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Abstract

Background: Kisspeptins (Kiss) are prime players in the control of reproductive function through their regulation of
gonadotropin-releasing hormone (GnRH) expression in the brain. The experimental scombroid fish, chub mackerel
(Scomber japonicus) expresses two kiss (kiss1 and kiss2) and three gnrh (gnrh1, gnrh2, and gnrh3) forms in the brain.
In the present study, we analyzed expression changes of kiss and gnrh mRNAs in the brain and corresponding
GnRH peptides in the brain and pituitary during final ovarian maturation (FOM) and ovulation.

Methods: Female fish possessing late vitellogenic oocytes were injected with GnRH analogue to induce FOM and
ovulation. Fish were observed for daily spawning activities and sampled one week post-injection at germinal vesicle
migration (GVM), oocyte hydration, ovulation, and post-ovulatory time periods. Changes in relative mRNA levels of
kiss and gnrh forms in the brain were determined using quantitative real-time PCR. Changes in GnRH peptides in
the brain and pituitary were analyzed using time-resolved fluoroimmunoassay.

Results: Both kiss7 and kiss2 mRNA levels in the brain were low at late vitellogenic stage and increased significantly
during the GVM period. However, kissT mRNA levels decreased during oocyte hydration before increasing again at
ovulatory and post-ovulatory periods. In contrast, kiss2 mRNA levels decreased at ovulatory and post-ovulatory
periods. Levels of gnrh1 mRNA in the brain increased only during post-ovulatory period. However, levels of gnrh2
and gnrh3 mRNAs were elevated during GVM and then, decreased during oocyte hydration before increasing again
at ovulatory period. During post-ovulatory period, both gnrh2 and gnrh3 mRNA levels declined. Peptide levels of all
three GnRH forms in the brain were elevated during GVM and oocyte hydration; their levels were significantly lower
during late vitellogenic, ovulatory, and post-ovulatory periods. In contrast, pituitary GnRH peptide levels did not
show any significant fluctuations, with the GnRH1 peptide levels being many-fold higher than the GnRH2 and
GnRH3 forms.

Conclusion: The results indicate increased expression of multiple Kiss and GnRH forms in the brain and suggest
their possible involvement in the regulation of FOM and ovulation in captive female chub mackerel.
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Background

In vertebrates, including teleosts, reproductive processes
are regulated by the precise coordination of neuroendo-
crine hormones acting through the brain-pituitary-gonad
(BPQG) axis. A neurohormone, gonadotropin-releasing hor-
mone (GnRH), plays a central role by stimulating the syn-
thesis and release of the pituitary gonadotropins (GtHs).
These pituitary GtHs, follicle-stimulating hormone (FSH)
and luteinizing hormone (LH), act on the gonads to
stimulate steroidogenesis, which is responsible for pro-
gression of ovarian growth and maturation [1,2]. However,
in recent years, kisspeptins, a member of the RF-amide
family, have been shown to act as an upstream endogen-
ous regulator of GnRH neurons in mammals [3,4]. Recent
studies indicate that their role in teleostean fish is also
conserved [5,6]. Kisspeptins primarily act at the level of
GnRH neurons, which express kisspeptin receptor
(GPR54 or Kisslr) [7,8].

Studies in teleosts have revealed the presence of mul-
tiple kisspeptin forms (Kissl, Kiss2) in the brain [6].
Moreover, teleosts brain expresses multiple GnRH forms
(GnRH1, GnRH2, and GnRH3) with one or two forms
regulating pituitary function [9,10]. These multiplicities
have complicated our understanding of their physio-
logical roles in the gonadal growth and maturation in
teleosts, especially in females as they exhibit different
forms of reproductive dysfunctions when reared in cap-
tivity [11].

The experimental scombroid fish model, chub mackerel
(Scomber japonicus), is a multiple batch-spawning pelagic
fish. It is one of the most commercially important marine
fish species in Japan. This species has been targeted for
aquaculture in recent years owing to a sharp decline in the
wild population, high consumer demand, use in the tuna
fishing industry as bait, and high early growth potential
[12]. In southwestern Japan, wild-caught fish are being
used for aquaculture production in sea pens [13]. How-
ever, vitellogenic females fail to undergo final ovarian mat-
uration (FOM) and ovulation in aquaculture conditions
[13,14]. Therefore, characterization and understanding of
neuroendocrine pathways acting via BPG axis is critical to
clarify the reproductive dysfunction in female chub mack-
erel [15]. Our group already standardized a protocol based
on sustained GnRH analogue delivery system to induce
FOM and ovulation in outdoor tanks during natural
spawning season (April-June) [16]. This system allows us
to sample fish at different stages of FOM and ovulation.

The chub mackerel brain expresses kissI and kiss2.
During the seasonal ovarian cycle, kiss2 mRNA levels
decrease during vitellogenic and ovarian regression
stages [17]. Also, the presence of three GnRH forms,
namely GnRH1, GnRH2, and GnRH3 (previously seab-
ream GnRH, chicken GnRH-II, and salmon GnRH
forms, respectively [18]) in the brain were demonstrated
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previously [19,20]. An increase in the pituitary peptide
levels of GnRH1 was observed during ovarian growth
and regression stages [20], in agreement with our im-
munocytochemical observation of dense GnRH1-
immunoreactive (ir) fibers localized close to FSH- and
LH-producing cells in the pituitary [19]. In female gilt-
head seabream (Sparus aurata), which also express three
GnRH forms as that of chub mackerel, an increase in
the levels of all three forms of GnRH-encoding mRNAs
in the brain was reported during FOM [21]. In the
present study, to clarify the possible involvement of kis-
speptin and GnRH system in the regulation of FOM and
ovulation, we analyzed the expression profiles of kiss and
gnrh mRNAs in the brain as well as corresponding
GnRH peptides in the pituitary of chub mackerel after
initial administration of GnRH analogue.

Methods

Fish and tissue sampling

Adult chub mackerel (2-year-old) were caught from the
wild using purse seine during autumn 2008 and reared
for six months in sea pens at a fish farm in the Oita pre-
fecture, Kyushu Island. During the following spawning
season (April-June), fish were transferred to Fishery Re-
search Laboratory of Kyushu University and moved into
3-ton outdoor concrete tanks circulated with running
seawater. The fish were acclimated and reared under
natural photoperiod and temperature. Our previous
studies indicated that female chub mackerel fail to
undergo FOM and ovulation spontaneously in this cap-
tive system [13,14]. An induced spawning protocol based
on sustained release GnRH delivery system was adopted
from previous study [16].

After 3 days of acclimation, fish were anaesthetized
with 2-phenoxyethanol (100 mg/l) and females with late
vitellogenic oocytes (600-650 pm in diameter) were
selected by ovarian biopsy using a plastic catheter tube
(2 mm internal diameter), as described previously
[13,16]. Males oozing milt under gentle abdominal pres-
sure were selected. After selection of required number
of females and males, intramuscular injection with the
GnRH agonist (D-Ala® des-Gly'®)-LHRH ethylamide
(Sigma-Aldrich, St. Louis, USA) at 400 pg/kg body
weight were performed on April 30", May 13", May
21%, and May 22", 2009 to obtain different ovarian
stages, namely germinal vesicle migration (GVM), oocyte
hydration (HY), ovulation (OV), and post-ovulation
(POV), respectively. The sampling times were 13.00,
16.00, 20.00, and 6.00 h of the day, respectively. In all
cases, injections were performed at 11.00 h. Sampling
times were fixed based on our previous data on time
course of FOM and ovulation in chub mackerel induced
by GnRHa [16]. Fish sampling for the analysis was per-
formed on day 8, based on previous reports showing the
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decline in the plasma concentration of GnRH agonist on
day 5 after intramuscular injection with the GnRH agon-
ist suspended in coconut oil in Plaice, Pleuronectes pla-
tessa [22,23]. The first spawning was observed 34-36 h
post-injection, and subsequent daily spawning occurred
between 22.00 and 24.00 h. In the following experimen-
tal system, daily spawning of chub mackerel is observed
for 20-30 days during the spawning season, when the
water temperature ranged between 18-23°C (Yoneda
et al, unpublished observations). The late vitellogenic
(LV) stage fish were sampled before the start of induced
spawning experiment.

Fish used in the experiment were sacrificed in accord-
ance with the guidelines for animal experiments pro-
posed by the Faculty of Agriculture and Graduate
Course at Kyushu University and according to the laws
(No. 105) and notifications (No. 6) of the Japanese gov-
ernment. The fork length, body, and gonad weights of
each individual were measured before tissue sampling.
The brain and pituitary of each fish were removed fol-
lowing decapitation, snap-frozen in liquid nitrogen, and
stored at —80°C until further analysis. For ovarian histo-
logical evaluation, ovary midsections from individual fish
were fixed in Bouin’s solution. To analyze the changes in
kiss and gnrh mRNA levels in the whole brain and
GnRH peptides in the whole brain and pituitary, two ex-
perimental sets of fish samples were used (Table 1). The
brain tissue from the first set was used for mRNA ana-
lysis, and the second set was used for GnRH peptide
analysis. Male fish were excluded from the analysis.

Ovarian histology

After fixation, ovary samples from each fish were dehy-
drated in a series of ethanol solutions up to 100%, embed-
ded in paraffin, and sectioned at 5-7 pm using a Leica
RM 2155 rotary microtome (Leica, Germany). Sections
were stained with hematoxylin and counterstained with
eosin. The stained tissues were subsequently observed un-
der a light microscope. Chub mackerel show asynchronous

Page 3 of 10

ovarian development, and ovarian stages were thus classi-
fied based on the developmental stages of first clutch
oocytes as (1) LV, (2) GVM, (3) HY, (4) OV, and (5) POV.

Quantitative real-time PCR analysis of kiss and gnrh
mRNAs in the brain

Quantitative real-time PCR (qRT-PCR) analysis was per-
formed on an Mx 3000P quantitative PCR system (Stra-
tagene). Total brain RNA was extracted using ISOGEN
(Nippon Gene, Japan), according to the manufacturer’s
protocol. One microgram of total RNA from each brain
sample was digested with DNase I (Invitrogen) and used
as template for reverse transcription (RT) reaction. The
cDNA synthesis was performed using Superscript III Re-
verse Transcriptase (Invitrogen) in a 20 pl reaction mix-
ture containing 2.5 mM dNTP mix, random primers
(100 ng/pl; Takara Bio Inc., Japan), 5X First-Strand buf-
fer, 0.1 M DTT, and RNase H (2 units). Based on our
previous report on full-length cDNA sequences [17,20],
gene specific primers for chub mackerel kissI, kiss2
(GenBank accession number: GU731672 and GU731673),
gnrhl, gnrh2, and gnrh3 (GenBank accession number:
HQ108193, HQ108194, and HQ108195) were designed
from the open reading frame region of each gene using
GENETYX software (Table 2) and validated with RT-PCR
and agarose gel electrophoresis. Amplification of the
beta (B)-actin (GenBank accession number: GU731674)
was used as the endogenous reference gene to correct
for differences in reverse transcription efficiency and
template quantity. The qRT-PCR was performed using
the Brilliant II Fast SYBR Green QPCR Master Mix
(Stratagene), following the manufacturer’s protocol.
The thermocycling conditions were set as 95°C for 5 min
and 40 cycles of 95°C for 10 sec and 60°C for 30 sec.
Dissociation curve analysis was also included; one cycle of
95°C for 1 min, 55°C for 30 sec, and 95°C for 30 sec. All
transcripts were quantified using a standard curve method
[24] and a previously validated qRT-PCR for kiss, gnrh,
and S-actin mRNAs [17,20]. The PCR reaction mixture

Table 1 Fork length, body weight, and gonadosomatic index of female chub mackerel analyzed in the study period

Analyses Parameters Ovarian stages
Lv GVM HY ov POV

Kiss/GnRH mRNAs Fork length (cm) 336+ 04 34.7+0.7 346%0.5 33.0+04 34.7+0.6
Body weight (g) 5236 £24.1 637.9+54.7 69234381 52214137 591.5+26.0
GSI (%) 73+14 77£16 137428 7.0£0.8 6.2+1.1
n 6 6 5 6 6

GnRH peptides Fork length (cm) 335+ 05 346 + 08 349 + 05 332+ 04 353+ 13
Body weight (g) 5219 £24.1 5786 £ 300 6599 + 440 5135+£193 694.7 £ 944
GSI (%) 6.7 £08 45 + 066 82+18 69+ 12 8027
n 6 5 4 6 4

Values are expressed as the mean + SEM. LV, late vitellogenesis; GVM, germinal vesicle migration; HY, hydration; OV, ovulation; POV, post-ovulation; GSI,

gonadosomatic index (GSl=gonad weight/body weight without gonads x 100).
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Table 2 List of primers used for real-time PCR expression
analysis of kiss and gnrh mRNAs

Primer name Nucleotide sequences (5/-3/)

Mac. Kiss1 RT Fw CTACGACTCCTTGTTGCTTIG
Mac. Kiss1 RT Rv TGATCTTCACTGTAGTTGGTGG
Mac. Kiss2 RT Fw CTGAACAGAGGACACAAGGAAG
Mac. Kiss2 RT Rv CTCAGGCTGAAACAAAGGTTAG
Mac. RT sbGnRH Fw GCTGCTTCTTGGATCAGTAGTG
Mac. RT sbGnRH Rv AACCCCTCAACTACATCATCC
Mac. RT cGnRH-Il Fw TGGGGTTGCTTCTATGTGTG
Mac. RT cGnRH-II Rv TCCTCTGAAATCTCTGGTGTG
Mac. RT sGnRH Fw ACTGGTCCTATGGATGGCTAC
Mac. RT sGnRH Rv TTCAGGAAGAGACACCACACC

(20 pl) contained 1X Brilliant II Fast SYBR Green QPCR
Master Mix, 0.1 uM each of forward and reverse primer,
and 1 ul cDNA sample. For negative control, cDNA sam-
ple was replaced with autoclaved distilled water. Duplicate
reactions were performed for the standards, target and
reference genes, from 5-6 fish collected per ovarian stage.
The amounts of target and endogenous reference gene in
experimental samples were determined from the respect-
ive standard curves using MxPrO QPCR Software.
Transcript levels of kiss and gnrh mRNAs were nor-
malized to the levels of S-actin; the data are expressed as
relative mRNA levels. Based on two qRT-PCR assays,
the intra- and interassay coefficients of variation (CV)
for kiss and gnrh mRNAs were less than 8%. All qRT-
PCR assays were conducted where practically possible
according to the MIQE (Minimum Information for
Publication of qRT-PCR experiments) guidelines by
Bustin et al. [25].
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Time-resolved fluoroimmunoassay analysis of GhnRH
peptides in the brain and pituitary

Brain and pituitary extracts were prepared following the
protocol described earlier [26,27]. Brain and pituitary
GnRH peptide levels were measured using a previously
developed time-resolved fluoroimmunoassay (TR-FIA)
system to quantify levels of GnRH1 (sbGnRH form),
GnRH2 (cGnRH-II form), and GnRH3 (sGnRH form) in
tissue extracts [28,29]. Parallelism between the typical
standard curves of each GnRH peptide and the corre-
sponding competition curves of sample extracts of chub
mackerel was confirmed with serially two-fold-diluted
standards and sample extracts in TR-FIA assay buffer
[20]. The detection range, minimum detectable limit,
and cross reactivity data are presented in our recent
publication [20]. The intra- and interassay CV values of
TR-FIA for GnRH1 were 9.0% and 19.6%, those for
GnRH2 were 7.5% and 5.8%, and those for GnRH3 were
7.4% and 10.3%. GnRH peptide levels in the brain and
pituitary samples are expressed as ng/mg tissue and ng/
pituitary, respectively.

Data analysis

All data are represented as the mean + standard error of
the mean. Changes in the levels of kiss and gnrih mRNAs
in the brain and GnRH peptides in the brain and pituit-
ary during different ovarian stages were analyzed by
one-way ANOVA, followed by Tukey’s multiple com-
parison test. p<0.05 was considered significant and dif-
ferent letters in figures represent significant differences
between different ovarian stages. All analyses were con-
ducted in GraphPad Prism4.

(POFs) with hypertrophied granulosa cells (GC). Scale bars = 100 pm.

Figure 1 Histological images of ovarian stages of chub mackerel analyzed in the study period. (A) Late vitellogenesis (LV). (B) Germinal
vesicle migration (GVM). (C) Hydration (HY). (D) Ovulation (OV). (E) Post-ovulation (POV); dashed lines indicate presence of post-ovulatory follicles
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Results

Ovarian histology

The histological images of different ovarian stages ana-
lyzed in the present study are presented in Figure 1. LV
stage oocytes (Figure 1A) were characterized by the
presence of yolk globules around centrally located ger-
minal vesicle of first clutch late vitellogenic oocytes. In
the GVM stage oocytes (Figure 1B), GV migration to the
animal pole was observed with one or two continuous
masses of yolk in the central region of the oocyte. HY
stage oocytes (Figure 1C) were transparent and enlarged
after germinal vesicle breakdown. OV stage (Figure 1D)
was characterized by the presence of freshly ovulated
eggs in the ovarian cavity. POV stage (Figure 1E) showed
the presence of 6- to 8-h old post-ovulatory follicles
(POFs) in the ovarian tissue, characterized by hypertro-
phied follicular granulosa cells [30].

Changes in kiss1 and kiss2 mRNA levels in the brain

The levels of kissI mRNA significantly increased from
the LV stage to GVM (P<0.001); declined during HY and
then increased during the OV and POV (P<0.001 for OV
and P<0.05 for POV) periods (Figure 2A). Similar to
kissI, kiss2 mRNA levels significantly increased during
the GVM stage (P<0.001). However, kiss2 mRNA levels
declined during the OV and POV periods (P<0.01 for
OV and P<0.001 for POV; Figure 2B).

Changes in gnrh1, gnrh2, and gnrh3 mRNA levels in the
brain

The levels of gnrhl mRNA showed significant increase
during the POV period (P<0.05; Figure 3A). However,
gnrh2 and gnrh3 mRNA levels significantly increased
during the GVM period (P<0.001) and then decreased
during HY period (P<0.001). Again, their levels in-
creased during OV period and then decreased during
POV period (Figure 3B, C).

Changes in GnRH1, GnRH2, and GnRH3 peptide levels in
the brain and pituitary
GnRH1, GnRH2, and GnRH3 peptide levels in the brain
were significantly elevated during the GVM (P<0.05)
and HY (P<0.001) periods (Figure 4A, B, C). GnRH1
levels significantly declined during OV and POV periods
(P<0.01; Figure 4A); GnRH2 levels were low during OV
and POV periods but did show any significant differ-
ences with HY levels (Figure 4B); GnRH3 levels signifi-
cantly declined during OV (P<0.05) and were low during
POV periods (Figure 4C).

Pituitary peptide levels of all three GnRH forms did not
show any significant differences among different ovarian
stages (See Additional file 1: Figure S1).
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Discussion

The present study is part of a series of works targeted to-
wards understanding the molecular basis of chub mack-
erel reproduction with the aim of correcting reproductive
dysfunction in captivity [15,17,19,20,31]. In the present
study, after GnRHa administration to fish, first spawning
was observed 34—36 h post-injection and subsequent daily
spawning occurred between 22.00 and 24.00 h till day 7
post-injection. Based on the previous reports demonstrat-
ing significant decline in the plasma concentration of
GnRH agonist on day 5 after intramuscular injection with
the GnRH agonist suspended in coconut oil in the Plaice
[22,23], results of the present study likely indicate an en-
dogenous profile of female chub mackerel undergoing
FOM and ovulation in captivity.

It was interesting to find that both kissI and kiss2
mRNA levels in the brain peaked during FOM stage.
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However, it has been previously demonstrated that kissI
levels did not show any fluctuation and kiss2 levels
remained low during late vitellogenic and post-spawning
periods in female chub mackerel [17]. These results sug-
gest an ovarian stage dependent expression of kissI and
kiss2 in the brain of chub mackerel. Similar observations
on differential expression changes of kiss mRNAs in the
brain at different reproductive stages of other teleosts were
reported previously. Biran et al. [32] have found that in fe-
male zebrafish (Danio rerio), kissl mRNA levels in the
brain gradually increased during the first 2—8 weeks of life
to peak in fish with large mature vitellogenic follicles at 12
weeks. Subsequently, Kitahashi et al. [33] found both kiss1
and kiss2 mRNA levels in the brain peaked 30 days after
fertilization and remained high during puberty and adult-
hood. In grass pufferfish (Takifugu niphobles), expressing
only kiss2, mRNA levels peaked in the brain and pituitary
of adult mature and spawning females [34]. Similarly, in
the brain of mature female striped bass (Morone saxatilis),
both kissI and kiss2 mRNAs, including levels of their
receptors gpr54-1 and gpr54-2, were found to be signifi-
cantly increased in comparison to juvenile and prepubertal
fish [35]. In female Senegalese sole (Solea senegalensis),
Mechaly et al. [36] found highest kiss2 mRNA expression
in the forebrain and midbrain either before or during the
spawning season. However, in Atlantic cod (Gadus mor-
hua), kiss2 mRNA expression in the brain was elevated in
the vitellogenic females [37]. Based on these results, we
hypothesize that increased kiss mRNA levels in the brain
are likely involved in the regulation of FOM and ovulation
in chub mackerel. Future studies on the investigation of
kiss expression in the brain of naturally spawning female
chub mackerel will help to clarify the proposed hypothesis.

Recent studies suggest that the expression of kisspep-
tin receptor appears to have a more critical role in regu-
lating the reproductive processes than its ligand [38]. In
sheep, administration of kisspeptin decapeptides (Kissl-
10) was shown to regulate expression of kisspeptin
receptors in the brain [39]. Similarly, in a prepubertal
yellowtail kingfish (Seriola lalandi), administration of
Kiss2-10 showed a significant dose-dependent response
in the relative mRNA expression of kisspeptin receptor
(Kiss2r) [38]. Interestingly, in zebrafish, habenula kissI
neurons were shown to coexpress kisspeptin receptor
(kissr1) [33,40]. Further, administration of Kiss1-10 was
shown to decrease habenula kissI mRNA expression,
suggesting autocrine regulation of the kissI gene in the
zebrafish [40]. In light of the above, we have recently
isolated two isoforms of kisspeptin receptors from the
brain of chub mackerel (Ohga et al., unpublished ob-
servations). Future analyses on the expression changes
of kisspeptin receptors at different reproductive stages
and ligand-receptor binding affinity will help to further
clarify the role of kisspeptin system in the control of
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reproductive processes in chub mackerel. Recently, for
the first time in fish, Beck et al. [41] revealed that ex-
ogenous administration of kisspeptin peptides has po-
tential to accelerate gonadal development in the basses
of the family Moronidae, and their hybrid. In line with
the above report, functional studies of the effects of kis-
speptin peptides on inducing gonadal growth and matur-
ation in chub mackerel merits investigation.

Chub mackerel show asynchronous type of ovarian de-
velopment, containing two or three clutches of vitello-
genic oocytes of different diameters [42]. During
spawning season, only a small percentage of first clutch
late vitellogenic oocytes undergo FOM, hydration, ovula-
tion, and spawning with successive progression of mid
and early vitellogenic oocytes [16,43]. Interestingly, kissI
but not kiss2 expression in the brain was found to in-
crease during ovulatory and post-ovulatory periods,
when the second clutch of vitellogenic oocytes is likely
to undergo FOM on the following day (See Additional
file 2: Figure S2). Our previous study [17] showed that
during late vitellogenic and post-spawning periods, kiss2
but not kissI expression in the brain decreased. The
post-spawning period analyzed in our previous study
[17] corresponds to termination of spawning season
(August) and ovaries contain mainly atretic oocytes with
degenerated late-vitellogenetic oocytes. In contrast, the
post-ovulatory period analyzed in the present study cor-
responds to spawning season (April-June) and ovaries
contain post-ovulatory follicles with two or three
clutches of vitellogenic oocytes. Moreover, it is likely
that these fish undergo repetitive spawning activity be-
fore termination of spawning season. These results sug-
gest differential expression changes of kissI and kiss2 in
the brain in response to unknown factors. The gonadal
sex steroids have been demonstrated to act in the regu-
lation of kisspeptin expression in the brain of mammals
and teleosts [44,45]. For instance, among teleost fishes
expressing two kiss forms (kissl and kiss2), ovarian es-
trogen has been shown to regulate region specific kiss
expression in the brain. In the brain of medaka (Oryzias
latipes), only kiss1 neurons in the nucleus ventral tuberis
(NVT) have shown to be up-regulated by ovarian estro-
gen [46,47]. However, in the brain of goldfish (Carassius
auratus), only kiss2 neurons in the preoptic area were
shown to be up-regulated by ovarian estrogen [48].
Interestingly, in the prepubertal zebrafish, estradiol treat-
ment was shown to enhance expression of both kissI
and kiss2 [49]. Future studies on the localization of kiss
expression in the brain and role of sex steroids on the
regulation of kiss expression will help to further define
the significance of differential expression changes of
kissI and kiss2 in the brain of chub mackerel.

Presently, for chub mackerel there is no anatomical
evidence to show that kisspeptin system is directly or
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indirectly involved in the regulation of GnRH neurons.
For the first time, Parhar et al. [7] demonstrated coex-
pression of kisspeptin receptor in GnRH1, GnRH2, and
GnRH3 neurons in Nile tilapia (Oreochromis niloticus).
Subsequently, Nocillado et al. [50] found a positive
correlation in the brain expression pattern of kisspeptin
receptor and GnRH in female grey mullet (Mugil cepha-
lus). In zebrafish, kisspeptin immunoreactive axonal
fibers were shown to interact with hypophysiotropic
GnRH3 neuronal systems [51]. Also, in the brain of
female red seabream, expression changes of kiss2
mRNA were shown to correlate with number of GnRH1-
immunoreactive neurons [52]. Recently, in striped bass,
kisspeptin receptor was colocalized in GnRH1 neurons,
indicating direct influence of kisspeptin on regulation
of GnRH1 neuronal system [35]. In the present study,
we found that an increase in kiss and kiss2 mRNA
levels coincided with an increase in gnrh2 and gnrh3
levels in the brain, including the peptide levels of all
three GnRH forms during FOM. These findings, includ-
ing the data of other studies, suggest that the role of
kisspeptins in the regulation of GnRH neuronal system
is likely conserved in the chub mackerel and merits fu-
ture investigation on the colocalization of kisspeptin
and GnRH system.

In several teleosts, either mRNA or peptide levels of
the hypophysiotropic GnRH form, i.e.,, GnRH1 in tele-
osts expressing three GnRH forms, and mainly GnRH3
in the case of those expressing two forms, have been
shown to fluctuate significantly during ovarian matur-
ation or spawning season [10,53]. However, in the brain
of gilthead seabream expressing three GnRH forms and
showing asynchronous type of ovarian development as
that of chub mackerel, elevation in the levels of all three
GnRH mRNAs and plasma LH were found 8h before
spawning, when the germinal vesicle was located next to
the micropyle of the oocyte [21]. This is in agreement
with the findings of present study showing elevations in
the levels of gnrh2 and gnrh3 mRNAs, including the
peptide levels of GnRH1, GnRH2, GnRH3 forms in the
brain during FOM stage, germinal vesicle migration (7-
10h before spawning). In the chub mackerel, we did not
find any significant rise in gnrhl mRNA levels except
during post-ovulatory period. However, it is interesting
to note that this increase also coincided with an increase
in the mRNA levels of pituitary gonadotropin subunits
(gpa, fshf3, Ihf) analyzed in the same fish samples [15].
These results suggest that the stimulatory signal of gnril
contributing to increased pituitary /4 levels resulting in
FOM, would have initiated 14-17h before spawning in
the chub mackerel. Since GnRH1 peptide levels were
many-fold higher in the brain and pituitary of female
chub mackerel during the FOM and ovulation stages, we
propose GnRH1 form as the predominant regulator of
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maturation and spawning in chub mackerel. This is fur-
ther supported by our previous data showing a dominant
role of GnRH1 form in the regulation of vitellogenesis in
chub mackerel [20].

Conclusions

The present study revealed significant fluctuations in the
levels of two kiss mRNAs in the brain during the FOM
and ovulatory periods. Further, levels of all three gnrh
mRNAs and their peptides in the brain were found to
fluctuate during FOM and ovulatory periods. These
results indicate increased expression of multiple Kiss
and GnRH forms in the brain and suggest their possible
involvement in the regulation of FOM and ovulation in
captive female chub mackerel. Future studies on the ex-
pression of kiss and gnrh mRNAs and changes in their
peptide levels in the brain of naturally spawning female
chub mackerel will be important to understanding their
role in the reproductive dysfunction of captive fish.

Additional files

Additional file 1: Figure S1. Changes in peptide levels of GnRH1 (A),
GnRH2 (B), and GnRH3 (Q) in the pituitary of adult chub mackerel during
different stages of spawning cycle. Each bar represents mean + SEM from
4-6 fish per ovarian stage (Refer Table 1). Different letters above the bars
represent significant differences (p<0.05) between stages. LV, late
vitellogenesis; GYM, germinal vesicle migration; HY, hydration; OV,
ovulation; POV, post-ovulation.

Additional file 2: Figure S2. Summarized figure showing expression
changes of kiss1 (red line), kiss2 (blue line), gnrh1 (pink line), gnrh2 (green
line), gnrh3 (purple line) MRNAs in the brain; GnRH1 (pink break line),
GnRH2 (green break line), GnRH3 (purple break line) peptides in the brain
and pituitary; gpa (brown line), fshB (yellow orange line), IhB (orange line)
MRNAs (reported previously by Nyuji et al. [15]) in the pituitary of chub
mackerel (Scomber japonicus) at different ovarian stages analyzed in the
present study.
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