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Abstract

A review of the current state of knowledge of oxytocin production by the preovulatory follicle and
corpus luteum is presented. Corpora lutea of a number of mammalian species have been found to
synthesize oxytocin. However, the synthesis and secretion of this nanopeptide by the corpus
luteum of the ruminant has been most extensively studied because of the potential role of this
peptide in facilitating luteal regression. While much information exists relative to various
biochemical and endocrine factors that impact on oxytocin gene expression, this aspect about
luteal synthesis of this peptide hormone remains enigmatic. Prostaglandin F-2a. (PGF-20) has been
shown to be a primary endogenous hormone responsible for triggering luteal secretion of oxytocin.
Details are provided regarding the PGF-20-induced intracellular signal transduction pathway that
ultimately results in exocytosis of luteal oxytocin. Evidence is also presented for potential
autocrine/paracrine actions of oxytocin in regulating progesterone production by luteal and
granulosa cells. Concluding remarks highlight aspects about luteal oxytocin production that require
further research.

Ovarian Oxytocin

Ott and Scott [1] are believed to be the first investigators
to unknowingly demonstrate that the corpus luteum is a
rich source of oxytocin. These researchers reported that an
aqueous extract of the corpus luteum when injected into a
goat, stimulated immediate milk flow.

Forty-three years elapsed before Du Vigneaud et al. [2]
reported the amino acid sequence of oxytocin and nearly
another 30 years passed before Wathes and Swann [3]
demonstrated by radioimmunoassay and chromatogra-
phy that the ovine and human corpus luteum contained
oxytocin. In subsequent years, presence of luteal oxytocin
was reported for the cow [4], cynomolgus monkey [5],
goat [6], baboon [7] and sow [8]. Although corpora lutea
of the sow have been shown to contain oxytocin it is the

uterus of this species that produces the majority of oxy-
tocin of reproductive tract origin [9,10]. Similarly, in the
rat [11] and apparently the mare [12] the uterus, and not
the ovary, is the primary source of oxytocin.

Although oxytocin has been found to be synthesized by
the corpus luteum of a number of mammalian species it
is the presence of this nanopeptide in the corpora lutea of
ruminants that has received considerable study. Focused
interest on luteal oxytocin in these animals for the most
part reflects research conducted to elucidate its role in
processes of luteal regression. Therefore, the remaining
aspects of this review on luteal oxytocin will encompass
primarily research conducted on the ruminant.
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To appreciate the unique facets of luteal oxytocin biosyn-
thesis it is essential to recognize that initial expression of
the oxytocin gene begins in the preovulatory follicle. Evi-
dence for the existence of oxytocin in the preovulatory fol-
licles of the cow and ewe was first reported by Wathes et
al. [13,14]. Subsequently, Voss and Fortune [15] meas-
ured in vitro oxytocin production by granulosa cells iso-
lated from bovine preovulatory follicles during the early,
mid- and late follicular phase. Granulosa cells isolated
from the late stage preovulatory follicle, approximately 20
h after the onset of estrus, were found to produce maximal
quantities of oxytocin as compared to granulosa cells
recovered during the early and mid-follicular phase. These
authors suggested that exposure of the granulosa cells to
the surges of luteinizing hormone (LH) and follicle-stim-
ulating hormone (FSH) may have either directly or indi-
rectly stimulated synthesis of oxytocin. And indeed, when
granulosa cells of preovulatory follicles were exposed to
LH or FSH in vitro, a marked increase in oxytocin secretion
occurred during the culture period [15,16]. Similarly,
incubation of granulosa cells isolated from an early preo-
vulatory follicle with LH for 3 days induced transcription
of the gene encoding oxytocin-neurophysin-I [17]. Based
upon the results of these studies, one might conclude that
cells of the developing corpus luteum would respond to
enhanced systemic concentrations of LH with an increase
in oxytocin production. However, as described below, this
does not occur.

It should be noted that there is an apparent asynchrony
that characterizes the relationship between concentra-
tions of oxytocin mRNA and the nanopeptide in luteal
cells whereas the accumulation of mRNA and synthesis of
oxytocin in granulosa cells is positively correlated. In the
bovine and ovine corpus luteum it is the large luteal cells,
believed to be derived from granulosa cells [18] that con-
tain the secretory granules of oxytocin [19,20]. In cows
and ewes, the luteal concentration of oxytocin-neuro-
physin-I mRNA increases early after luteinization of gran-
ulosa cells to attain maximal levels by approximately day
3 of the estrous cycle, after which concentrations gradu-
ally decrease to low levels for the duration of the cycle
[21,22]. Presence of an embryo does not appear to alter
the steady decline in luteal concentration of oxytocin
mRNA that characteristically occurs in the cow during the
estrous cycle [23]. Luteal concentrations of oxytocin in
cows and ewes are not highly correlated with the oxytocin
mRNA, and actually do not reach maximal concentrations
until near midcycle [24-26]. Thereafter, luteal oxytocin,
like its mRNA, declines to lowest levels during proestrus
of the ensuing cycle. The luteal tissue content of oxytocin
is reduced markedly by the time of luteolysis [27]. The lag
period that characterizes the difference in luteal concen-
trations of oxytocin mRNA and the peptide during the
estrous cycle may be attributed to the slow increase in
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activity of peptidyl glycine a-amidating mono-oxygenase,
the terminal enzyme in the pathway of oxytocin synthesis
[28]. The increase in activity of this enzyme coincides with
the gradual increase in luteal concentrations of oxytocin
in the ewe, becoming maximal on day 8 of the estrous
cycle. Ascorbic acid is a requisite cofactor of this enzyme
but endogenous levels do not limit the activity of this
enzyme. However, Luck and Jungclas [29] showed that
ascorbate could stimulate oxytocin secretion by bovine
luteinized granulosa cells in vitro.

Regulation of Oxytocin Gene Expression

One of the more perplexing aspects about luteal oxytocin
pertains to identification of the transcription factors
essential for gene expression. As described above, LH
stimulates oxytocin gene transcription and mRNA transla-
tion in granulosa cells. Although small but not large
bovine luteal cells are endowed with LH receptors it was
anticipated that enhanced secretion of LH during the
formative stages of luteal development might indirectly
affect luteal concentrations of oxytocin. However, expo-
sure of the developing bovine corpus luteum to periodic
pulses of LH induced by administration of gonadotropin-
releasing hormone (GnRH) from days 4 to 6 of the estrous
cycle attenuated luteal concentrations of oxytocin (E.M.
Jaeger, unpublished data). Thus, it does not appear that
the large cells of the developing corpus luteum are
affected by LH in the same manner as the granulosa cell
before becoming luteinized. Voss and Fortune [30]
reported that progesterone stimulated oxytocin secretion
by bovine granulosa cells during the late stages of a 5 day
culture. Ovine corpora lutea have been shown to possess
nuclear progesterone receptors [31]. Yet, administration
of the progesterone antagonist mifepristone (RU 486) to
ewes from days 2 through 5 of the cycle failed to affect
luteal content of oxytocin [32]. Although it is possible that
the dose of RU 486 administered (175 mg/day) was insuf-
ficient, these data were interpreted to suggest that endog-
enous progesterone does not act in an autocrine/paracrine
manner to affect oxytocin production by the developing
corpus luteum of the ewe.

Multiple factors appear to be required to promote or sup-
press expression of the oxytocin gene. An imperfect palin-
dromic sequence with similarity to estrogen response
elements has been identified in the 5' flanking region of
the human and rat oxytocin gene [33,34]. The promoter
region of the oxytocin gene in the cow also contains an
imperfect response element for estrogen located proximal
to the transcription start site [35]. Using heterologous
transfection systems the rat and human but not the
bovine oxytocin gene can be stimulated by estradiol
[33,34]. Thus, response of the oxytocin gene to estrogen
appears to be species specific. The promoter region of the
human oxytocin gene contains four pentanucleotide
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repeats that bind retinoic acid [36]. All four repeats are
necessary for full retinoic acid responsiveness. The first
two repeats most distal to the start site overlap the estro-
gen response element. In the absence of the two down-
stream repeats, binding of the retinoic acid receptor to the
two upstream repeats results in a negative transcriptional
effect and antagonizes the stimulatory effect of the estro-
gen receptor, most likely by competing for binding to the
same site on the promoter. The promoter region of both
the rat and human oxytocin gene contains response ele-
ments for thyroid hormone [37]. In the case of the pro-
moter region for the rat oxytocin gene, the two thyroid
hormone response elements appear to overlap with the
estrogen response element and reside further upstream of
the estrogen response element. Based upon the available
data, it appears that the upstream nucleotide sequence
that encompasses the estrogen response element in the
promoter region of the rat and human oxytocin gene may
actually constitute a composite hormone response ele-
ment to which different classes of nuclear hormone recep-
tors bind.

According to Wehrenberg et al. [38] the promoter region
of the bovine oxytocin gene has been shown to contain
response elements for the two orphan receptors, ster-
oidogenic factor-1 (SF-1) and chicken ovalbumin
upstream promoter transcription factor (COUP-TF). Pres-
ence of SF-1 correlates well with maximal in vivo expres-
sion of the oxytocin gene in the developing bovine corpus
luteum, i.e., with the increasing quantity of oxytocin
mRNA being present immediately after ovulation. In con-
trast, the increased presence of COUP-TF in the bovine
corpus luteum at midcycle, and thereafter, correlates with
the down-regulation of the oxytocin gene. Interaction of
SF-1 and (or) COUP-TF with other regulatory proteins, or
specific modification of these orphan receptors, is proba-
bly needed for the up- and down-regulation that charac-
terizes oxytocin gene expression in the corpus luteum.

In cultures of bovine granulosa cells recovered from preo-
vulatory follicles and luteal cells of the developing corpus
luteum the addition of insulin or insulin-like growth fac-
tor-1 (IGF-1) to the medium stimulated an increase in
oxytocin production [39,40]. The stimulatory effects of
insulin and IGF-1 on oxytocin production by granulosa
and luteal cells most likely reflect their transcriptional
effects on expression of the oxytocin gene.

Overall, it is evident that a number of factors are capable
of regulating oxytocin gene expression in various species.
However, which specific factors interact to promote oxy-
tocin gene expression in the corpus luteum remain elu-
sive.
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Induced Secretion of Luteal Oxytocin

Flint and Sheldrick [41] were the first to report that injec-
tion of ewes with prostaglandin F,, (PGF,,) analogue
(cloprostenol) caused an immediate increase in luteal
oxytocin secretion. Similarly, injection of PGF,, analogue
into cows during the midluteal phase of the estrous cycle
caused an immediate increase in luteal oxytocin secretion
detectable in systemic blood within 5-15 min post-injec-
tion [42]. Almost concurrently, McCracken and Schramm
[43] advanced the hypothesis that episodic secretions of
luteal oxytocin and uterine PGF, are interrelated through
a double positive feedback loop and thereby together pro-
mote regression of the corpus luteum. This proposed
functional interrelationship between the ovary and uterus
was supported by the observation of Flint and Sheldrick
[44] and Walters et al. [45] who showed that onset of
luteal regression in the ewe and cow is characterized by
intermittent synchronous pulsatile secretion of oxytocin
and PGF,,. Whether luteal oxytocin actually is necessary
for promoting regression of the bovine corpus luteum is
now controversial. In both the cow and ewe luteal concen-
trations of oxytocin at the end of a normal estrous cycle
are less than during the midluteal phase of the cycle.
Repeated infusions of norepinephrine into the abdominal
aorta of heifers on days 15 and 16 of the estrous cycle
caused diminished release of oxytocin in response to each
succeeding infusion of the catecholamine [46]. The
authors estimated that repeated infusions of norepine-
phrine on days 15 and 16 depleted luteal oxytocin by
74%. Because this depletion of oxytocin had no effect on
duration of the estrous cycle the authors concluded that
luteal oxytocin had no direct action in luteolysis in cattle.
However, it should be noted that administration of 500
ug of PGF,,, analogue to heifers, with a corpus luteum pre-
sumably depleted of oxytocin, still caused a release of
luteal oxytocin that attained a peak concentration of 50
pg/ml in systemic blood plasma. Some more recent con-
clusions that luteal oxytocin is nonessential in promoting
onset of corpus luteum regression in the cow are based on
the results of in vivo microdialysis experiments [47,48].
Whether results of this type of invasive experimental
approach in assessing luteal function can be considered to
actually represent the function of the corpus luteum is
questionable. Further, it may be premature to conclude by
failure to measure oxytocin in systemic blood or microdi-
alysates that this nanopeptide plays no role in luteal
regression in the cow. Negative results obtained by micro-
dialysis experiments may reflect the intraluteal placement
of the microdialysis tubing.

Although norepinephrine has been shown to induce the
secretion of bovine luteal oxytocin under experimental
conditions it is unknown to what extent the endogenous
neurotransmitter is involved in regulating the secretion of
this nanopeptide. Norepinephrine apparently binds to a
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luteal B-adrenergic receptor to provoke release of oxytocin
because response to the neurotransmitter is blocked by
administration of propranolol but not phentolamine
[49]. On the other hand, much more is known about the
mechanism of action of prostaglandin F, . Receptors for
PGF,, are found predominantly on the large luteal cells
[50]. Binding of PGF,,, to its receptor activates phospholi-
pase CB (PLC) via coupling with a G, protein [51,52].
Activation of PLC is the initial step of the phosphoi-
nositide cascade that generates the second messengers dia-
cylglycerol (DAG) and Ca?+ [53,54]. Both DAG and Ca?+
are required for activation of the conventional class of
protein kinase C isozymes (o, BI, BII, y). In contrast, iso-
zymes of the novel class of PKC (§, €, n, 0) lack the cal-
cium binding domain found in the cPKCs, however, they
are activated by phospholipids and DAG. Both these two
classes of PKC isozymes can be activated by phorbol ester.
The bovine corpus luteum contains predominantly PKCo
and ¢ although isozymes BI and BII have been reported to
be present [52,55]. The increase in intracellular Ca2+ that
occurs in response to PGF, is believed to promote trans-
location of at least some PKC isozymes to the plasma
membrane from a cytoplasmic site. Orwig et al. [56] dem-
onstrated that PGF, -induced luteal secretion of oxytocin
was correlated with an increase in plasma membrane PKC
activity. In order for exocytosis of oxytocin to occur, the
vesicle bearing the oxytocin granule must pass through a
cytoskeletal cortex consisting of cross-linked monomeric
actin filaments that lie in close apposition to the plasma
membrane [57]. The actin filaments of the cortex are
maintained in a particular geometrical configuration by
actin binding proteins. A number of actin binding pro-
teins have been identified but one in particular, a myris-
toylated alanine-rich C kinase substrate (MARCKS)
protein, has been shown to be associated with PGF,-
induced secretion of oxytocin in the bovine corpus
luteum [58]. As the name implies this protein is phospho-
rylated by PKC and luteal concentrations of MARCKS
mRNA and protein appear to correspond with those of
oxytocin throughout the estrous cycle [59]. In its unphos-
phorylated state, the protein is attached to the plasma
membrane via the myristate moiety and its stability is
maintained by electrostatic interaction with the mem-
brane due to positively charged Lys/Arg residues found in
its phosphorylation site domain [60]. In vivo exposure of
the bovine corpus luteum to PGF,, during the midluteal
phase of the estrous cycle causes an immediate phospho-
rylation of MARCKS by activated PKC, with a resultant
translocation of the phosphorylated MARCKS to the cyto-
plasm that is highly correlated with exocytosis of oxytocin
[58].

Exposure of the mature corpus luteum to PGF,  has been
shown to cause activation of MAPKinase-kinase-kinase
(Raf-1) and downstream components of the MAPKinase
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pathway including the transcription factor C-Jun [61,62].
The extent, if any, to which activation of this pathway is
involved in the exocytosis of oxytocin is unknown.

Autocrine/Paracrine Action of Ovarian Oxytocin
Chandrasekher and Fortune [63] reported that oxytocin,
in a dose-dependent manner, significantly increased pro-
gesterone production by cultured granulosa cells of
bovine preovulatory follicles. Oxytocin was without effect
on granulosa cell progesterone synthesis when cultures
contained an oxytocin antagonist. Similarly, addition of
graded doses of oxytocin to cultures of theca cells failed to
affect steroidogenesis.

Although luteal oxytocin may indirectly promote luteoly-
sis to establish the normal estrous cycle, at least in the
ewe, the question remains as to the biological significance
of the massive synthesis of the neuropeptide in the devel-
oping corpus luteum. Administration of various dosages
of oxytocin to ewes for 3 to 4 day intervals throughout the
estrous cycle failed to alter the duration of the cycle or
affect luteal concentration of progesterone [64,65]. These
data might be interpreted to suggest that oxytocin has no
direct effect on the corpus luteum. However, research by
Tan et al. [66,67] demonstrated that exposure of dispersed
bovine and human luteal cells to low concentrations of
oxytocin stimulated progesterone synthesis whereas
higher concentrations of the nanopeptide were inhibitory.
This research could not be confirmed by Richardson and
Masson [68] using human luteal cells. On the other hand,
using an in vitro microdialysis system Miyamoto and
Schams [69] reported that oxytocin stimulated progester-
one production by cells of the developing bovine corpus
luteum (days 5 to 7 of the cycle) but was less effective on
luteal cells collected later in the estrous cycle. Bovine
luteal cells collected at various stages of the estrous cycle
have been shown to possess oxytocin receptors [70]. Sur-
prisingly, addition of PGF,, but not PGE, or estradiol to
cultures of bovine luteal cells has been reported to cause
upregulation of oxytocin receptors without changing the
binding affinity [71].

In contrast to the stimulatory effect of oxytocin on bovine
luteal cells, oxytocin in doses of 4 to 800 mU (1 mU =2
ng) added to short term cultures of baboon luteal cells
recovered during the early luteal phase of the cycle signif-
icantly suppressed progesterone production [7]. When
added to cultures of baboon luteal cells recovered during
the midluteal phase of the cycle, oxytocin had no effect on
progesterone production. In vitro progesterone produc-
tion by cells of the baboon corpus luteum recovered dur-
ing the late luteal phase of the cycle was suppressed by
high doses of oxytocin only. In conclusion it appears that
available data on the intraluteal effect of oxytocin on pro-
gesterone synthesis are quite equivocal. Further research is
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required to resolve the issue of whether or not oxytocin is
essential for regulating steroidogenesis by the developing
and mature corpus luteum.

Concluding Remarks

While much knowledge exists about the biochemical and
endocrine factors involved in regulating luteal oxytocin
synthesis it is obvious that much has yet to be learned. Of
particular interest is elucidation of the key factor(s) that
are absent or present to limit transcription of the oxytocin
gene during the cycle. Research is also needed to more pre-
cisely define the intraovarian or intraluteal action of oxy-
tocin. It is presumed that future research will contribute
vital new information about luteal oxytocin synthesis/
secretion and action in the various mammalian species.
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