that were analyzed. The
identification of the genes that were obtained through this study was
performed by running the BLAST algorithm (blastn) in NCBI against the
NCBI RefSeq database.

Additional file 2: Figure S1. Ovarian and testicular maturation stages
in the Asian seabass that were obtained for this study. The classification
of the sexual maturation stages was based on Guiguen et al., Environ Biol
Fishes 1994, 39(3):231–247. Abbreviations: po – pre-vitellogenic oocytes; vi
– vitellogenic oocytes; ca – cortical alveolus oocytes; ao – atretic oocytes;
g – gonia; st – spermatids; sc – spermatogonia; sp – spermatozoa; r.sp –
residual spermatozoa.

Additional file 3: Table S2. List of degenerate primer sequences and
annealing temperatures that were used in cloning of Asian seabass
cDNAs.

Additional file 4: Table S3. The list of primer sequences that were used.

Additional file 5: Figure S2. Stability values of the candidate reference
genes that were obtained using the algorithm GeNorm. The use of three
reference genes was optimal for normalization (A), and rpl8, ef1a and ubq
had the highest gene expression stability (B).

Additional file 6: Table S4. The list of differentially expressed genes
between Asian seabass F3 and F4 ovaries was optimal for normalization
(A), and rpl8, ef1a and ubq had the highest gene expression stability (B).
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