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Abstract

Oxidative stress (OS), a state characterized by an imbalance between pro-oxidant molecules including reactive
oxygen and nitrogen species, and antioxidant defenses, has been identified to play a key role in the pathogenesis
of subfertility in both males and females. The adverse effects of OS on sperm quality and functions have been well
documented. In females, on the other hand, the impact of OS on oocytes and reproductive functions remains
unclear. This imbalance between pro-oxidants and antioxidants can lead to a number of reproductive diseases such
as endometriosis, polycystic ovary syndrome (PCOS), and unexplained infertility. Pregnancy complications such as
spontaneous abortion, recurrent pregnancy loss, and preeclampsia, can also develop in response to OS. Studies
have shown that extremes of body weight and lifestyle factors such as cigarette smoking, alcohol use, and
recreational drug use can promote excess free radical production, which could affect fertility. Exposures to
environmental pollutants are of increasing concern, as they too have been found to trigger oxidative states,
possibly contributing to female infertility. This article will review the currently available literature on the roles of
reactive species and OS in both normal and abnormal reproductive physiological processes. Antioxidant
supplementation may be effective in controlling the production of ROS and continues to be explored as a potential
strategy to overcome reproductive disorders associated with infertility. However, investigations conducted to date
have been through animal or in vitro studies, which have produced largely conflicting results. The impact of OS on
assisted reproductive techniques (ART) will be addressed, in addition to the possible benefits of antioxidant
supplementation of ART culture media to increase the likelihood for ART success. Future randomized controlled
clinical trials on humans are necessary to elucidate the precise mechanisms through which OS affects female
reproductive abilities, and will facilitate further explorations of the possible benefits of antioxidants to treat infertility.
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1. Background
Oxidative stress (OS) is caused by an imbalance between
pro-oxidants and antioxidants [1]. This ratio can be
altered by increased levels of reactive oxygen species
(ROS) and/or reactive nitrogen species (RNS), or a de-
crease in antioxidant defense mechanisms [2-4]. A cer-
tain amount of ROS is needed for the progression of
normal cell functions, provided that upon oxidation,
every molecule returns to its reduced state [5]. Excessive
ROS production, however, may overpower the body’s
natural antioxidant defense system, creating an environ-
ment unsuitable for normal female physiological reac-
tions [1] (Figure 1). This, in turn, can lead to a number
of reproductive diseases including endometriosis, poly-
cystic ovary syndrome (PCOS), and unexplained infertil-
ity. It can also cause complications during pregnancy,
such spontaneous abortion, recurrent pregnancy loss

(RPL), preeclampsia, and intrauterine growth restriction
(IUGR) [6]. This article will review current literature
regarding the role of ROS, RNS, and the effects of OS in
normal and disturbed physiological processes in both
the mother and fetus. The impact of maternal lifestyle
factors exposure to environmental pollutants will also be
addressed with regard to female subfertility and abnor-
mal pregnancy outcomes. Obesity and malnutrition [4],
along with controllable lifestyle choices such as smoking,
alcohol, and recreational drug use [7] have been linked
to oxidative disturbances. Environmental and occupa-
tional exposures to ovo-toxicants can also alter repro-
ductive stability [8-10]. Infertile couples often turn to
assisted reproductive techniques (ART) to improve their
chances of conception. The role of supplementation of
ART culture media with antioxidants continues to be of
interest to increase the probability for ART success.

2. Reactive oxygen species and their physiological
actions
Reactive oxygen species are generated during crucial
processes of oxygen (O2) consumption [11]. They consist
of free and non-free radical intermediates, with the
former being the most reactive. This reactivity arises
from one or more unpaired electrons in the atom’s outer
shell. In addition, biological processes that depend on
O2 and nitrogen have gained greater importance because
their end-products are usually found in states of high
metabolic requirements, such as pathological processes
or external environmental interactions [2].
Biological systems contain an abundant amount of O2.

As a diradical, O2 readily reacts rapidly with other radi-
cals. Free radicals are often generated from O2 itself, and

Figure 1 Factors contributing to the development of oxidative stress and their impacts on female reproduction.
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partially reduced species result from normal metabolic
processes in the body. Reactive oxygen species are prom-
inent and potentially toxic intermediates, which are
commonly involved in OS [12].
The Haber-Weiss reaction, given below, is the major

mechanism by which the highly reactive hydroxyl radical
(OH*) is generated [13]. This reaction can generate more
toxic radicals through interactions between the super-
oxide (SO) anion and hydrogen peroxide (H2O2) [12,13].

Oþ�
2 þH2O2 > O2 þOH� þOH

�

However, this reaction was found to be thermodynam-
ically unfavorable in biological systems.
The Fenton reaction, which consists of two reactions,

involves the use of a metal ion catalyst in order to gener-
ate OH*, as shown below [12].

Fe3þ þO⋅�
2 > Fe2þ þO2

Fe2þ þH2O2 > Fe3þ þOH� þOH�

Certain metallic cations, such as copper (Cu) and iron
(Fe2+/3+) may contribute significantly to the generation
of ROS. On the other hand, metallic ion chelators, such
as ethylenediamine tetra-acetic acid (EDTA), and trans-
ferrin can bind these metal cations, and thereby inhibit
their ROS-producing reactivity [14].
Physiological processes that use O2 as a substrate, such

as oxygenase reactions and electron transfer (ET) reac-
tions, create large amounts of ROS, of which the SO
anion is the most common [5]. Most ROS are produced
when electrons leak from the mitochondrial respiratory
chain, also referred to as the electron transport chain
(ETC) [11]. Other sources of the SO anion include the
short electron chain in the endoplasmic reticulum (ER),
cytochrome P450, and the enzyme nicotinamide adenine
dinucleotide phosphate (NADPH) oxidase, which gener-
ates substantial quantities –especially during early
pregnancy-- and other oxido-reductases [2,11].
Mitochondria are central to metabolic activities in

cells, so any disturbance in their functions can lead to
profoundly altered generation of adenine triphosphate
(ATP). Energy from ATP is essential for gamete func-
tions. Although mitochondria are major sites of ROS
production, excessive ROS can affect functions of the
mitochondria in oocytes and embryos. This mitochon-
drial dysfunction may lead to arrest of cell division, trig-
gered by OS [15,16]. A moderate increase in ROS levels
can stimulate cell growth and proliferation, and allows
for the normal physiological functions. Conversely, ex-
cessive ROS will cause cellular injury (e.g., damage to
DNA, lipid membranes, and proteins).
The SO anion is detoxified by superoxide dismutase

(SOD) enzymes, which convert it to H2O2. Catalase and
glutathione peroxidase (GPx) further degrade the end-

product to water (H2O). Although H2O2 is technically
not a free radical, it is usually referred to as one due to
its involvement in the generation and breakdown of free
radicals. The antioxidant defense must counterbalance
the ROS concentration, since an increase in the SO
anion and H2O2 may generate a more toxic hydroxyl
radical; OH* modifies purines and pyrimidines, causing
DNA strand breaks and DNA damage [17].
By maintaining tissue homeostasis and purging

damaged cells, apoptosis plays a key role in normal de-
velopment. Apoptosis results from overproduction of
ROS, inhibition of ETC, decreased antioxidant defenses,
and apoptosis-activating proteins, amongst others [18].

3. Reactive nitrogen species
Reactive nitrogen species include nitric oxide (NO) and
nitrogen dioxide (NO2) in addition to non-reactive spe-
cies such as peroxynitrite (ONOO−), and nitrosamines
[19]. In mammals, RNS are mainly derived from NO,
which is formed from O2 and L-arginine, and its reac-
tion with the SO anion, which forms peroxynitrite [2].
Peroxynitrite is capable of inducing lipid peroxidation
and nitrosation of many tyrosine molecules that nor-
mally act as mediators of enzyme function and signal
transduction [19].
Nitric oxide is a free radical with vasodilatory properties

and is an important cellular signaling molecule involved in
many physiological and pathological processes. Although
the vasodilatory effects of NO can be therapeutic, exces-
sive production of RNS can affect protein structure and
function, and thus, can cause changes in catalytic enzyme
activity, alter cytoskeletal organization, and impair cell sig-
nal transduction [5,11]. Oxidative conditions disrupt vaso-
motor responses [20] and NO-related effects have also
been proposed to occur through ROS production from
the interaction between NO and the SO anion [21]. In the
absence of L-arginine [19] and in sustained settings of low
antioxidant status [20], the intracellular production of the
SO anion increases. The elevation of the SO anion levels
promotes reactions between itself and NO to generate
peroxynitrite, which exacerbates cytotoxicity. As reviewed
by Visioli et al (2011), the compromised bioavailability of
NO is a key factor leading to the disruption of vascular
functions related to infertile states [20]. Thus, cell survival
is largely dependent on sustained physiological levels of
NO [22].
Within a cell, the actions of NO are dependent on its

levels, the redox status of the cell, and the amount of
metals, proteins, and thiols, amongst other factors [19].
Since the effects of NO are concentration dependent, cyc-
lic guanosine monophosphate (cGMP) has been thought
to mediate NO-associated signal transduction as a second
messenger at low (<1μM) concentrations of NO [19,23].
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The nitric oxide synthase (NOS) enzyme system catalyzes
the formation of NO from O2 and L-arginine using
NADPH as an electron donor [24] and are comprised of
the following isoforms: neuronal NOS (nNOS or NOS I),
inducible NOS (iNOS or NOS II), and endothelial NOS
(eNOS or NOS III). In general, NO produced by eNOS and
nNOS appears to regulate physiologic functions while
iNOS production of NO is more active in pathophysio-
logical situations. The NOS family is encoded by the genes
for their isoforms. The nNOS isoform functions as a neuro-
transmitter and iNOS is expressed primarily in macro-
phages following induction by cytokines. The activity of
eNOS is increased in response to the luteinizing hormone
(LH) surge and human chorionic gonadotropin (hCG) [11].
The modulation of eNOS activity by increased intra-

cellular calcium concentrations ([Ca2+]i), which may
occur acutely in response to agonists, including estradiol
[25] and vascular endothelial growth factor (VEGF) [26].
However, the continued influx of Ca2+ across the plasma
membrane that results in elevated [Ca2+]i, is known as
capacitative calcium entry (CCE), and is essential for
maintaining eNOS activity [27] and regulating vascular
tone [28,29]. In normal long-term conditions such as
healthy pregnancies, vasodilation is particularly promin-
ent in the uterine vessels [28,29]. During pregnancy,
adaptation to sustained [Ca2+]i influx and elevation
through the CCE response is imperative to eNOS activa-
tion [30-33] and is chiefly noted by vascular changes
associated with normal pregnancy. Hypoxic conditions
also regulate NOS [34] and enhanced expression of
eNOS has been reported in ovine uterine arteries in re-
sponse to chronic hypoxia [35]. Conversely, suboptimal
vascular endothelial production of NO has been shown
to cause hypertension not only in eNOS knockout mice
[36,37], but more importantly, in humans [38]. Further-
more, failure of pregnancy states to adapt to sustained
vasodilation [20] induced by the CCE signaling response
can lead to complications such as IUGR [28] and pree-
clampsia, in which hypertension could be fatal [30].

4. Antioxidant defense mechanisms
Antioxidants are scavengers that detoxify excess ROS, which
helps maintain the body’s delicate oxidant/antioxidant bal-
ance. There are two types of antioxidants: enzymatic and
non-enzymatic.

4.1. Enzymatic antioxidants
Enzymatic antioxidants possess a metallic center, which gives
them the ability to take on different valences as they transfer
electrons to balance molecules for the detoxification process.
They neutralize excess ROS and prevent damage to cell
structures. Endogenous antioxidants enzymes include SOD,
catalase, GPx, and glutathione oxidase.

Dismutation of the SO anion to H2O2 by SOD is funda-
mental to anti-oxidative reactions. The enzyme SOD
exists as three isoenzymes [11]: SOD 1, SOD 2, and SOD
3. SOD 1 contains Cu and zinc (Zn) as metal co-factors
and is located in the cytosol. SOD 2 is a mitochondrial iso-
form containing manganese (Mn), and SOD 3 encodes the
extracellular form. SOD 3 is structurally similar to Cu,Zn-
SOD, as it contains Cu and Zn as cofactors.
The glutathione (GSH) family of enzymes includes

GPx, GST, and GSH reductase. GPx uses the reduced
form of GSH as an H+ donor to degrade peroxides. De-
pletion of GSH results in DNA damage and increased
H2O2 concentrations; as such, GSH is an essential anti-
oxidant. During the reduction of H2O2 to H2Oand O2,
GSH is oxidized to GSSG by GPx. Glutathione reductase
participates in the reverse reaction, and utilizes the
transfer of a donor proton from NADPH to GSSG, thus,
recycling GSH [39].
Glutathione peroxidase exists as five isoforms in the

body: GPx1, GPx2, GPx3, GPx4 [11], and GPx5 [39].
GPx1 is the cytosolic isoform that is widely distributed in
tissues, while GPx2 encodes a gastrointestinal form with
no specific function; GPx3 is present in plasma and epi-
didymal fluid. GPx 4 specifically detoxifies phospholipid
hydroperoxide within biological membranes. Vitamin E
(α-tocopherol) protects GPx4-deficient cells from cell
death [40]. GPx5 is found in the epididymis [39]. Glutathi-
one is the major thiol buffer in cells, and is formed in the
cytosol from cysteine, glutamate, and glycine. Its levels are
regulated through its formation de-novo, which is cata-
lyzed by the enzymes γ-glutamylcysteine synthetase and
glutathione synthetase [4,11]. In cells, GSH plays multiple
roles, which include the maintenance of cells in a reduced
state and formation of conjugates with some hazardous
endogenous and xenobiotic compounds.

4.2. Non-enzymatic antioxidants
The non-enzymatic antioxidants consist of dietary supple-
ments and synthetic antioxidants such as vitamin C, GSH,
taurine, hypotaurine, vitamin E, Zn, selenium (Se), beta-
carotene, and carotene [41].
Vitamin C (ascorbic acid) is a known redox catalyst

that can reduce and neutralize ROS. Its reduced form is
maintained through reactions with GSH and can be cat-
alyzed by protein disulfide isomerase and glutaredoxins.
Glutathione is a peptide found in most forms of

aerobic life as it is made in the cytosol from cysteine,
glutamate, and glycine [42]; it is also the major non-
enzymatic antioxidant found in oocytes and embryos. Its
antioxidant properties stem from the thiol group of its
cysteine component, which is a reducing agent that
allows it to be reversibly oxidized and reduced to its
stable form [42]. Levels of GSH are regulated by its for-
mation de-novo, which is catalyzed by the enzymes
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gamma-GCS and glutathione synthetase [4,11]. Glutathi-
one participates in reactions, including the formation of
glutathione disulfide, which is transformed back to GSH
by glutathione reductase at the expense of NADPH [17].
Cysteine and cysteamine (CSH) increase the GSH con-

tent of the oocyte. Cysteamine also acts as a scavenger
and is an antioxidant essential for the maintenance of
high GSH levels. Furthermore, CSH can be converted to
another antioxidant, hypotaurine [43,44].
The concentrations of many amino acids, including

taurine, fluctuate considerably during folliculogenesis.
Taurine and hypotaurine are scavengers that help main-
tain redox homeostasis in gametes. Both neutralize lipid
peroxidation products, and hypotaurine further neutra-
lizes hydroxyl radicals [44].
Like GSH, the Thioredoxin (Trx) system regulates

gene functions and coordinates various enzyme activ-
ities. It detoxifies H2O2 and converts it to its reduced
state via Trx reductase [45]. Normally, Trx is bound to
apoptosis-regulating signal kinase (ASK) 1, rendering it
inactive. However, when the thiol group of Trx is oxi-
dized by the SO anion, ASK1 detaches from Trx and
becomes active leading to enhanced apoptosis. ASK1
can also be activated by exposure to H2O2 or hypoxia-
reoxygenation, and inhibited by vitamins C and E [2].
The Trx system also plays a role in female reproduction
and fetal development by being involved in cell growth,
differentiation, and death. Incorrect protein folding and
formation of disulfide bonds can occur through H+ ion
release from the thiol group of cysteine, leading to disor-
dered protein function, aggregation, and apoptosis [2].
Vitamin E (α-tocopherol) is a lipid soluble vitamin with

antioxidant activity. It consists of eight tocopherols and
tocotrienols. It plays a major role in antioxidant activities
because it reacts with lipid radicals produced during lipid
peroxidation [42]. This reaction produces oxidized α-
tocopheroxyl radicals that can be transformed back to the
active reduced form by reacting with other antioxidants
like ascorbate, retinol, or ubiquinol.
The hormone melatonin is an antioxidant that, unlike

vitamins C and E and GSH, is produced by the human
body. In contrast to other antioxidants, however, mela-
tonin cannot undergo redox cycling; once it is oxidized,
melatonin is unable to return to its reduced state be-
cause it forms stable end-products after the reaction
occurs. Transferrin and ferritin, both iron-binding pro-
teins, play a role in antioxidant defense by preventing
the catalyzation of free radicals through chelation [46].
Nutrients such as Se, Cu, and Zn are required for the ac-
tivity of some antioxidant enzymes, although they have
no antioxidant action themselves.
Oxidative stress occurs when the production of ROS

exceeds levels of antioxidants and can have damaging effects
on both male and female reproductive abilities. However, it

should be recalled that OS is also considered a normal
physiological state, which is essential for many metabolic
processes and biological systems to promote cell survival.

5. Mechanisms of redox cell signaling
Redox states of oocyte and embryo metabolism are heavily
determined by ETs that lead to oxidation or reduction, and
are thus termed redox reactions [18]. Significant sources of
ROS in Graffian follicles include macrophages, neutrophils,
and granulosa cells. During folliculogenesis, oocytes are
protected from oxidative damage by antioxidants such as
catalase, SOD, glutathione transferase, paraoxanase, heat
shock protein (HSP) 27, and protein isomerase [47].
Once assembled, ROS are capable of reacting with

other molecules to disrupt many cellular components
and processes. The continuous production of ROS in ex-
cess can induce negative outcomes of many signaling
processes [18]. Reactive oxygen species do not always
directly target the pathway; instead, they may produce
abnormal outcomes by acting as second messengers in
some intermediary reactions [48].
Damage induced by ROS can occur through the modu-

lation of cytokine expression and pro-inflammatory sub-
strates via activation of redox-sensitive transcription
factors AP-1, p53, and NF-kappa B. Under stable condi-
tions, NF-kappa B remains inactive by inhibitory subunit
I-kappa B. The increase of pro-inflammatory cytokines
interleukin (IL) 1-beta and tumor necrosis factor (TNF)-
alpha activates the apoptotic cascade, causing cell death.
Conversely, the antioxidants vitamin C and E, and sulfala-
zine can prevent this damage by inhibiting the activation
of NF-kappa B [3].
Deleterious attacks from excess ROS may ultimately end

in cell death and necrosis. These harmful attacks are
mediated by the following more specialized mechanisms
[2].

A. Opening of ion channels: Excess ROS leads to the
release of Ca2+ from the ER, resulting in
mitochondrial permeability. Consequently, the
mitochondrial membrane potential becomes
unstable and ATP production ceases.

B. Lipid peroxidation: This occurs in areas where
polyunsaturated fatty acid side chains are prevalent.
These chains react with O2, creating the peroxyl
radical, which can obtain H+ from another fatty
acid, creating a continuous reaction. Vitamin E can
break this chain reaction due to its lipid solubility
and hydrophobic tail.

C. Protein modifications: Amino acids are targets for
oxidative damage. Direct oxidation of side chains
can lead to the formation of carbonyl groups.

D. DNA oxidation: Mitochondrial DNA is particularly
prone to ROS attack due to the presence of O2

- in
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the ETC, lack of histone protection, and absence of
repair mechanisms.

Reactive oxygen species are known to promote tyrosine
phosphorylation by heightening the effects of tyrosine
kinases and preventing those of tyrosine phosphatases.
The inhibition of tyrosine phosphatases by ROS takes
place at the cysteine residue of their active site. One pos-
sible mechanism of this inhibition is that it occurs through
the addition of H2O2, which binds the cysteine residue
and converts it to sulfenic acid. Another possible mechan-
ism of inhibition is through the production of GSH via re-
duction from its oxidized form of GSSG; this conversion
alters the catalytic cysteine residue site [49].
The human body is composed of many important sig-

naling pathways. Amongst the most important signaling
pathways in the body are the mitogen-activated protein
kinases (MAPK). MAPK pathways are major regulators
of gene transcription in response to OS. Their signaling
cascades are controlled by phosphorylation and depho-
sphorylation of serine and/or threonine residues. This
process promotes the actions of receptor tyrosine
kinases, protein tyrosine kinases, receptors of cytokines,
and growth factors [50,51]. Excessive amounts of ROS
can disrupt the normal effects of these cascade-signaling
pathways. Other pathways that can be activated by ROS
include the c-Jun N-terminal kinases (JNK) and p38
pathways. The JNK pathway prevents phosphorylation
due to its inhibition by the enzyme GST. The addition
of H2O2 to this cascade can disrupt the complex and
promote phosphorylation [52,53]. The presence of ROS
can also dissociate the ASK1–Trx complex by activating
the kinase [54] through the mechanism discussed earlier.
The concentration of Ca2+ must be tightly regulated as

it plays an important role in many physiological pro-
cesses. The presence of excessive amounts of ROS can
increase Ca2+ levels, thereby promoting its involvement
in pathways such as caldmodulin-dependent pathways
[49,55]. Hypoxia-inducible factors (HIF) are controlled
by O2 concentration. They are essential for normal em-
bryonic growth and development. Low O2 levels can
alter HIF regulatory processes by activating erythropoi-
etin, another essential factor for proper embryonic
growth and development [55,56].
The preservation of physiological cellular functions

depends on the homeostatic balance between oxidants
and antioxidants. Oxidative stress negatively alters cell-
signaling mechanisms, thereby disrupting the physiologic
processes required for cell growth and proliferation.

6. Oxidative stress in male reproduction- a brief
overview
Almost half of infertility cases are caused by male repro-
ductive pathologies [57], which can be congenital or

acquired. Both types of pathology can impair spermato-
genesis and fertility [58,59]. In males, the role of OS in
pathologies has long been recognized as a significant
contributor to infertility. Men with high OS levels or
DNA damaged sperm are likely to be infertile [60].
The key predictors of fertilization capability are sperm

count and motility. These essential factors can be dis-
turbed by ROS [60] and much importance has been given
to OS as a major contributor to infertility in males [61].
Low levels of ROS are necessary to optimize the mat-

uration and function of spermatozoa. The main sources
of seminal ROS are immature spermatozoa and leuko-
cytes [4]. In addition, acrosome reactions, motility,
sperm capacitation, and fusion of the sperm membrane
and the oolemma are especially dependent on the pres-
ence of ROS [4,60].
On the other hand, inappropriately high levels of ROS

produced by spermatozoa trigger lipid peroxidation, which
damages the sperm’s plasma membrane and causes OS.
Abnormal and non-viable spermatozoa can generate add-
itional ROS and RNS, which can disrupt normal sperm
development and maturation and may even result in
apoptosis [4]. Specifically, H2O2 and the SO anion are per-
ceived as main instigators of defective sperm functioning
in infertile males [60]. Abnormally high seminal ROS pro-
duction may alter sperm motility and morphology, thus
impairing their capacity to fertilize [62].
The contribution of OS to male infertility has been well

documented and extensively studied. On the other hand,
the role of OS in female infertility continues to emerge as
a topic of interest, and thus, the majority of conducted
studies provide indirect and inconclusive evidence regard-
ing the oxidative effects on female reproduction.

7. Oxidative stress in female reproduction
Each month, a cohort of oocytes begin to grow and de-
velop in the ovary, but meiosis I resumes in only one of
them, the dominant oocyte. This process is targeted by
an increase in ROS and inhibited by antioxidants. In
contrast, the progression of meiosis II is promoted by
antioxidants [42], suggesting that there is a complex re-
lationship between ROS and antioxidants in the ovary.
The increase in steroid production in the growing follicle
causes an increase in P450, resulting in ROS formation.
Reactive oxygen species produced by the pre-ovulatory
follicle are considered important inducers for ovulation
[4]. Oxygen deprivation stimulates follicular angiogen-
esis, which is important for adequate growth and devel-
opment of the ovarian follicle. Follicular ROS promotes
apoptosis, whereas GSH and follicular stimulating hor-
mone (FSH) counterbalance this action in the growing
follicle. Estrogen increases in response to FSH, triggering
the generation of catalase in the dominant follicle, and
thus avoiding apoptosis [42].
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Ovulation is essential for reproduction and com-
mences by the LH surge, which promotes important
physiological changes that result in the release of a ma-
ture ovum. An overabundance of post-LH surge inflam-
matory precursors generates ROS; on the other hand,
depletion of these precursors impairs ovulation [46].
In the ovaries, the corpus luteum is produced after ovu-

lation; it produces progesterone, which is indispensable for
a successful pregnancy. Reactive oxygen species are also
produced in the corpus luteum and are key factors for
reproduction. When pregnancy does not occur, the corpus
luteum regresses. Conversely, when pregnancy takes place,
the corpus luteum persists [63]. A rapid decline in proges-
terone is needed for adequate follicle development in the
next cycle. Cu,Zn-SOD increases in the corpus luteum dur-
ing the early to mid-luteal phase and decreases during the
regression phase. This activity parallels the change in pro-
gesterone concentration, in contrast to lipid peroxide
levels, which increase during the regression phase. The de-
crease in Cu,Zn-SOD concentration could explain the in-
crease in ROS concentration during regression. Other
possible explanations for decreased Cu,Zn-SOD are an in-
crease in prostaglandin (PG) F2-alpha or macrophages, or
a decrease in ovarian blood flow [42]. Prostaglandin F2-
alpha stimulates production of the SO anion by luteal cells
and phagocytic leukocytes in the corpus luteum. Decreased
ovarian blood flow causes tissue damage by ROS produc-
tion. Concentrations of Mn-SOD in the corpus luteum
during regression increase to scavenge the ROS produced
in the mitochondria by inflammatory reactions and cyto-
kines. Complete disruption of the corpus luteum causes a
substantial decrease of Mn-SOD in the regressed cell. At
this point, cell death is imminent [46]. The Cu,Zn-SOD en-
zyme is intimately related to progesterone production,
while Mn-SOD protects luteal cells from OS-induced in-
flammation [42].
During normal pregnancy, leukocyte activation pro-

duces an inflammatory response, which is associated
with increased production of SO anions in the 1st tri-
mester [64,65]. Importantly, OS during the 2nd trimester
of pregnancy is considered a normal occurrence, and is
supported by mitochondrial production of lipid perox-
ides, free radicals, and vitamin E in the placenta that
increases as gestation progresses [66-69].

8. Age-related fertility decline and menopause
Aging is defined as the gradual loss of organ and tissue
functions. Oocyte quality decreases in relation to in-
creasing maternal age. Recent studies have shown that
low quality oocytes contain increased mtDNA damage
and chromosomal aneuploidy, secondary to age-related
dysfunctions. These mitochondrial changes may arise
from excessive ROS, which occurs through the opening
of ion channels (e.g. loss of Ca2+ homeostasis). Levels of

8-oxodeoxyguanosine (8-OHdG), an oxidized derivative
of deoxyguanosine, are higher in aging oocytes. In fact,
8-OHdG is the most common base modification in mu-
tagenic damage and is used as a biomarker of OS [70].
Oxidative stress, iron stores, blood lipids, and body fat

typically increase with age, especially after menopause.
The cessation of menses leads to an increase in iron
levels throughout the body. Elevated iron stores could
induce oxidative imbalance, which may explain why the
incidence of heart disease is higher in postmenopausal
than premenopausal women [71].
Menopause also leads to a decrease in estrogen and

the loss of its protective effects against oxidative damage
to the endometrium [72]. Hormone replacement therapy
(HRT) may be beneficial against OS by antagonizing the
effects of lower antioxidant levels that normally occurs
with aging. However, further studies are necessary to de-
termine if HRT can effectively improve age-related fertil-
ity decline.

9. Reproductive diseases
9.1. Endometriosis
Endometriosis is a benign, estrogen-dependent, chronic
gynecological disorder characterized by the presence of
endometrial tissue outside the uterus. Lesions are usually
located on dependent surfaces in the pelvis and most
often affect the ovaries and cul-de-sac. They can also be
found in other areas such as the abdominal viscera, the
lungs, and the urinary tract. Endometriosis affects 6% to
10% of women of reproductive age and is known to be
associated with pelvic pain and infertility [73], although
it is a complex and multifactorial disease that cannot be
explained by a single theory, but by a combination of
theories. These may include retrograde menstruation,
impaired immunologic response, genetic predisposition,
and inflammatory components [74]. The mechanism
that most likely explains pelvic endometriosis is the the-
ory of retrograde menstruation and implantation. This
theory poses that the backflow of endometrial tissue
through the fallopian tubes during menstruation
explains its extra-tubal locations and adherence to the
pelvic viscera [75].
Studies have reported mixed results regarding detec-

tion of OS markers in patients with endometriosis.
While some studies failed to observe increased OS in
the peritoneal fluid or circulation of patients with endo-
metriosis [76-78], others have reported increased levels
of OS markers in those with the disease [79-83]. The
peritoneal fluid of patients have been found to contain
high concentrations of malondialdehyde (MDA), pro-
inflammatory cytokines (IL-6, TNF-alpha, and IL-beta),
angiogenic factors (IL-8 and VEGF), monocyte chemo-
attractant protein-1 [82], and oxidized LDL (ox-LDL)
[84]. Pro-inflammatory and chemotactic cytokines play a
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central role in the recruitment and activation of phago-
cytic cells, which are the main producers of both ROS
and RNS [82].
Non-enzymatic peroxidation of arachidonic acid leads

to the production of F2-isoprostanes [85]. Lipid peroxida-
tion, and thus, OS in vivo [83], has been demonstrated by
increased levels of the biomarker 8-iso-prostaglandin F2-
alpha (8-iso-PGF2-alpha) [86-88]. Along with its vasocon-
strictive properties, 8-iso-PGF2-alpha promotes necrosis
of endothelial cells and their adhesion to monocytes and
polymorphonuclear cells [89]. A study by Sharma et al
(2010) measured peritoneal fluid and plasma levels of 8-
iso-PGF2-alpha in vivo of patients with endometriosis.
They found that 8-iso-PGF2-alpha levels in both the urine
and peritoneal fluid of patients with endometriosis were
significantly elevated when compared with those of con-
trols [83]. Levels of 8-iso-PGF2-alpha are likely to be use-
ful in predicting oxidative status in diseases such as
endometriosis, and might be instrumental in determining
the cause of concurrent infertility.
A collective term often used in reference to individual

members of the HSP70 family is ‘HSP70’ [90]. The main
inducible forms of HSP70 are HSPA1A and HSPA1B
[91], also known as HSP70A and HSP70 B respectively
[90]. Both forms have been reported as individual mar-
kers of different pathological processes [92].
Heat shock protein 70 B is an inducible member of

HSP family that is present in low levels under normal
conditions [93] and in high levels [94] under situations
of stress. It functions as a chaperone for proteostatic
processes such as folding and translocation, while main-
taining quality control [95]. It has also been noted to
promote cell proliferation through the suppression of
apoptosis, especially when expressed in high levels, as
noted in many tumor cells [94,96-98]. As such, HSP70 is
overexpressed when there is an increased number of
misfolded proteins, and thus, an overabundance of ROS
[94]. The release of HSP70 during OS stimulates the ex-
pression of inflammatory cytokines [93,99] TNF-alpha,
IL-1 beta, and IL-6, in macrophages through toll-like
receptors (e.g. TLR 4), possibly accounting for pelvic in-
flammation and growth of endometriotic tissue [99].
Another inducible form of HSP70 known as HSP70b′

has recently become of great interest as it presents only
during conditions of cellular stress [100]. Lambrinoudaki
et al (2009) have reported high concentrations of HSP70b′
in the circulation of patients with endometriosis [101].
Elevated circulating levels of HSP70b′ may indicate the
presence of OS outside the pelvic cavity when ectopic
endometrial tissue is found in distal locations [101].
Fragmentation of HSP70 has been suggested to result in

unregulated expression of transcription factor NF-kappa B
[102], which may further promote inflammation within
the pelvic cavity of patients with endometriosis. Oxidants

have been proposed to encourage growth of ectopic endo-
metrial tissue through the induction of cytokines and
growth factors [103]. Signaling mediated by NF-kappa B
stimulates inflammation, invasion, angiogenesis, and cell
proliferation; it also prevents apoptosis of endometriotic
cells. Activation of NF-kappa B by OS has been detected
in endometriotic lesions and peritoneal macrophages of
patients with endometriosis [104]. N-acetylcysteine (NAC)
and vitamin E are antioxidants that limit the proliferation
of endometriotic cells [105], likely by inhibiting activation
of NF-kappa B [106]. Future studies may implicate a
therapeutic effect of NAC and vitamin E supplementation
on endometriotic growth.
Similar to tumor cells, endometriotic cells [107] have

demonstrated increased ROS and subsequent cellular pro-
liferation, which have been suggested to occur through ac-
tivation of MAPK extracellular regulated kinase (ERK1/2)
[108]. The survival of human endometriotic cells through
the activation of MAPK ERK 1/2, NF-kappa B, and other
pathways have also been attributed to PG E2, which acts
through receptors EP2 and EP4 [109] to inhibit apoptosis
[110]. This may explain the increased expressions of these
proteins in ectopic versus eutopic endometrial tissue [109].
Iron mediates production of ROS via the Fenton reac-

tion and induces OS [111]. In the peritoneum of patients
with endometriosis, accumulation of iron and heme
around endometriotic lesions [112] from retrograde men-
struation [113] up-regulates iNOS activity and generation
of NO by peritoneal macrophages [114]. Extensive degrad-
ation of DNA by iron and heme accounts for their consid-
erable free radical activity. Chronic oxidative insults from
iron buildup within endometriotic lesions may be a key
factor in the development of the disease [115].
Naturally, endometriotic cysts contain high levels of free

iron as a result of recurrent cyclical hemorrhage into them
compared to other types of ovarian cysts. However, high
concentrations of lipid peroxides, 8-OHdG, and antioxi-
dant markers in endometrial cysts indicate lipid peroxida-
tion, DNA damage, and up-regulated antioxidant defenses
respectively. These findings strongly suggest altered redox
status within endometrial cysts [111].
Potential therapies have been suggested to prevent

iron-stimulated generation of ROS and DNA damage.
Based on results from their studies of human endomet-
rium, Kobayashi et al (2009) have proposed a role for
iron chelators such as dexrazoxane, deferoxamine, and
deferasirox to prevent the accumulation of iron in and
around endometriotic lesions [115]. Future studies in-
vestigating the use of iron chelators may prove beneficial
in the prevention of lesion formation and the reduction
of lesion size.
Many genes encoding antioxidant enzymes and proteins

are recruited to combat excessive ROS and to prevent cell
damage. Amongst these are Trx and Trx reductase, which
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sense altered redox status and help maintain cell survival
against ROS [116]. Total thiol levels, used to predict total
antioxidant capacity (TAC), have been found to be
decreased in women with pelvic endometriosis and may
contribute to their status of OS [81,101]. Conversely,
results from a more recent study failed to correlate anti-
oxidant nutrients with total thiol levels [117].
Patients with endometriosis tend to have lower preg-

nancy rates than women without the disease. Low oocyte
and embryo quality in addition to spermatotoxic peri-
toneal fluid may be mediated by ROS and contribute to
the subfertility experienced by patients with endometri-
osis [118]. The peritoneal fluid of women with endomet-
riosis contains low concentrations of the antioxidants
ascorbic acid [82] and GPx [81]. The reduction in GPx
levels was proposed to be secondary to decreased pro-
gesterone response of endometrial cells [119]. The link
between gene expression for progesterone resistance and
OS may facilitate a better understanding of the patho-
genesis of endometriosis.
It has been suggested that diets lacking adequate

amounts of antioxidants may predispose some women
to endometriosis [120]. Studies have shown decreased
levels of OS markers in people who consume antioxidant
rich diets or take antioxidant supplements [121-124]. In
certain populations, women with endometriosis have
been observed to have a lower intake of vitamins A, C
[125], E [125-127], Cu, and Zn [125] than fertile women
without the disease [125-127]. Daily supplementation
with vitamins C and E for 4 months was found to de-
crease levels of OS markers in these patients, and was
attributed to the increased intake of these vitamins and
their possible synergistic effects. Pregnancy rates, how-
ever, did not improve [126].
Intraperitoneal administration of melatonin, a potent

scavenger of free radicals, has been shown to cause re-
gression of endometriotic lesions [128-130] by reducing
OS [129,130]. These findings, however, were observed in
rodent models of endometriosis, which may not closely
resemble the disease in humans.
It is evident that endometriotic cells contain high

levels of ROS; however, their precise origins remain un-
clear. Impaired detoxification processes lead to excess
ROS and OS, and may be involved in increased cellular
proliferation and inhibition of apoptosis in endometrio-
tic cells. Further studies investigating dietary and supple-
mental antioxidant intake within different populations
are warranted to determine if antioxidant status and/or
intake play a role in the development, progression, or re-
gression of endometriosis.

9.2. Polycystic ovary syndrome
Polycystic ovary syndrome is the most common endo-
crine abnormality of reproductive-aged women and has

a prevalence of approximately 18%. It is a disorder char-
acterized by hyperandrogenism, ovulatory dysfunction,
and polycystic ovaries [131]. Clinical manifestations of
PCOS commonly include menstrual disorders, which
range from amenorrhea to menorrhagia. Skin disorders
are also very prevalent amongst these women. Addition-
ally, 90% of women with PCOS are unable to conceive.
Insulin resistance may be central to the etiology of

PCOS. Signs of insulin resistance such as hypertension,
obesity, and central fat distribution are associated with
other serious conditions, such as metabolic syndrome,
nonalcoholic fatty liver [132], and sleep apnea. All of
these conditions are risk factors for long-term metabolic
sequelae, such as cardiovascular disease and diabetes
[133]. Most importantly, waist circumference, independ-
ent of body mass index (BMI), is responsible for an in-
crease in oxLDL [71]. Insulin resistance and/or
compensatory hyperinsulinemia increase the availability
of both circulating androgen and androgen production
by the adrenal gland and ovary mainly by decreasing sex
hormone binding globulin (SHBG) [134].
Polycystic ovary syndrome is also associated with

decreased antioxidant concentrations, and is thus con-
sidered an oxidative state [135]. The decrease in mito-
chondrial O2 consumption and GSH levels along with
increased ROS production explains the mitochondrial
dysfunction in PCOS patients [136]. The mononuclear
cells of women with PCOS are increased in this inflam-
matory state [137], which occurs more so from a heigh-
tened response to hyperglycemia and C-reactive protein
(CRP). Physiological hyperglycemia generates increased
levels of ROS from mononuclear cells, which then acti-
vate the release of TNF-alpha and increase inflammatory
transcription factor NF-kappa B. As a result, concentra-
tions of TNF-alpha, a known mediator of insulin resist-
ance, are further increased. The resultant OS creates an
inflammatory environment that further increases insulin
resistance and contributes to hyperandrogenism [138].
Lifestyle modification is the cornerstone treatment for

women with PCOS. This includes exercise and a
balanced diet, with a focus on caloric restriction [139].
However, if lifestyle modifications do not suffice, a var-
iety of options for medical therapy exist. Combined oral
contraceptives are considered the primary treatment for
menstrual disorders. Currently, there is no clear primary
treatment for hirsutism, although it is known that com-
bination therapies seem to produce better results [138].

9.3. Unexplained infertility
Unexplained infertility is defined as the inability to con-
ceive after 12 months of unprotected intercourse in cou-
ples where known causes of infertility have been ruled out.
It is thus considered a diagnosis of exclusion. Unexplained
infertility affects 15% of couples in the United States. Its
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pathophysiology remains unclear, although the literature
suggests a possible contribution by increased levels of
ROS, especially shown by increased levels of the lipid per-
oxidation marker, MDA [140,141] in comparison to anti-
oxidant concentration in the peritoneal cavity [142]. The
increased amounts of ROS in these patients are suggestive
of a reduction in antioxidant defenses, including GSH and
vitamin E [76]. The low antioxidant status of the periton-
eal fluid may be a determinant factor in the pathogenesis
of idiopathic infertility.
N-acetyl cysteine is a powerful antioxidant with anti-

apoptotic effects. It is known to preserve vascular integ-
rity and to lower levels of homocysteine, an inducer of
OS and apoptosis. Badaiwy et al (2006) conducted a ran-
domized, controlled, study in which NAC was compared
with clomiphene citrate as a cofactor for ovulation in-
duction in women with unexplained infertility [143].
The study, however, concluded that NAC was ineffective
in inducing ovulation in patients in these patients [143].
Folate is a B9 vitamin that is considered indispensable

for reproduction. It plays a role in amino acid metabol-
ism and the methylation of proteins, lipids, and nucleic
acids. Acquired or hereditary folate deficiency contri-
butes to homocysteine accumulation. Recently, Altmae
et al (2010) established that the most important variation
in folate metabolism in terms of impact is methyl-tetra-
hydrofolate reductase (MTHFR) gene polymorphism
677C/T [144]. The MTHFR enzyme participates in the
conversion of homocysteine to methionine, a precursor
for the methylation of DNA, lipids, and proteins. Poly-
morphisms in folate-metabolizing pathways of genes
may account for the unexplained infertility seen in these
women, as it disrupts homocysteine levels and subse-
quently alters homeostatic status. Impaired folate metab-
olism disturbs endometrial maturation and results in
poor oocyte quality [144].
More studies are clearly needed to explore the efficacy

of antioxidant supplementation as a possible manage-
ment approach for these patients.

10. Pregnancy complications
10.1. The placenta
The placenta is a vital organ of pregnancy that serves as
a maternal-fetal connection through which nutrient, O2,
and hormone exchanges occur. It also provides protec-
tion and immunity to the developing fetus. In humans,
normal placentation begins with proper trophoblastic in-
vasion of the maternal spiral arteries and is the key event
that triggers the onset of these placental activities [6].
The placental vasculature undergoes changes to ensure

optimal maternal vascular perfusion. Prior to the un-
plugging of the maternal spiral arteries by trophoblastic
plugs, the state of low O2 tension in early pregnancy
gives rise to normal, physiological hypoxia [145]. During

this time, the syncytiotrophoblast is devoid of antioxi-
dants, and thus, remains vulnerable to oxidative damage
[146,147].
Between 10 and 12 weeks of gestation, the tropho-

blastic plugs are dislodged from the maternal spiral ar-
teries, flooding the intervillous space with maternal
blood. This event is accompanied by a sharp rise in O2

tension [148], marking the establishment of full maternal
arterial circulation to the placenta associated with an in-
crease in ROS, which leads to OS [68].
At physiological concentrations, ROS stimulate cell

proliferation and gene expression [149]. Placental accli-
mation to increased O2 tension and OS at the end of the
1st trimester up-regulates antioxidant gene expression
and activity to protect fetal tissue against the deleterious
effects of ROS during the critical phases of embryogen-
esis and organogenesis [2]. Amongst the recognized pla-
cental antioxidants are heme oxygenase (HO)-1 and -2,
Cu,Zn-SOD, catalase, and GPx [150].
If maternal blood flow reaches the intervillous space

prematurely, placental OS can ensue too early and cause
deterioration of the syncytiotrophoblast. This may give
rise to a variety of complications including miscarriage
[148,151,152], recurrent pregnancy loss [153], and pree-
clampsia, amongst others [154]. These complications
will be discussed below.

10.2. Spontaneous abortion
Spontaneous abortion refers to the unintentional termin-
ation of a pregnancy before fetal viability at 20 weeks of
gestation or when fetal weight is < 500 g. Recent studies
have shown that 8% to 20% of recognized clinical preg-
nancies end by spontaneous abortion before 20 weeks.
The etiology consists mainly of chromosomal abnormal-
ities, which account for approximately 50% of all miscar-
riages. Congenital anomalies and maternal factors such
as uterine anomalies, infection, diseases, and idiopathic
causes constitute the remaining causes [155].
Overwhelming placental OS has been proposed as a

causative factor of spontaneous abortion. As mentioned
earlier, placentas of normal pregnancies experience an
oxidative burst between 10 and 12 weeks of gestation.
This OS returns to baseline upon the surge of antioxi-
dant activity, as placental cells gradually acclimate to the
newly oxidative surroundings [148]. In cases of miscar-
riage, the onset of maternal intraplacental circulation
occurs prematurely and sporadically between 8 and 9
weeks of pregnancy in comparison to normal continuous
pregnancies [148,152]. In these placentas, high levels of
HSP70, nitrotyrosine [151,152], and markers of apop-
tosis have been reported in the villi, suggesting oxidative
damage to the trophoblast with subsequent termination
of the pregnancy [2]. Antioxidant enzymes are unable to
counter increases in ROS at this point, since their
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expression and activity increases with gestational age
[148]. When OS develops too early in pregnancy it can
impair placental development and/or enhance syncytio-
trophoblastic degeneration, culminating in pregnancy
loss [155].
The activity of serum prolidase, a biomarker of extra-

cellular matrix and collagen turnover, has been observed
to be decreased in patients with early pregnancy loss. Its
levels were also shown to negatively correlate with
increased OS, possibly accounting for the heightened
placental vascular resistance and endothelial dysfunction
secondary to decreased and dysregulated collagen turn-
over [156].
Decreased activity of serum paraoxonase/arylesterase

–a major determinant of high-density lipoprotein (HDL)
antioxidant status-- was noted in patients with early
pregnancy loss. A negative correlation with lipid hydro-
peroxide was also observed in these patients, indicating
their high susceptibility to lipid peroxidation [157].
Oxidative stress can also affect homeostasis in the ER.

Persistence of endoplasmic OS can further sustain ER
stress, eventually increasing decidual cell apoptosis and
resulting in early pregnancy loss [158].
Decreased detoxification ability of GPx may occur in

the setting of Se deficiency, which has been linked to
both spontaneous abortion [159,160] and recurrent
pregnancy loss [160].
Apoptosis of placental tissues may result from OS-

induced inflammatory processes triggered by a variety of
factors. Several etiologies may underlie improper initi-
ation of maternal blood flow to the intervillous space;
yet it may be through this mechanism by which both
spontaneous and recurrent pregnancy loss occur.
Antioxidant supplementation has been investigated in

the prevention of early pregnancy loss, with the idea of
replacing depleted antioxidant stores to combat an over-
whelmingly oxidative environment. However, a meta-
analysis of relevant studies failed to report supporting
evidence of beneficial effects of antioxidant supplemen-
tation [161].

10.3. Recurrent pregnancy loss
Recurrent pregnancy loss is defined as a history of ≥ 3 con-
secutive pregnancy losses, and has an incidence of 1% to
3%. In 50% of cases, causative factors can be identified. In
the remaining 50%, however, no defined cause can be
detected [162,163], although studies have pointed to a role
of OS in the etiology of recurrent pregnancy loss [18,164].
It has been more recently suggested that the maternal

uterine spiral arteries of normal pregnancies may involve
uterine natural killer (NK) cells as a regulator of proper
development and remodeling. Angiogenic factors are
known to play key roles in the maintenance of proper
spiral artery remodeling. Thus, the involvement of

uterine NK cells in RPL has been supported by the early
pregnancy findings of increased levels of angiogenic fac-
tors secreted by uterine NK cells [165], as well as
increased in vivo and in vitro endothelial cell angiogen-
esis induced by uterine NK cells [166] in patients with
RPL. Women experiencing RPL have also been noted to
have increased endometrial NK cells, which were posi-
tively correlated to endometrial vessel density. Accord-
ingly, it has been suggested that an increase of uterine
NK cells increases pre-implantation angiogenesis, lead-
ing to precocious intra-placental maternal circulation,
and consequently, significantly increased OS early in
pregnancy [153].
The syncytiotrophoblastic deterioration and OS that

occur as a result of abnormal placentation may explain the
heightened sensitivity of syncytiotrophoblasts to OS dur-
ing the 1st trimester, and could contribute significantly to
idiopathic RPL [154]. In keeping with this idea, plasma
lipid peroxides and GSH have been observed in increased
levels, in addition to decreased levels of vitamin E and β-
carotene in patients with RPL [167]. Furthermore, mark-
edly increased levels of GSH have also been found in the
plasma of women with a history of RPL, indicating a re-
sponse to augmented OS [168]. Another study showed
significantly low levels of the antioxidant enzymes GPx,
SOD, and catalase in patients with idiopathic RPL, in
addition to increased MDA levels [169].
Polymorphisms of antioxidant enzymes have been asso-

ciated with a higher risk of RPL [170-172]. The null geno-
type polymorphism of GST enzymes found in some RPL
patients has been reported as a risk factor for RPL [18].
Antioxidant supplementation may be the answer to re-

storing antioxidant defenses and combating the effects of
placental apoptosis and inflammatory responses associated
with extensive OS. In addition to its well-known antioxi-
dant properties, NAC is rich in sulphydryl groups. Its thiol
properties give it the ability to increase intracellular con-
centrations of GSH or directly scavenge free radicals
[173,174]. Furthermore, the fetal toxicity, death in utero,
and IUGR, induced by lipopolysaccharides, might be pre-
vented by the antioxidant properties of NAC [175]. Im-
portantly, Amin et al (2008) demonstrated that the
combination of NAC+ folic acid was effective in improv-
ing pregnancy outcomes in patients with unexplained RPL
[176]. By inhibiting the release of pro-inflammatory cyto-
kines [177], endothelial apoptosis, and oxidative genotoxi-
city [178], via maintenance of intracellular GSH levels,
NAC may well prove promising to suppress OS-induced
reactions and processes responsible for the oxidative dam-
age seen in complicated pregnancies.

10.4. Preeclampsia
Preeclampsia is a complex multisystem disorder that can
affect previously normotensive women. It is a leading
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cause of maternal and fetal morbidity and mortality
worldwide, occurring in 3% to 14% of pregnancies
[179,180] . Preeclampsia clinically presents as a blood
pressure reading > 140/90 mm Hg, taken on two separate
occasions at least 6 hours apart along with proteinuria
(≥ 0.3 g protein in a 24-hour urine specimen or persistent
1+ (30 mg/dL) protein on dipstick) after 20 weeks of
gestation.
Preeclampsia can develop before (early onset) or after

(late onset) 34 weeks of gestation. The major pathophy-
siologic disturbances are focal vasospasm and a porous
vascular tree that transfers fluid from the intravascular
to the extravascular space. The exact mechanism of
vasospasm is unclear, but research has shown that inter-
actions between vasodilators and vasoconstrictors, such
as NO, endothelin 1, angiotensin II, prostacyclin, and
thromboxane, can cause decrease the perfusion of cer-
tain organs. The porous vascular tree is one of decreased
colloid osmotic pressure and increased vascular perme-
ability [181-183].
Placental ischemia/hypoxia is considered to play an

important role through the induction of OS, which can
lead to endothelial cell dysfunction [68,180] and sys-
temic vasoconstriction [184]. From early pregnancy on,
the body assumes a state of OS. Oxidative stress is im-
portant for normal physiological functions and for pla-
cental development [185]. Preeclampsia, however,
represents a much higher state of OS than normal preg-
nancies do [186].
Early-onset preeclampsia is associated with elevated

levels of protein carbonyls, lipid peroxides, nitrotyrosine
residues, and DNA oxidation, which are all indicators of
placental OS [68,187]. The OS of preeclampsia is
thought to originate from insufficient spiral artery con-
version [150,188,189] which leads to discontinuous pla-
cental perfusion and a low-level ischemia-reperfusion
injury [185,190,191]. Ischemia-reperfusion injury stimu-
lates trophoblastic and endothelial cell production of
ROS [192], along with variations in gene expression that
are similar to those seen in preeclampsia [3]. Oxidative
stress can cause increased nitration of p38 MAPK,
resulting in a reduction of its catalytic activity. This may
cause the poor implantation and growth restriction
observed in preeclampsia [6]. Exaggerated apoptosis of
villous trophoblasts has been identified in patients with
preeclampsia, of which OS has been suggested as a pos-
sible contributor. Microparticles of syncytiotrophoblast
microvillus membrane (STBMs) have been found
throughout the maternal circulation of patients with pre-
eclampsia and are known to cause endothelial cell injury
in vitro [193].
Placental OS can be detected through increased serum

concentrations of ROS such as H2O2 [194], or lipid perox-
idation markers [195] such as MDA [179,195-197] and

thiobarbituric acid reactive substances (TBARS) [179,194].
Increased circulating levels of the vasoconstrictor H2O2

[188,194] and decreased levels of the vasodilator NO
[194,198] have been noted in preeclampsia and may ac-
count for the vasoconstriction and hypertension present
in the disease. Still, some studies have conversely reported
increased circulating [199,200] and placental [201] NO
levels. Neutrophil modulation occurring in preeclampsia
is another important source of ROS, and results in
increased production of the SO anion and decreased NO
release, which ultimately cause endothelial cell damage in
patients with preeclampsia [202].
The activation of ASK1, induced by H2O2 or hypoxia/

reoxygenation, leads to elevated levels of soluble recep-
tor for VEGF (sFlt-1) [203], which has anti-angiogenic
properties [150,204]. Elevated circulating levels of sFlt-1
have been suggested to play a role in the pathogenesis of
preeclampsia [203,204] and the associated endothelial
dysfunction [204]. Placental trophoblastic hypoxia result-
ing in OS has been linked to excess sFlt-1 levels in the
circulation of preeclamptic women [150]. Vitamins C
and E, and sulfasalazine can decrease sFlt-1 levels [203].
Heme oxygenase-1 [205] is an antioxidant enzyme that

has anti-inflammatory and cytoprotective properties.
Hypoxia stimulates the expression of HO-1 [206] in cul-
tured trophoblastic cells, and is used to detect increased
OS therein [207]. Preeclampsia may be associated with
decreased levels of HO in the placenta [205], suggesting
a decline in protective mechanisms in the disease. More
recently, decreased cellular mRNA expressions of HO-1,
HO-2, SOD, GPx, and catalase were reported in the
blood of preeclamptic patients [150,179,194]. Tissue
from chorionic villous sampling of pregnant women
who were diagnosed with preeclampsia later in gestation
revealed considerably decreased expressions of HO-1
and SOD [208]. Failure to neutralize overwhelming OS
may result in diminished antioxidant defenses.
Members of the family of NAD(P)H oxidases are im-

portant generators of the SO anion in many cells, in-
cluding trophoblasts and vascular endothelial cells.
Increased SO anion production through activation of
these enzymes may occur through one of several physio-
logical mechanisms, and has been implicated in the
pathogenesis of some vascular diseases [209]. Autoanti-
bodies against the angiotensin receptor AT1, particularly
the second loop (AT1-AA) [210], can stimulate NAD(P)
H oxidase, leading to increased generation of ROS. In
cultured trophoblast and smooth muscle cells, the AT1
receptor of preeclamptic women has been observed to
promote both the generation of the SO anion and over-
expression of NAD(P)H oxidase [211]. Between 6 and 8
weeks of gestation, active placental NAD(P)H yields sig-
nificantly more SO anion than is produced during full-
term [212]. Thus, early placental development may be
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affected through dysregulated vascular development and
function secondary to NAD(P)H oxidase-mediated
altered gene expression [48,213]. Preeclamptic women
produce ROS and exhibit higher NAD(P)H expression
than those without the disease [211]. More specifically,
it has been reported that women with early-onset pree-
clampsia produce higher amounts of the SO anion than
women with late-onset disease [212]. Levels of TNF-α,
and oxLDL are increased in preeclampsia and have been
shown to activate the endothelial isoform of NAD(P)H
oxidase been, ultimately resulting in increased levels of
the SO anion [209]. The mechanism of placental NAD
(P)H activation is still unclear, but the above findings
may assist in elucidating the role of OS in the pathogen-
esis of placental dysfunction in reproductive diseases
such as preeclampsia.
Paraoxonase-1 (PON 1), an enzyme associated with

HDL, acts to offset LDL oxidation and prevent lipid per-
oxidation [214] in maternal serum. Baker et al (2010)
demonstrated that PON 1 levels tend to be high in
patients with preeclampsia, which suggests that OS con-
tributes to the pathogenesis of the disease [215].
Paraoxonase-1 has also been measured to be increased
in patients in mid-gestation [215], possibly in an attempt
to shield against the toxic effects of high OS encoun-
tered in preeclampsia. In contrast, other studies have
observed considerably decreased PON 1 in the presence
of clinical symptoms [216,217] and in patients with se-
vere preeclampsia [216]. These results indicate con-
sumption of antioxidants to combat heightened lipid
peroxidation, which may injure vascular endothelium,
and likely be involved in the pathogenesis of preeclamp-
sia [216,217].
Affected women also have a decreased total antioxi-

dant status (TAS), placental GPx [179,195,218], and low
levels of vitamins C and E [194]. Inadequate vitamin C
intake seems to be associated with an increased risk of
preeclampsia [219] and some studies have shown that
peri-conceptional supplementation with multivitamins
may lower the risk of preeclampsia in normal or under-
weight women [220,221]. However, the majority of trials
to date have found routine antioxidant supplementation
during pregnancy to be ineffective in reducing the risk
of preeclampsia [161,222-224].

10.5. Intrauterine growth restriction
Intra uterine growth restriction is defined as infant birth
weight below the 10th percentile. This condition affects
10% of newborns [225] and increases the risk for peri-
natal morbidity and mortality. Placental, maternal, and
fetal factors are the most common causes of IUGR. Pre-
eclampsia is an important cause of IUGR, as it develops
from uteroplacental insufficiency and ischemic mechan-
isms in the placenta [226]. Studies also indicate that

patients with IUGR develop OS because of placental is-
chemia/reperfusion injury secondary to improper spiral
arteriole development. Imbalanced injury and repair as
well as abnormal development of the villous tree are
characteristic of IUGR placentas, predisposing them to
depletion of the syncytiotrophoblast with consequently
limited regulation of transport and secretory function.
As such, OS is recognized as an important player in the
development of IUGR [227].
Women with IUGR have been reported to have

increased free radical activity and markers of lipid perox-
idation [228]. Furthermore, Biri et al (2007) reported
that higher levels of MDA and xanthine oxidase and
lower levels of antioxidant concentrations in the plasma,
placenta, and umbilical cords in patients with IUGR
compared to controls [227]. Urinary 8-oxo-7,8- dihydro-
2-deoxyguanosine (8-OxOdG), a marker of DNA oxida-
tion, was also observed to be elevated at 12 and 28
weeks in pregnancies complicated with growth-restricted
fetuses compared with a control group [229].
Ischemia and reperfusion injury are powerful generators

of ROS and OS. The regulatory apoptotic activity of p53
[227] is significantly increased in response to hypoxic con-
ditions within villous trophoblasts [230-232] and signifies
a greater degree of apoptosis secondary to hypoxia-
reoxygenation [233] than from hypoxia alone [230].
Decreases in the translation and signaling of proteins add
to the overwhelming OS in IUGR placentas [234].
Furthermore, disordered protein translation and signal-

ing in the placenta can also cause ER stress in the syncy-
tiotrophoblast, and has been demonstrated in placentas of
IUGR patients [187]. ER stress inhibits placental protein
synthesis, eventually triggering apoptosis [234]. Moreover,
induction of p38 and NF-kappa B pathways can occur
through ER stress, exacerbating inflammatory responses
[187]. Disrupted Ca2+ homeostasis can lead to compro-
mised perfusion and result in ER stress. The chronicity
these events may explain the placental growth restriction
seen in these pregnancies [235]. In addition, serum proli-
dase activity in patients with IUGR was significantly ele-
vated and negatively correlated with TAC, suggesting
increased and dysregulated collagen turnover [236].
The origin of these placental insults induced by OS

and ER stress is not completely understood, but ische-
mia/reperfusion and hypoxia-reoxygenation are consid-
ered as significant contributors.

10.6. Preterm labor
Preterm labor occurs before 37 weeks of gestation and is
the leading cause of perinatal morbidity and mortality
worldwide with an incidence between 5% and 12%. Be-
yond their differences in timing, term and preterm labor
have long been thought of as similar processes that
occur through a ‘common pathway’. Although the
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precise etiologies and initiating mechanism of preterm
labor remain unclear, the term “syndrome” has been
used by Romero et al (2006) to describe possible patho-
logical etiologies for the onset of premature labor [237].
The sequence of uterine contraction, cervical dilata-

tion, and decidual activation make up the uterine com-
ponent of this pathway [237]. However, it has been
proposed that activation of this common pathway
through physiological signals results in term labor, while
preterm labor might occur from spontaneous activation
of isolated aspects of the common pathway by the pres-
ence of pathological conditions that may be induced by
multiple causes [238] or risk factors.
Preterm labor in general is divided in two distinctive

types: indicated, usually due to maternal or fetal reasons,
or spontaneous. The majority of spontaneous preterm
deliveries occur from any of the four primary pathogenic
pathways. These include uterine overdistension, ische-
mia, infection, cervical disease, endocrine disorders
[237], decidual hemorrhage, and maternal-fetal activa-
tion of the hypothalamic-pituitary axis, amongst others
[239]. Of these etiologies, intrauterine infection and in-
flammation is considered a main contributor to preterm
birth [240].These pathogenic mechanisms converge on a
common pathway involving increased protease expres-
sion and uterotonin. More than one process may take
place in a given woman. The combination of genetics
and inflammatory responses is an active area of research
that could explain preterm labor in some women with
common risk factors [241,242].
Labor induces changes in chorioamniotic membranes

that are consistent with localized acute inflammatory
responses, despite the absence of histological evidence of
inflammation [243]. Reactive oxygen species activates
NF-kappa B, which stimulates COX-2 expression and
promotes inflammation with subsequent parturition. A
study by Khan et al (2010) reported markedly decreased
GPx protein expression in both women with preterm
labor and those with term labor, compared with the re-
spective non-labor groups [244]. Taken together, these
data suggest that the state of labor, whether preterm or
term, necessitates the actions of GPx to limit lipid oxida-
tion, and is associated with an ROS-induced reduction
of antioxidant defenses.
Mustafa et al (2010) detected markedly higher levels of

MDA and 8-OHdG and significantly lower GSH levels
in the maternal blood of women with preterm labor than
in women with term deliveries [245]. This finding sug-
gested that women in preterm labor have diminished
antioxidant abilities to defend against OS-induced dam-
age. Moreover, reduced activities of FRAP, an assay that
measures a person’s ability to defend against to oxidative
damage, and GST, have also been found in women with
preterm labor [245-248]. The results further support

that a maternal environment of increased OS and
decreased antioxidants renders both the mother and
fetus more susceptible to ROS-induced damage.
Inflammation induces the up-regulation of ROS and

can cause overt OS, resulting in tissue injury and subse-
quent preterm labor [249]. The concentration of Mn-
SOD increases as a protective response to inflammation
and OS, and down-regulates NF-kappa B, activator pro-
tein-1, and MAPK pathways [250]. Accordingly, higher
mRNA expression of Mn-SOD was observed in the fetal
membranes of women in preterm labor than in women
in spontaneous labor at term, which may suggest a
greater extent of OS and inflammatory processes in the
former [251].
Preterm labor has been associated with chorioamnio-

nitis and histological infection was found to relate to ele-
vated fetal membrane expression of Mn-SOD mRNA of
women in preterm labor [251]. The increased Mn-SOD
mRNA expressions in these cases may be a compensa-
tory response to the presence of increased OS and in-
flammation in preterm labor.
Specifically, significantly higher amounts of the pro-

inflammatory cytokines IL-1 beta, IL-6, and IL-8, have
been observed in the amnion and choriodecidua of
patients in preterm labor than in women in spontaneous
term labor. These findings support activation of the
membrane inflammatory response of women in preterm
labor [252].
Women with preterm labor have lower levels of TAS

than women with uncomplicated pregnancies at a simi-
lar gestational age, which might indicate the presence of
increased OS during preterm labor [253]. Women with
preterm births have also been found to have significantly
decreased PON 1 activity in comparison to controls
[254]. This finding suggests that enhanced lipid peroxi-
dation and diminished antioxidant activity of PON 1,
may together create a pro-oxidant setting and increase
the risk for preterm birth. Additionally, patients in pre-
term labor had markedly decreased levels of GSH [255].
Low maternal serum selenium levels in early gestation
have been associated with preterm birth [256]. Poly-
morphism to GST was found to be significantly higher
in patients in preterm labor, indicating that these
patients are more vulnerable to oxidative damage [245].
The inflammatory setting of maternal infection asso-
ciated with preterm birth produces a state of OS and the
consequent decrease in antioxidant defenses are likely to
increase the risk for preterm birth.
The presented evidence implicates inflammation and

suppressed antioxidant defenses in the pathogenesis of
preterm labor. Thus, it seems plausible that antioxidant
supplementation may assist in preventing preterm labor
and birth associated with inflammation. A study by
Temma-Asano et al (2011) demonstrated that NAC was
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effective in reducing chorioamnionitis-induced OS, and
thus, may protect against preterm labor [257]. However,
maternal supplementation with vitamins C and E in low-
risk nulliparous patients during early gestation did not
reduce preterm births [258,259]. Due to the conflicting
results of studies, it is unclear whether maternal antioxi-
dant supplementation plays a role in preventing the
onset of preterm labor.

11. Body weight
Pregnancy is a state of increased metabolic demands
required to support both maternal hormonal physiology
and normal fetal development. However, inadequate or ex-
cessive pregnancy weight gain can complicate both mater-
nal and fetal health [260]. The adverse effects of maternal
obesity and underweight on fertility from disordered hor-
mones and menses have been well-documented [260].
Ideally, women with a normal pre-pregnancy BMI (19.8-
24.9) should gain between 25 and 35 pounds during preg-
nancy. Overweight women (BMI 25-29.9) should aim to
gain between 15 and 25 pounds, and obese women (BMI
>30) should gain no more than 15 pounds [261].

11.1. Obesity/overnutrition
Close to two-thirds of the United States population of
reproductive-aged women are considered overweight or
obese [226]. Obese women generally take longer to con-
ceive and have a higher risk of miscarriage than their
leaner counterparts [262]. Maternal obesity has also long
been associated with several reproductive pathologies in-
cluding gestational diabetes mellitus, preeclampsia, and
PCOS. It has also been shown to negatively affect fertil-
ity and pregnancy. and Delivery complications and fetal
complications such as macrosomia have also been linked
to maternal obesity [263].
Healthy pregnancies are associated with the mobili-

zation of lipids, increased lipid peroxides, insulin resist-
ance, and enhanced endothelial function. Normally,
increases in total body fat peak during the 2nd trimester.
Obese women, however, experience inappropriately
increased lipid peroxide levels and limited progression of
endothelial function during their pregnancies, along with
an additive innate tendency for central fat storage. Vis-
ceral fat is associated with disordered metabolism and
adipokine status, along with insulin resistance. Centrally-
stored fat deposits are prone to fatty acid overflow,
thereby exerting lipotoxic effects on female reproductive
ability [264].
Oxidative stress from excessive ROS generation has

been implicated in pathogenesis of obesity [265]. Intra-
cellular fat accumulation can disrupt mitochondrial
function, causing buildup and subsequent leak of elec-
trons from the ETC. The combined effect of high lipid
levels and OS stimulates production of oxidized lipids;

of particular importance are lipid peroxides, oxidized
lipoproteins, and oxysterols. As major energy producers
for cells, the mitochondria synthesize ATP via oxidative
phosphorylation. Adverse effects of maternal BMI on
mitochondria in the oocyte could negatively influence
embryonic metabolism.
Increased plasma non-esterified fatty acid levels can

prompt the formation of the nitroxide radical. As a
known inflammatory mediator, oxLDL can indirectly
measure lipid-induced OS, hence elucidating its role in
the inflammatory state of obesity [266]. Oxysterol pro-
duction within a lipotoxic environment can potentially
disrupt the placental development and function of obese
pregnancies [267]. Consumption of a high fat meal has
been shown to increase levels of both circulating endo-
toxins and markers of endothelial dysfunction [267-269].
Extensive evidence has linked endothelial dysfunction,

increased vascular endothelial cell expression of NADPH
oxidase, and endothelial OS to obesity. Overactive mito-
chondria and harmful ROS levels in oocytes and zygotes
were influenced by peri-conceptional maternal obesity.
Igosheva et al (2010) reported a decline in fertility and
obscured progression of the developing embryo [264].
The correlation between placental nitrative stress from
altered vascular endothelial NO release and high mater-
nal BMI [270] may stem from imbalances of oxidative
and nitrative stress, which may weaken protection to the
placenta [271]. Results from Ruder et al (2009) sup-
ported the association of increased maternal body weight
and increased nitrative stress, but did not demonstrate a
relation to placental OS [4].
Overabundant nutrition may produce an unfavorably

rich reproductive environment, leading to modified oo-
cyte metabolism and hindered embryo development. A
negative association was also made between maternal
diet-induced obesity and blastocyst development [264].
Increased postprandial levels of OS biomarkers have
been described after ingestion of high fat meals. A study
by Bloomer et al (2009) found a greater increase in post-
prandial MDA in obese females versus normal weight
controls [265]. Hallmark events of obese states include
decreased fatty acid uptake, enhanced lipolysis, infiltra-
tion of inflammatory cells, and secretion of adipokines
[267,272].
Suboptimal oocyte quality has also been noted in obese

females. More specifically, follicular fluid (FF) levels of
CRP were observed to be abnormally high [273]. The re-
sultant disturbance of oocyte development may influence
oocyte quality and perhaps general ovarian function.
Maternal obesity has been linked to several increased

risks to the mother, embryo, and fetus. Obesity is consid-
ered a modifiable risk factor; therefore, pre-conceptional
counseling should stress the importance of a balanced
diet and gestational weight gain within normal limits.
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11.2. Malnutrition/underweight
Nutritional deficiencies in underdeveloped areas of the
world continue to be a significant public health concern.
Inadequate maternal nutrition during the embryonic
period adversely affects fetal growth, placing a pregnant
woman at risk for a low birth weight infant and potential
endothelial dysfunction.
Malnourished females and those with a low BMI may be

at increased risk for impaired endothelium-dependent
vasodilation secondary to OS [271]. In-utero undernutri-
tion reduces NO stores, triggering OS along with impair-
ment of endothelium-dependent vasodilation. In rodents,
gestational exposure to both caloric and protein restriction
resulted in low birth weight offspring. The activity of SOD
was found to be decreased with a consequent increase of
the SO anion in the offspring of undernourished dams,
which also indicates decreased formation of H2O2. Ele-
vated SO anion levels also stimulate NO scavenging and
cell damage associated with endothelial dysfunction [274].
Concentrations of 8-OHdG and MDA commonly

mark OS and are strikingly elevated in both low BMI
and obese women in comparison to those with normal
BMI. In particular, 8-OHdG is produced by hydroxyl
radical interaction with DNA, and is valuable for the de-
tection of oxidative DNA damage [271].
Primordial, secondary, and antral follicle numbers

markedly decrease in relation to time intervals of limited
nutritional exposure. Insufficient maternal nutrition, es-
pecially during critical periods of embryonic and fetal
development, manifests as an overall elevation of ovarian
OS, which, along with impaired mitochondrial antioxi-
dant defenses, may be responsible for these significantly
decreased follicle numbers and resultant growth impedi-
ment of offspring [275].
In general, adolescence is a period of increased phy-

siological demands for growth and development. If a
pregnancy occurs during this time, it creates an environ-
ment in which mother and fetus compete for nutrients,
as both parties are undergoing major developmental
changes throughout gestation. Inadequate nutrition dur-
ing adolescence is especially problematic, as youths often
lack one or more vital micronutrients. Given the varied
requirements of different communities and populations
for health maintenance, antioxidant or mineral supple-
mentation should be population-specific.

11.2. Exercise
Physical exercise produces an oxidative state due to ex-
cessive ROS generation. Any type of extreme aerobic or
anaerobic activity (e.g. marathon running, weight train-
ing) may contribute to cellular damage. Optimal
amounts of OS are necessary for physiologic functioning.
Physical activity causes an increase in ROS, which in
turn heightens antioxidant response, thus providing

protection from future attacks [276]. An overproduction
of OS after acute exercise in certain diseased individuals
may serve as a trigger for improved antioxidant defense
when compared with their healthy counterparts [277].
Leelarungrayub et al (2010) established that aerobic ex-
ercise can increase TAC and decrease MDA levels,
resulting in better physical fitness in previously seden-
tary women [278]. Maternal BMI has great potential to
affect pregnancy outcomes and would likely benefit from
further research.

12. Lifestyle factors
The 21st century has been burdened with a sharp in-
crease in the use of several substances of abuse. This
problem significantly affects the younger generations,
which encompass the female reproductive years.
Cigarette smoking, alcohol use, and recreational drug
use have been implicated in the pathogenesis of per-
turbed female reproductive mechanisms, leading to
increased times to conception and infertility [279].

12.1. Cigarette smoking
The nicotine component of cigarette smoke is notori-
ously addictive and toxic to the human body. In the Uni-
ted States, approximately one-third of women in the
reproductive age group smoke cigarettes. Maternal
smoking is associated with infertility, pregnancy compli-
cations, and damage to the developing embryo. Higher
rates of fetal loss, decreased fetal growth [280], and pre-
term birth have also been associated with maternal
smoking. The risk of spontaneous abortion has been
found to be greatly increased in smokers versus non-
smokers [281]. Many authors have proposed that nicotine
receptors play a role in the aforementioned pathologies,
but the influence of OS has only recently become of
interest [7]. Evidence suggests that maternal cigarette
smoking leads to OS in both mother and fetus [7,282].
Cigarette smoke is composed of many toxic chemicals

and pro-oxidants that can produce ROS. The inhaled
tobacco smoke is composed of two phases: the particulate
(tar) phase containing stable free radicals, and the gas
phase, which contains toxins and free radicals. Reactive
oxygen species such as the SO anion, H2O2, and the hy-
droxyl radical are formed by water-soluble constituents of
tar, and can damage fundamental parts of cells and DNA.
Even exposure to passive smoke had been linked to
decreased pregnancy rates and increased time to concep-
tion [273,282]. The harmful and carcinogenic effects of
both smoke types have been well documented, and in gen-
eral, no level of smoke exposure can be considered safe
[283].
The principal components believed to be responsible

for toxicity are nicotine and benzo[alpha]pyrene through
high ROS formation and subsequent OS on the embryo
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and fetus [284,285]. In addition, a high free radical state
can deplete protective antioxidants [286], namely vita-
min E, beta-carotene, SOD, and catalase [7]. The impact
of ROS and OS is thought to fluctuate with varying
amounts of active smoke exposure [282]. Levels of
TBARS have been observed in the plasma and tissues of
smokers and correlate with the number of cigarettes
smoked [287].
Nicotine iminium and myosamine iminium are the

chief metabolites produced by oxidation of nicotine. The
reduction potentials of these metabolites seem to permit
in vivo ET and resultant OS [7].
NO is just one species contained in the gas phase.

Overproduction of NO causes subsequent formation of
peroxynitrite. Cigarette tar content positively correlates
with the production of hydroxyl radical, a notorious in-
ducer of DNA damage [283].
Increased risks of infertility, miscarriage, IUGR, and

low birth weight have been extensively reported amongst
pregnant smokers. A 12-study meta-analysis reported
that smokers had a significantly increased odds ratio for
infertility in addition to lengthened time to conception,
both likely through the activation of OS mechanisms [4].
Further, delayed conception has been recorded in

women undergoing in vitro fertilization (IVF) [282]. A
recent meta-analysis of 21 studies also reported a signifi-
cant decrease in the odds for pregnancy and live delivery
per cycle versus non-smokers, as well as a marked in-
crease in the odds for spontaneous miscarriage and ec-
topic pregnancy. In other ART studies, a decrease in
fertilization rate was observed in smokers [288].
Cigarette smoke is a significant source of exogenous

OS targeting the follicular microenvironment [288].
Smoking has been found to decrease FF β-carotene
levels [4]. Tiboni et al (2004) found a sequestration of
intrafollicular tobacco metabolites relating to cigarette
smoke exposure. They also reported an additional asso-
ciation of cigarette smoke exposure to markedly
increased follicular lipid peroxidation with parallel re-
duction of local antioxidant capacity. The study con-
cluded that beta-carotene may be depleted as a result of
consumed antioxidant defenses in response to smoke-
induced ROS [288].
Chelchowska et al (2011) demonstrated decreased

plasma vitamin A and beta-carotene concentrations in
smokers compared to non-smokers [286]. They con-
cluded that smoking during pregnancy stimulated a
higher degree of lipid peroxidation than normal preg-
nancy. Similar findings were also observed in those
exposed to passive smoke, suggesting that even those
exposed to second-hand smoke may be subject to simi-
lar toxic effects as those who actively smoke [286].
Although normal pregnancy is associated with

increased lipid peroxidation, conflicting data exists

regarding MDA concentrations in pregnant female smo-
kers. The additional free radical load from tobacco
smoke causes an imbalance between oxidants and anti-
oxidants. Results from Chelchowska et al (2011) posi-
tively correlated MDA concentrations with levels of
cotinine-- a marker of tobacco smoke exposure-- in ma-
ternal smokers; additionally, a decreased antioxidant
supply was also observed in smokers [286].
A study examining mouse oocytes reported decreased

oocyte quality in association with cigarette smoke expos-
ure. Embryos of mothers exposed to cigarette smoke
showed defective development due to oxidative damage
and cell death, possibly secondary to arrested cell cycles
[280].
Several studies have demonstrated direct adverse

effects of tobacco smoke on embryos and fetuses. Pla-
cental transfer of nicotine and carbon monoxide in
tobacco smoke can induce placental hypoxia, leading to
utero-placental insufficiency and inadequate delivery of
O2 and nutrients to the developing fetus [282]. However,
the effect of tobacco smoke on female fertility may be
transient, exerting toxic effects during active maternal
smoking, which reverse on smoking cessation [280].

12.2. Alcohol use
Even moderate alcohol use during pregnancy can result
in IUGR and low birth weight, and increase the risk for
congenital anomalies. Early pregnancy loss and spontan-
eous abortion are also strongly attributed to fetal expos-
ure of maternal alcohol use [282].
Primary elimination of ethanol (EtOH) occurs through

an oxidative mechanism via hepatic metabolism [289].
Upon ingestion, alcohol undergoes dehydrogenation to
acetaldehyde [7,290]. Subsequent further dehydrogen-
ation of acetaldehyde produces acetic acid with acetyl
and methyl radicals. These metabolites are responsible
for ROS generation. Regular alcohol use thus leads to
overproduction of ROS, triggering lipid peroxidation,
and lowering SOD antioxidant activity and reducing
GSH levels. This toxicity is considered to be primarily
inflicted by acetaldehyde, and possibly propagates redox
cycling and catalytic generation of OS [7].
In a study by Gauthier et al (2010), maternal alcohol

consumption of more than three drinks per occasion
was found to produce prominent systemic OS. Postpar-
tum subjects demonstrated a marked reduction of sys-
temic GSH, along with significant increases in the
percentage of oxidized GSSG and oxidation of the GSH
redox potential [291].
The OS likely induced by EtOH metabolism [292,293]

may stimulate the oxidation steps of the Maillard reac-
tion to increase the production of advanced glycation
end products (AGE); when accumulated, these products
are considered toxic [294]. The accumulation of AGE is
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associated with marked upregulation of antioxidant ac-
tivities [295]. When AGE binds with its receptor, RAGE,
an inflammatory state is produced [296-299] via tran-
scription factor NF-kappa B activation followed by cyto-
kine expression [296-298,300,301]. Alcohol may hasten
OS through direct and indirect mechanisms that in-
crease apoptosis, alter cell structures, and damage tissue
[292]. Additionally, damage to mitochondria coupled
with weakened antioxidant defense can incite free radical
formation [302,303].
Kalousová et al (2004) reported markedly increased

AGE in chronic alcoholics compared to healthy controls
[304]. Moreover, their results also supported the notion
that AGE production may be prevented or even dimin-
ished by antioxidant supplementation with vitamin B
derivatives [305,306], and/or vitamins A, C, and E [307].
It is well known that alcoholics often present with a var-
iety of health problems including malnutrition, cachexia,
and vitamin deficiencies; all of these states can also pro-
mote AGE formation, and further investigation of the
possible protective effects of antioxidants is warranted.
In contrast, in vitro studies have demonstrated ace-

taldehyde to inhibit AGE formation [308]; these results
further support those of copious previous studies cardio-
protective effects of moderate alcohol intake. Taken to-
gether, the effects of alcohol, whether positive or negative,
probably depend on the amount consumed [304], since
increasing doses can accumulate within tissues and cause
irreversible tissue damage, despite future efforts to abstain
from alcohol.
Although the effects of alcohol use on female fertility

are inconclusive, alcohol has long been known to have
negative impacts on the fetus in utero. Mouse embryos
exposed to EtOH sustained higher SO anion radical pro-
duction, lipid peroxidation, and apoptosis, as well as
in vitro deformation; however, these toxicities were les-
sened by simultaneous administration of SOD [309].
Similar results in were found in vivo by Heaton et al
[310]. Additionally, Wentzel et al (2006) showed that
vitamin E co-administration to EtOH-exposed dams
reduced embryo defects and miscarriage [311].
Alcohol consumption has also been related to delayed

conception. A Danish study demonstrated an increased
risk of infertility in women over the age of 30, who con-
sumed seven or more alcoholic beverages per week. It
was concluded that alcohol might exacerbate age-related
infertility [312]. The results of this study also support
previous reports of dose-related adverse effects of
alcohol.
Maternal alcohol use has also been seen to increase

the risk for spontaneous abortion and early pregnancy
loss [281]. As a pro-oxidant, EtOH use can lead to apop-
tosis and damage to protective placental systems. Con-
tinuous exposure to EtOH in utero [313] could therefore

account for the oxidative placental damage implicated in
the pathogenesis of pregnancy loss.
Rodent studies have shown a possible association be-

tween EtOH and increased placental NOS along with
reduced NO within syncytiotrophoblasts, which alters
placental blood flow and causes inadequate delivery of
nutrients and O2 to the fetus. Thus, IUGR is a potential
adverse outcome [289,290,313]. The level and length of
EtOH exposure are the main factors accounting for
alterations in NO production. In low doses, EtOH
increases the activities of NO and eNOS, augmenting
endothelial vasodilation. On the other hand, higher
doses of EtOH can impair endothelial function [289].
Cell damage by NO in vivo results from production of
peroxynitrite during NO-SO interaction under oxidative
conditions [314]. Hence, NO is considered an important
factor contributing to the impaired development of
EtOH-exposed fetuses.

12.3. Recreational drug use
12.3.1. Cannabinoids
Cannabinoids are active constituents of marijuana, the
most commonly used recreational drug used throughout
the world. Cannabinoids can generate free radicals which
can alter both central and peripheral nervous system func-
tioning [315]. The fundamental component of marijuana
known to exert psychological effects in smokers of
the drug is known as delta-9-tetrahydrocannabinol
(THC) [315]. Endocannabinoid receptors have been
detected in female reproductive organs such as the ovary
and uterus [273]. Modifications of the endocannabinoid
system by exogenous administration of cannabinoid ago-
nists can disturb normal reproductive processes, possibly
through free radical production [316].
Delta-9-tetrahydrocannabinol been found to disrupt

embryo development and inhibits implantation. Placen-
tal transfer of THC accounts for its buildup in repro-
ductive fluids and embryos exposed to THC show
affected morphology [317]. Exposure to THC in-utero
has been linked with low birth weight [318,319], prema-
turity, congenital abnormalities, and stillbirth [318,320].
Marijuana use has been shown to disturb hormone

patterns and responses, which could explain the elevated
risk of primary infertility seen in regular users of the
drug compared with non-users [320]. Specifically, the
THC component of marijuana may affect female
reproduction by hindering oogenesis, inhibiting implant-
ation and embryo development, and may contribute to
the culmination of these effects in spontaneous abortion
[321].
The generation of ROS [322-324] is often associated

with DNA strand breaks induced by THC [315]. Epoxi-
dation of the 9, 10-alkene linkage by THC is the pro-
posed mechanism of DNA damage [325], and DNA
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alkylatation by epoxides simultaneously generates ROS
[324,326].
A study by Sarafian et al (1999) demonstrated significant

dose-dependent increases in ROS production in vitro
induced by marijuana cigarette smoke containing THC,
which was manifested by higher nitrate levels measured in
culture, compared with controls. In addition, cigarette
smoke lacking THC did not generate increased ROS com-
pared to controls in room air, indicating that heightened
ROS production is dependent on the THC component of
marijuana smoke [327]. Moreover, according to Sarafian
et al, prior studies have shown that chronic marijuana ex-
posure causes a continual decline in GSH antioxidant sys-
tems and result in necrotic apoptosis [313], providing
further evidence of THC’s cytotoxic effects.
Antioxidants such as vitamin E have been shown to pre-

vent THC-induced neurotoxicity, specifically neuronal cell
death [315]. Similarly, antioxidants could potentially in-
hibit or even reverse the reproductive dysfunction and ad-
verse pregnancy outcomes induced by THC in regular
users of marijuana. However, extensive investigation and
clinical trials are necessary to determine if antioxidant
supplementation is beneficial to reproductive outcomes.

12.3.2. Cocaine
Cocaine has potent stimulant properties that contribute
to its highly addictive potential [282] and its use during
pregnancy has been linked to adverse outcomes includ-
ing low birth weight, prematurity [328], IUGR, and mis-
carriage [273,329,330].
The oxidative pathway of cocaine yields several meta-

bolites that trigger a greater degree of lipid peroxidation
than cocaine itself, with simultaneous redox cycling and
production of SO and lipid peroxyl radicals [331]. For-
maldehyde is one of many oxidative metabolites of co-
caine described to generate ROS [7]. Norcocaine is
another cocaine metabolite that upon oxidation, is fur-
ther metabolized to nitroxide [332], which could become
toxic if reacted with NO or peroxynitrite [333]. The re-
sultant OS leads to depletion of GSH stores [7].
Undeveloped embryonic and fetal defense systems are

unable to counteract an overload of OS without support
from exogenous antioxidants [282]. The vasoconstrictive
characteristics of cocaine can affect uterine and placental
vasculature, subjecting the fetus to hypoxia, as shown in
rats by strikingly increased GSSG with acute cocaine ex-
posure and decreased GSH with chronic exposure [334].
Similar alterations in GSH levels were demonstrated by
Lee et al (2001), who found a significant dose-dependent
reduction in GSH with cocaine exposure and increased
inflammatory cytokine production through heightened
expression of TNF-alpha and NF-kappa B [335].
Reactive oxygen species can induce apoptosis [336], an-

other outcome associated with the use of cocaine

[337,338]. Thiol and deferoxamine were found to prevent
against cocaine-induced apoptosis, indicating that ROS
influences the apoptosis related to cocaine use [339].
Cocaine has also been shown to induce peroxidative

damage to fetal membranes [340], which was found to be
offset by vitamin E. Increased lipid peroxidation within
the embryos of cocaine-treated mice was observed by
Zimmerman et al (1994), and was also found to be pre-
vented by concomitant antioxidant administration
[329,341]. In rat embryos, cocaine promoted free radical
generation, which halted terminal ET [342].
Taken together, the findings from these studies impli-

cate OS as a contributor to the damage inflicted by co-
caine. Cocaine-associated teratogenicity and apoptosis
are largely attributed to the OS produced by cocaine
metabolites, which are further supported by the demon-
strated protective effects of antioxidant. Research inves-
tigating potential therapies for cocaine-induced oxidative
damage is still underway, and substances such as
nitrones, seem promising for trapping the free radicals
generated by cocaine metabolites [343] and inhibiting
ROS-induced activation of inflammatory pathways [332].

13. Environmental and occupational exposures
The stability of reproductive cells and tissues is dependent
on balanced concentrations of antioxidants and oxidants
[344]. Varied levels of ROS can have both positive and
negative impacts on female reproduction. At physiologic-
ally appropriate levels, they are involved in cell signaling
processes. The excess production of free radicals and sub-
sequent induction of OS, however, have long been known
to significantly affect reproductive functions [22]. More re-
cently, environmental pollutants including pesticides have
been implicated in the pathogenesis of reproductive disor-
ders [345,346] and infertility. Humans are constantly
exposed to pollutants through air, soil, ingestion of con-
taminated food and water [347]. Mass production of che-
micals and their distribution in many consumer goods
poses a health threat to the general population through
direct and ambient exposure [348].
The 1st trimester of pregnancy carries the highest risk

of miscarriage, as it is a critical period of fetal organ de-
velopment. Affected fetal growth and development dur-
ing the 2nd trimester may negatively impact 3rd trimester
assessment of fetal viability and fetal outcomes. Maternal
exposure to various toxins, especially during critical de-
velopmental windows can threaten fetal development
and produce undesirable outcomes to both the mother
and her fetus.

13.1. Organochlorine pesticides: DDT
Organochlorines are extensively used in pesticides. They
exhibit strong hydrophobic properties and are intensely
lipophilic compounds. Organochlorine pesticides (OCPs)
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are notorious for their toxic effects on nerves [349], but
their slow buildup in body tissues of high lipid content
over time can negatively impact maternal reproductive
abilities as well as the embryo or fetus itself [260]. Ele-
vated levels of many OCPs have been detected in various
body compartments such as blood, amniotic fluid, and
the placenta [350].
1, 1, 1-trichloro-2, 2,-bis (4-chlorophenyl)-ethane (DDT)

is an OCP that was widely used as a potent insecticide in
the past. In general, incidental human exposure to DDT
has been considered relatively non-toxic, but prolonged
exposure has long been recognized to adversely affect
reproduction [9]. Furthermore, recent reports of even
prophylactic exposure have revealed potential for un-
desirable effects [348]. Although the United States banned
the use of DDT in 1973 [351], levels can persist in human
body tissue owing to its long half-life of 10-20 years.
The accumulation of DDT in body fat and FF may re-
sult in exponentially increased levels and toxicity over
time [9,347].
In their study, Jirosova et al (2010) were unable to

demonstrate affected IVF outcomes in relation to OCP
concentrations in FF; however, they did find a two-fold
increase in OCP concentrations over time, which may
provide a basis for significant reproductive and health
concerns. Specifically, it was noted that DDT exposure
caused a decrease in diploid oocyte number [9].
Passive maternal exposure to pesticides has been also

been demonstrated to increase the risk of miscarriage.
An increase in spontaneous abortions was documented
in spouses of agricultural male workers who were in dir-
ect contact with pesticide chemicals including DDT on a
daily basis [352].

13.2. Polychlorinated biphenyls
The numerous adverse health effects of polychlorinated
biphenyls (PCBs) as constituents of everyday products
like makeup, varnish, and pesticides fueled their eradica-
tion from the United States market during the latter half
of the 1970’s [349]. Like OCPs, PCBs are highly lipo-
philic, eliciting concern for their persistent presence in
the human body secondary to slow degradation even
many years after cessation of use.
Human exposure occurs for the most part through

consumption of foods containing PCB traces, such as
fish, meat, and dairy. Other pathways of exposure may
be occupational or via inhalation of surrounding air con-
taining PCB elements [353].
Exposure to PCB has long been implicated as a poten-

tial source of reproductive dysfunction (reviewed by
[354-359]) and elevated risk of miscarriage. The impact
of PCBs on female reproduction has been evidenced by
their presence in FF [360-362], ovaries [363], placenta,
uterus, and amniotic fluid [364]. PCBs have also been

detected within embryos and fetuses [365,366], possibly
contributing to their adverse outcomes. Although Meeker
et al (2011) [353] and Toft et al (2010) [367] were unable
to link PCBs to increased risk for spontaneous abortion,
they did document a connection between PCB exposure
and failed implantation in IVF cycles, in support of pre-
vious studies. These results may substantiate earlier claims
relating PCB exposure to decreased fecundability and
longer times to conception [353].
Endothelial dysfunction induced by PCBs has also

been attributed to increased OS [368-372]. Interestingly,
PCB exposure was observed to suppress Vitamin E levels
[368,373,374]; since vitamin E and other antioxidants
can prevent this endothelial dysfunction, OS is a likely
contributor to PCB-associated toxicities [8].
Additionally, PCBs are known to cause cell membrane

destruction and increase free radical generation. Al-
though their direct effects on fertility remain uncon-
firmed, many studies have established their probable
role in impairing menses and endometrial quality [9].

13.3. Organophosphate pesticides
Oxidative stress has been implicated in undesirable re-
productive outcomes induced by organophosphate com-
pounds (OPCs) [375-379]. Studies have found decreased
activities and levels of antioxidant enzymes in conjunc-
tion with increased lipid peroxide generation [380]. The
extent of DNA damage inflicted by OPCs was shown
to depend on the amount and length of exposure. De-
pletion of GSH with concurrently increased ROS gener-
ation triggered OS.
The link between OS and DNA damage was further sug-

gested by elevated measurements of the respective bio-
markers by Samarawickrema et al (2008), who studied the
effects of low-grade long-term exposure to environmental
and occupational OPCs [10]. They found significantly
increased cord blood MDA levels in samples obtained
during spray seasons and increased fetal DNA fragmenta-
tion, indicating enhanced fetal OS. Interestingly, maternal
OS biomarker levels were unaltered, perhaps due to varied
conversion to toxic metabolites or lower maternal meta-
bolic detoxification capacities, both of which can further
result in continued OPC accumulation in the placental-
fetal compartment, hampered efficacy of antioxidant sys-
tems, or altered repair mechanisms.

14. Assisted reproductive techniques
Assisted reproductive techniques are advanced techno-
logical procedures, which are the treatments of choice in
many cases of female and male infertility. They function
as an alternative to overcome causative factors of infer-
tility, such as endometriosis, tubal factor infertility, male
factor infertility, and are also helpful for women with
unexplained infertility [381]. These techniques include
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intrauterine insemination, IVF, and intracytoplasmic
sperm injection (ICSI).
With IVF, sperm-oocyte interaction occurs in culture

media, leading to fertilization [142]. Reactive oxygen spe-
cies may develop as a consequence of increased oocyte
number per dish, spermatozoa, and cumulus cell mass.
Cumulus cells demonstrate higher antioxidant activity at
the beginning of culture than denuded oocytes do [382].
In ICSI, a single sperm is injected into an oocyte’s

cytoplasm [142]. It bypasses natural selection, thus
allowing for the injection of damaged spermatozoon into
the oocyte. Alternatively, the IVF process prevents
fertilization by DNA-damaged spermatozoa [383].
Recently, OS has been identified as an important factor

in ART success. Oocyte metabolism and a lack of antioxi-
dants combined with the follicular and oviductal fluid of
the embryo causes an increase in ROS levels [384]. Follicu-
lar fluid is the net result of both the transfer of plasma

constituents to follicles and the secretory activity of granu-
losa and theca cells [385]. The oocyte develops within the
FF environment and this intimately affects the quality of
oocytes and their interaction with sperm, thus affecting im-
plantation and embryonic development [386] (Figure 2).
Oxidative stress contributes to oocyte quality, and its

degree can be assessed by biomarkers of TAC and lipid
peroxidation [387]. The effects of OS may be may be
further altered by environmental factors. A hyperoxic
environment augments SO radical levels by promoting
enzyme activity. Particularly in IVF, increased incubation
time heightens exposure to O2 concentration [43].
As in biological systems, metallic cations act as ex-

ogenous sources of OS by stimulating ROS formation in
ART culture media, and metal chelators such as EDTA
and transferrin can ameliorate the production of ROS
[43]. Furthermore, visible light can cause ROS forma-
tion, thereby damaging DNA [388]. Fertilization success

Figure 2 The influence of the presence of free radicals and ROS in ART culture and subsequent effects on embryo development.
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in ART is determined by the quality of spermatozoa
involved [389]. Although ROS contribute to normal
sperm functions such as oocyte fusion, capacitation, and
acrosome reaction, OS produced by spermatozoa may
provoke oxidative damage to the oocyte, decreasing the
likelihood for fertilization [18].
The in vitro environment exposes gametes and

embryos to an excess of ROS with the absence of en-
zymatic antioxidant protection normally present during
in vivo fertilization and pregnancy. Free radicals are
thought to act as determinants in reproductive outcomes
due to their effects on oocytes, sperm, and embryos
[381]. Oxidative stress disturbs human oocyte intracellu-
lar Ca2+ homeostasis as well as oocyte maturation and
fertilization. During ovulation, ROS are produced within
the follicles, however, the excessive production of ROS
may increase the risk for poor oocyte quality since oxi-
dative stimulation promotes oocyte maturation and wall
rupture within the follicle [390]. Women with > 30% de-
generate oocytes demonstrate significantly increased
intrafollicular 8-OHdG, indicating DNA damage by OS.
However, Tamura et al (2008) found that the administra-
tion of melatonin led to a reduction of intrafollicular
oxidative damage and a net increase of fertilization and
pregnancy rates [391].
A physiologic amount of ROS in FF is indicative of a

healthy developing oocyte [392]. Follicular fluid ROS
levels of < 107 counted photons per second were signifi-
cantly negatively correlated with IVF outcome para-
meters. The culture media can generate ROS at different
rates depending on its composition [386]. The impact of
OS triggered by culture media can partially deplete oo-
cyte GSH content, enhancing the effect of sustained OS
and thus, risking oocyte fertilization and viability [393].
In mice, sirt3 regulates mitochondrial activity and basal

ATP synthesis. It protects against the effects of OS on pre-
implantation development under IVF and in vitro culture
conditions. A deficiency of sirt3 can fuel mitochondrial
production of ROS, causing activation of p53 and arrested
development of pre-implanted embryos [394].
In vitro fertilization can disturb the oxidant-antioxidant

balance, rendering the culture media less protected against
oxidation. The adverse effects of sustained OS and result-
ing loss of oocyte antioxidant content were shown to be
improved by adding lipophilic and hydrosoluble antioxi-
dants to the culture media to lessen OS [393]. Oral vita-
min and mineral supplementation have been shown to
increase serum concentrations of GSH and vitamins C
and E; these antioxidants have been suggested to play a
significant role in IVF outcomes [395].

15. Concluding remarks
Oxidative stress is the result of overproduction of ROS
in relation to antioxidant defense levels. Excessive ROS

production and resulting OS may contribute to aging and
several diseased states affecting female reproduction.
Endothelial dysfunction secondary to OS contributes to
the development of obstetric complications such as
early and recurrent pregnancy loss, preeclampsia,
IUGR, and preterm labor. Reactive oxygen and nitrogen
species can negatively affect embryo implantation and
may influence the development of reproductive disor-
ders such as endometriosis and preeclampsia. Although
the pathogenesis of preeclampsia has yet to be deter-
mined, placental ischemia/hypoxia is regarded as an im-
portant contributor through the induction of OS, which
in turn can trigger the endothelial cell dysfunction char-
acteristic of the disease. Altered vasomotor functions
have been demonstrated by failed embryo implantation
and reduced placental perfusion in preeclampsia and
endometriosis. These effects have been reported to im-
prove with the aid of antioxidants, and thus could
minimize the associated risk for infertility.
Extremes of body weight have been shown to nega-

tively affect the fecundability of females and adversely
affect fetuses and embryos through oxidative mechan-
isms. Moderate exercise may assist obese women reduce
weight and restore their fertility. Lifestyle factors such as
maternal smoking, alcohol consumption, and recre-
ational drug use stimulate production of unfavorable
amounts of ROS leading to OS, which renders physio-
logical processes of female reproduction and the fetus
vulnerable to oxidant-induced damage. Exposure to en-
vironmental pollution can also give rise to excessive OS
during pregnancy, and has increasingly raised concern
about the impact of pollutant exposure on maternal and
fetal health.
The effects of free radicals on oocytes, sperm, and

embryos have been implicated in poor reproductive
outcomes in ART. The in vitro environment subjects
gametes and embryos to an abundance of ROS in the
absence of enzymatic antioxidant defenses that are
normally present during in vivo fertilization and preg-
nancy. Ideally, ART success may be attained if in vivo
conditions are sufficiently imitated. To this effect, sev-
eral studies have shown that antioxidant supplementa-
tion of the culture media may improve pregnancy
outcomes.
In spite of the perceived hypotheses regarding the

benefits of antioxidant supplementation on pregnancy
outcomes, clinical trials investigating the use of antioxi-
dants to treat reproductive disorders have reported
largely conflicting results. Moreover, the bulk of evi-
dence in support of therapeutic effects of antioxidants
to date, have been observed through experimental stud-
ies on animals or through in vitro studies. In the future,
human clinical trials will help to clarify the efficacy of
antioxidants as potential therapies for infertility.
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16. Abbreviations
8-iso-PGF2-alpha: 8-iso-prostaglandin F2-alpha; 8-OHdG:
8-oxodeoxyguanosine; 8-OxOdG: 8-oxo-7,8- dihydro-2-deoxyguanosine;
AGE: Advanced glycation end-products; ART: Assisted reproductive
techniques; ASK: Apoptosis signaling regulation kinase;
AT1-AA: Autoantibodies against AT1 receptor; ATP: Adenine triphosphate;
BMI: Body mass index; [Ca2+]i: Intracellular calcium concentration;
CCE: Capacitative calcium entry; cGMP: Cyclic guanosine monophosphate;
CRP: (C-reactive protein); CSH: Cysteamine; Cu: Copper; DDT:
1, 1, 1-trichloro-2, 2,-bis (4-chlorophenyl)-ethane; EDTA: Ethylenediamine
tetra-acetic acid; eNOS/NOS III: Endothelial nitric oxide synthase;
ERK 1/2: Extracellular regulated kinase; ET: Electron transfer; ETC: Electron
transport chain; EtOH: Ethanol; ER: Endoplasmic reticulum; Fe2+/3+: Iron;
FF: Follicular fluid; FSH: Follicular stimulating hormone; GPx: Glutathione
peroxidase; GSH: Glutathione; GSSG: Oxidized glutathione; hCG: Human
chorionic gonadotropin; HDL: High-density lipoprotein; HIF:
Hypoxia-inducible factor; HO: Heme oxygenase; H2O: Water; H2O2: Hydrogen
peroxide; HRT: Hormone replacement therapy; HSP: Heat shock protein;
ICSI: Intracytoplasmic sperm injection; IL: Interleukin; iNOS/NOS II: Inducible
nitric oxide synthase; IUGR: Intrauterine growth restriction; IVF: In-vitro
fertilization; JNK: c-Jun N-terminal kinases; LH: Luteinizing hormone;
MAPK: Mitogen-activated protein kinases; MDA: Malondialdehyde;
Mn: Manganese; MTHFR: Methyl-tetra-hydrofolate reductase; NAC:
N-acetylcysteine; NADPH: Nicotinamide adenine dinuleotide phosphate;
NK: Natural killer; NOS: Nitric oxide synthase; nNOS/nNOS I: Neuronal nitric
oxide synthase; NO: Nitric oxide; NO2: Nitrogen dioxide; O2: Oxygen;
OCPs: Organochlorine pesticides; OH*: Hydroxyl radical; ONOO−: Peroxynitrite;
OPCs: Organophosphate compounds; OS: Oxidative stress; oxLDL: Oxidized
low-density lipoprotein; PCBs: Polychlorinated biphenyls; PCOS: Polycycstic
ovary syndrome; PG: Prostaglandin; PON 1: Paraoxonase-1; RNS: Reactive
nitrogen species; ROS: Reactive oxygen species; RPL: Recurrent pregnancy
loss; Se: Selenium; sFlt-1: Soluble receptor for vascular endothelial growth
factor; SHBG: Sex hormone binding globulin; SO: Superoxide;
SOD: Superoxide dismutase; STBM: Syncytiotrophoblast microvillus
membrane; TAC: Total antioxidant capacity; TAS: Total antioxidant status;
TBARS: Thiobarbituric acid reactive substances; THC: Delta-9-
tetrahydrocannabinol; TLR: Toll-like receptor; TNF: Tumor necrosis factor;
Trx: Thioredoxin; VEGF: Vascular endothelial growth factor; Zn: Zinc.
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