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Abstract 

Purpose  To find the machine learning (ML) method that has the highest accuracy in predicting the semen quality 
of men based on basic questionnaire data about lifestyle behavior.

Methods  The medical records of men whose semen was analyzed for any reason were collected. Those who had 
data about their lifestyle behaviors were included in the study. All semen analyses of the men included were evalu-
ated according to the WHO 2021 guideline. All semen analyses were categorized as normozoospermia, oligozoo-
spermia, teratozoospermia, and asthenozoospermia. The Extra Trees Classifier, Average (AVG) Blender, Light Gradient 
Boosting Machine (LGBM) Classifier, eXtreme Gradient Boosting (XGB) Classifier, Logistic Regression, and Random 
Forest Classifier techniques were used as ML algorithms.

Results  Seven hundred thirty-four men who met the inclusion criteria and had data about lifestyle behavior were 
included in the study. 356 men (48.5%) had abnormal semen results, 204 (27.7%) showed the presence of oligozoo-
spermia, 193 (26.2%) asthenozoospermia, and 265 (36.1%) teratozoospermia according to the WHO 2021. The AVG 
Blender model had the highest accuracy and AUC for predicting normozoospermia and teratozoospermia. The Extra 
Trees Classifier and Random Forest Classifier models achieved the best performance for predicting oligozoospermia 
and asthenozoospermia, respectively.

Conclusion  The ML models have the potential to predict semen quality based on lifestyles.
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Introduction
Semen analysis is used to detect the fertility capacity of 
men in andrological practice and it is the first recom-
mended test for an infertility diagnostic work-up [1]. It 
is recommended that the semen sample is given close 
to the laboratory [1] but giving a sample at the hospital 
could sometimes cause embarrassment and some men 
may hesitate to provide a sample to learn their fertil-
ity capacity. As a result, home semen analysis kits and 
smartphone-based semen analyzers have started to be 
used by men [2, 3] to minimize the embarrassment, but 
these methods have not been used worldwide and their 
accuracy and cost-effectiveness are have not been fully 
discussed [2, 3].
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According to our knowledge, there have not been any 
nomograms or predictors using conventional statistical 
methods to detect semen quality, but it is well known that 
lifestyle behaviors could affect semen quality [4]. With 
the increasing use of artificial intelligence in medicine, a 
limited number of studies have recently been published 
that aimed to predict semen quality based on lifestyle 
behaviors using machine learning algorithms [5–16].

In this study, we aimed to find the machine learning 
(ML) method that has the highest accuracy in predicting 
the semen quality of men based on basic questionnaire 
data about lifestyle behavior.

Material‑methods
This retrospective-designed study was conducted after 
ethical approval was obtained (Eskisehir City Hospital, 
Non-Interventional Clinical Research Ethics Commit-
tee; Date: 16/02/2024; Decision Number: ESH/GOEK 
2024/77). The medical records of the men whose semen 
had been analyzed for any reason between August 
2021 and January 2023 at the Eskisehir City Hospital 
were collected. The exclusion criteria were: Aged < 18 
or ˃50  years, diagnosis of azoospermia, low semen vol-
ume (less than 1.5  mL), abnormal genetics, history of 
any type of testicular or genitourinary tract or pelvic 
surgery, recurrent or subclinical varicocele, cryptor-
chidism, small-sized testis (normal testicular volume 
is 12.5–19  cc), treated cancer, vascular problem, hema-
tologic illness, systemic disease, genitourinary system 
infection, or hormonal problems. After the application 
of the exclusion criteria, the men who also had data 
about their lifestyle behavior on file were included in 
the study. This data included details of their Body Mass 
Index (BMI), smoking and alcohol consumption, coffee 
intake, physical activity, sauna usage, cell phone usage, 
and the wearing of tight-fitting underwear as described 
previously [17, 18]. To ensure strict selection, ex-alco-
holics and ex-smokers, passive smokers, and those who 
only participate in the other lifestyle factors irregularly 
were also excluded from the study. The lifestyle factors 
were coded ‘1’ if the BMI was ≥ 25, he smoked every day, 
drank any amount of alcohol, drank more than 3 cups 
of coffee a day, did not do any type of exercise regularly, 
regularly wore Tight underwear, went to a sauna-Turkish 
Bath regularly, or had a mobile phone ≥ 10 years during 
the 3-month window before semen collection. If a man 
who had a BMI of < 25, did not smoke, did not drink 
alcohol, did not drink more than 3 cups of coffee a day, 
exercised regularly, did not wear tight underwear, did 
not go to a sauna, or had used a cell phone < 10 years, the 
lifestyle factors were coded ‘0’. After collecting the data 
about the lifestyle behaviors, all semen analyses of the 
men included in the study were evaluated according to 

the WHO 2021 guideline. All semen analyses were cat-
egorized as normozoospermia (normal semen charac-
teristic value) or abnormal. If oligozoospermia (sperm 
concentration < 16 × 106/ml of semen) and/or astheno-
zoospermia (motility < 30% spermatozoa with progres-
sive motility), and/or teratozoospermia (morphologically 
normal spermatozoa < 4%) [1] had been detected in a 
semen sample, these results were categorized abnormal. 
All results were then grouped as normozoospermia, oli-
gozoospermia (sperm concentration < 16 × 106/ml of 
semen), asthenozoospermia (motility < 30% spermatozoa 
with progressive motility), or teratozoospermia (mor-
phologically normal spermatozoa < 4%). The 4 groups 
were analyzed separately by statistical methods and the 
ML algorithms were applied to each group.

The Shapiro–Wilk test was used to test the normality 
of data distribution. Continuous variables were expressed 
as mean ± standard deviation, median (minimum–maxi-
mum), and categorical variables were expressed as counts 
(percentages). Comparisons of normally distributed con-
tinuous variables between the materials/groups were 
performed using the student’s t-test. Comparisons of 
non-normally distributed continuous variables between 
the groups were performed using the Mann–Whitney 
U Test. Comparisons of categorical variables between 
the groups were performed using the Yates Chi-Square 
test and the Monte Carlo Chi-Square test. A two-sided P 
value < 0.05 was considered statistically significant.

The study was designed according to the principles of 
ML. The Extra Trees Classifier, Average (AVG) Blender, 
Light Gradient Boosting Machine (LGBM) Classifier, 
eXtreme Gradient Boosting (XGB) Classifier, Logistic 
Regression, and Random Forest Classifier techniques 
were used as ML algorithms. 70% of the data was used 
for training and the remaining 30% for testing. In the 
tests conducted with these models, the model success 
rates were determined based on accuracy, sensitivity, and 
specificity values with confusion matrix metrics and the 
area under curve (AUC) graph in the receiver operating 
characteristic (ROC) curve analysis. A confusion matrix, 
which contains information on actual and predicted 
classifications performed by a classification system and 
the performance of such systems, is generally assessed 
using the data in the matrix. Independent variables that 
significantly affect each group’s dependent variable were 
selected by the permutation feature importance method, 
which is based on a decrease in the model score when a 
single variable value is randomly shuffled (1).

Results
Seven hundred thirty-four men who met the inclu-
sion criteria and had data about lifestyle behavior were 
included in the study. As seen in Table  1, 356 men 
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(48.5%) had abnormal semen results, 204 (27.7%) showed 
the presence of oligozoospermia, 193 (26.2%) astheno-
zoospermia, and 265 (36.1%) teratozoospermia accord-
ing to the WHO 2021. Smoking, regularly wearing tight 
underwear, and regularly going to a sauna / Turkish Bath 
were statistically significant between having normal 
and abnormal semen results (p = 0.001, 0.003 and 0.038, 
respectively). While asthenozoospermic males had a 
statistically significance difference in the age parameter 
(p = 0.013), teratozoospermic males had a statistically 
significance difference in age, smoking, and alcohol use 
parameters (p = 0.025, 0.001, and 0.034, respectively) 
(Table 2).

Among the six models, the AVG Blender model had the 
highest accuracy (61.2%) and AUC (58.4%) for predicting 
normozoospermia. The Extra Trees Classifier, Random 
Forest Classifier, and AVG Blender model achieved the 
best performance for predicting oligozoospermia, asthe-
nozoospermia, and teratozoospermia with an accuracy 
of 75.5%, 69.6%, and 64.4%, respectively with an AUC of 
80%, 74%, and 69.2%, respectively (Table  3 and Fig.  1). 
Age and smoking were the most significant featured fac-
tors for all-predictive models. Table  4 shows the confu-
sion matrices of the algorithms, detailing the number of 
true positive, false positive, true negative, and false nega-
tive cases in the predicted results.

Discussion
Infertility is a major cause of stress for couples because 
the diagnosis and treatment are often thought to be 
very complex and the failure to find the cause of infer-
tility makes the situation even worse. For this reason, 
healthcare professionals have started to use clinical tools 
to make accurate decisions for diagnosis and/or treat-
ment to minimize the uncertainty for couples. With 
the increasing use of artificial intelligence in medicine, 
machine or deep learning-based tools have become 
increasingly used in reproductive medicine.

A semen analysis is the first laboratory method used 
for assessing male reproductive health. However, many 
men feel embarrassed about giving a semen sample, 
even though it is the most important tool. Attempts 
have been made to use artificial intelligence-based 
clinical decision-making tools to at least have an idea 
of semen quality instead of going to an andrology 
clinic. The ML-based algorithms used for this purpose 
have been used with questionnaire-based informa-
tion about lifestyle behavior to predict semen results 
[5–16]. The authors of this study chose these factors to 
develop a prediction model because the separate and 
cumulative effects of lifestyle on semen quality have 
long been known [17–19]. GhoshRoy et  al. reviewed 
the studies about lifestyle and environmental factor-
based analyses for determining semen quality [20]. In 
this review, all the classifiers and performance param-
eters of these algorithms that have been used were 
summarized.

In our study, we collected the lifestyle behavior data 
from the questionnaire form that had been prepared 
previously [17]. All semen analyses were evaluated 
with the recently published WHO 2021 guideline. All 
the responses from the questionnaire forms and semen 
analyses were gathered as a dataset. After balancing 
and validating this dataset, we tried to find the ML 
model that could predict male fertility capacity with 
the highest accuracy and AUC. We found that AVG 
Blender had the highest performance in predicting nor-
mozoospermia and the LGBM Classifier could be used 
for predicting the oligozoospermic, teratozoospermic, 
or asthenozoospermic semen analysis results.

There are limited studies on the prediction of semen 
parameters based on modifiable lifestyle factors by AI 
methods. However, various non-validated question-
naire forms were used to collect the data. When these 
forms were analyzed, it could be seen that different 
parameters were identified as risky and/or modifi-
able lifestyle behavior without sufficient evidence. The 
second major limitation of these studies is that WHO 
guidelines for semen analysis have been updated. The 
reference limits of semen parameters were revised in 

Table 1  Data of patients included in the study

BMI body mass index

N = 734

Age (years) (median, min–max) 30 (16–60)

BMI (n, %)

≥ 25 (Obesity) 421 (57.4)

Smoking (any amount) (n, %) 373 (50.8)

Alcohol intake (any amount) (n, %) 206 (28.1)

Coffee intake (> 3 cups/day) (n, %) 482 (65.7)

Do not exercise regularly (n, %) 612 (84.6)

Mobile phone ≥ 10 Years (n, %) 170 (23.2)

Tight-fitting underwear (regularly) (n, %) 170 (23.2)

Sauna (regularly) (n, %) 389 (53)

Sperm concentration (106/ml) (median, min–max) 35 (0.5–290)

Total sperm number (106) (median, min–max) 101.75 (8–867)

Progressive motility sperm rate (A + B) (%) (median, 
min–max)

45 (5–90)

Morphology (%) (median, min–max) 5 (1–17)

Spermiogram results (n, %)

  Normal 391 (51.5)

  Anormal 356 (48.5)

Patients with oligozoospermia (n, %) 204 (27.8)

Patients with asthenozoospermia (n, %) 193 (26.3)

Patients with teratozoospermia (n, %) 265 (63.1)
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the 6th version of the WHO guidelines, therefore the 
results of these studies have become invalid and the 
algorithms recommended by these previous analyses 
should be reconducted. As with the previous reports in 
the literature, our outputs will become invalid and the 

algorithms will need to be re-run if the reference lim-
its of semen parameters are updated by later versions of 
the WHO guidelines. Another limitation of this current 
study is that our data was obtained from a single center, 
and we did not validate the ML models with data from 

Table 3  Prediction results of machine learning algorithms

AVG Blender Average Blender, LGBM Light Gradient Boosting Machine, XGB eXtreme Gradient Boosting, AUC​ Area Under Curve

Anormal Sperm Results Oligozoospermia Asthenozoospermia Teratozoospermia

Model Name AUC​ Accuracy AUC​ Accuracy AUC​ Accuracy AUC​ Accuracy

XGB Classifier 0.535 0.537 0.752 0.726 0.716 0.659 0.641 0.628

AVG Blender 0.584 0.612 0.776 0.731 0.705 0.664 0.692 0.644
Extra Trees Classifier 0.472 0.5 0.8 0.755 0.727 0.668 0.649 0.617

LGBM Classifier 0.527 0.53 0.723 0.66 0.693 0.668 0.656 0.628

Random Forest Classifier 0.509 0.493 0.797 0.75 0.74 0.696 0.683 0.649

Logistic Regression 0.586 0.537 0.512 0.491 0.624 0.594 0.597 0.564

Fig. 1  Impact factors of the variables and the receiver operating characteristic (ROC) curve analysis of the study. A AVG Blender 
of the normozoospermia, B Extra Trees Classifier of the oligozoospermia, C Random Forest Classifier of the asthenozoospermia, D AVG Blender 
of the teratozoospermia (1: Age, 2: Body Mass Index, 3: Smoking (any amount), 4: Alcohol intake (any amount), 5: Coffee intake (> 3 cups/day), 6: 
Don’t exercise regularly, 7: Mobile phone ≥ 10 Years, 8: Tight-fitting underwear (regularly), 9: Sauna (regularly)) (AVG Blender: Average Blender, LGBM: 
Light Gradient Boosting Machine)

Table 4  Confusion matrix showing the results of the classification processes

AVG Blender, Average Blender, LGBM Light Gradient Boosting Machine
a True positive, bFalse Negative, cFalse positive, dTrue negative

Machine Learning 
Algorithms

Anormal Sperm 
Results

Oligozoospermia Asthenozoospermia Teratozoospermia

AVG Blender Extra Trees Classifier Random Forest Classifier LGBM Classifier

Yes No Yes No Yes No Yes No

Yes 39a 28b 78a 28b 72a 36b 61a 33b

No 24c 43d 24c 82d 30c 79d 33c 61d
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external infertility clinics. Another limitation of the 
prediction of semen quality based on lifestyle behaviors 
is that various AI methods have been employed and the 
reports lack information about the development of the 
models, the various parameters that have been used to 
find the highest performance to predict the semen qual-
ity, and that the health professionals related to infertil-
ity may not have the knowledge to fully understand the 
process and the results.

Conclusion
The ML models used in this study have the potential to 
predict semen quality based on lifestyles. Studies with 
larger training datasets obtained from standardized and 
validated questionnaire forms about lifestyle behavior 
should be designed and the AI methods should be devel-
oped with a wide range of performance parameters. 
Furthermore, extensive information should be reported 
about the construction methods of the models to enable 
clinicians and couples to easily understand the results.
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