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Abstract
Background The low live birth rate and difficult decision-making of the in vitro fertilization (IVF) treatment regimen 
bring great trouble to patients and clinicians. Based on the retrospective clinical data of patients undergoing the IVF 
cycle, this study aims to establish classification models for predicting live birth outcome (LBO) with machine learning 
methods.

Methods The historical data of a total of 1405 patients undergoing IVF cycle were first collected and then analyzed 
by univariate and multivariate analysis. The statistically significant factors were identified and taken as input to build 
the artificial neural network (ANN) model and supporting vector machine (SVM) model for predicting the LBO. By 
comparing the model performance, the one with better results was selected as the final prediction model and 
applied in real clinical applications.

Results Univariate and multivariate analysis shows that 7 factors were closely related to the LBO (with P < 0.05): Age, 
ovarian sensitivity index (OSI), controlled ovarian stimulation (COS) treatment regimen, Gn starting dose, endometrial 
thickness on human chorionic gonadotrophin (HCG) day, Progesterone (P) value on HCG day, and embryo transfer 
strategy. By taking the 7 factors as input, the ANN-based and SVM-based LBO models were established, yielding good 
prediction performance. Compared with the ANN model, the SVM model performs much better and was selected as 
the final model for the LBO prediction. In real clinical applications, the proposed ANN-based LBO model can predict 
the LBO with good performance and recommend the embryo transfer strategy of potential good LBO.

Conclusions The proposed model involving all essential IVF treatment factors can accurately predict LBO. It can 
provide objective and scientific assistance to clinicians for customizing the IVF treatment strategy like the embryo 
transfer strategy.
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Introduction
As one of the most effective infertility treatments, 
assisted reproductive technology (ART) is becoming 
increasingly advanced and widely utilized due to con-
tinuous improvements in essential technologies such as 
controlled ovarian stimulation (COS), ultrasound-guided 
oocyte collection, sperm processing, embryo culture 
and transfer, pre-embryo transfer genetic diagnosis, etc. 
Despite significant advancements, the success rate of In 
vitro fertilization (IVF) cycle seems to have reached a 
plateau: currently, the clinical success rate still hovers at 
40–50% with the final live birth rate of around 30% [1]. 
Given that the primary objective of IVF treatment is to 
attain live birth, the current situation is far from ideal. 
The low success rate, necessity for repeated cycles, costly 
treatments, and complex procedures impose a significant 
financial and emotional burden on infertile couples. If 
clinicians are able to make an accurate and reliable pre-
diction of the live birth outcome (LBO) prior to the IVF 
cycle and adjust the treatment strategies accordingly, 
improved LBO could be achieved, which would hold 
great significance for both clinicians and patients.

Several factors have been identified as potential influ-
encers of the final pregnancy outcome, such as basic 
clinical characteristics, COS strategies, embryo transfer-
related details, and so forth [2]. Van Loendersloot et al. 
[3] developed a pregnancy rate prediction model based 
on 13 indicators including the female age, duration of 
subfertility, previous ongoing pregnancy, male subfer-
tility, diminished ovarian reserve, endometriosis, basal 
follicle stimulating hormone (bFSH), number of failed 
IVF cycles, fertilization, number of embryos, mean mor-
phological score per Day 3 embryo, presence of 8-cell 
embryos on Day 3 and presence of morulae on Day 3. 
Nevertheless, we believe that the prediction of LBO 
deserves more attention than that of the pregnancy rate. 
On this particular research topic, a retrospective cohort 
study conducted by Metello et al. [4] showed that the age 
of the patient, anti-Müllerian hormone (AMH), antral 
follicle count (AFC), and infertility factors are signifi-
cant determinants of LBO. Additionally, a multi-center 
big data study conducted by Wen et al. [5] confirmed 
that female age, cycle number, female body mass index 
(BMI), male factor, ovulation disorder, and endometrial 
thickness are important predictors of LBO. The current 
prediction models have only focused a limited number 
of predictors before the IVF cycle and lacked consistent 
and reliable standards, which limits their application 
in real clinical practice. For a complete IVF cycle, there 
are numerous factors influencing the LBO, especially 
after oocyte retrieval (such as the embryo transfer strat-
egy). Therefore, it is highly meaningful to comprehen-
sively evaluate the influencing factors in the IVF cycle 

(including post-oocyte retrieving factors) and establish a 
comprehensive and accurate prediction model for LBO.

Based on historical clinical information of patients and 
machine learning methods, this research aims to develop 
a prediction model for LBO (i.e., a classification model 
of live birth or not), which fully considers representative 
indicators of patients during IVF-ET cycle, such as basic 
clinical characteristics, COS strategies, ovarian respon-
siveness to gonadotropin (Gn), embryo transfer strategy, 
etc. The proposed model is then utilized for predicting 
the LBO as well as optimizing the embryo transfer strat-
egy in real clinical practice. The establishment of the 
LBO model can play a positive role in optimizing treat-
ment plans, reducing short-term and long-term risks of 
IVF treatment, and improving LBO. Additionally, it can 
provide a scientific and objective assessment of the out-
come of IVF treatment, alleviate patient’s psychological 
burden, and increase treatment confidence and patient’s 
compliance during the process.

Methods
Study design and participants
Patients undergoing IVF/Intracytoplasmic sperm injec-
tion (ICSI) cycle in the Reproductive Center of Renmin 
Hospital of Wuhan University were enrolled in our study, 
and each patient is transferred with one or two embryos 
in each fresh cycle. Exclusion criteria comprised: (1) pul-
monary tuberculosis; (2) serious medical diseases such 
as hypertension, diabetes, liver, and kidney diseases; (3) 
uterine malformation, intrauterine adhesion and hydro-
salpinx; (4) oocyte donation cycles or natural cycles; (5) 
Progestin-primed ovarian stimulation (PPOS), luteal 
phase stimulation or micro-stimulation program; (6) 
chromosomal abnormalities in infertile couples. A total 
of 1405 women’s clinical data were included in develop-
ing the LBO prediction model.

IVF patients underwent COS and transvaginal oocyte 
retrieval following human chorionic gonadotropin (HCG) 
trigger when one or two dominant follicles reached 
18 mm in diameter. The selected sperm and egg was fer-
tilized to form embryos. One or two embryos were cul-
tured and transferred at either cleavage stage (2–3 days 
after oocyte collection) or blastocyst stage (5–6 days after 
oocyte collection). Serum HCG test and B-ultrasonog-
raphy were conducted 14 and 30 days respectively post-
transfer to confirm pregnancy. Live birth was defined as 
the delivery of a fetus alive at 28 weeks gestation, who 
remained alive for at least one month.

To build the LBO model, 16 related factors were ana-
lyzed initially in our study, including 5 basic clinical 
characteristics (age, BMI, infertility type, infertility dura-
tion, infertility cause); and 11 clinical cycle indexes (COS 
treatment regimen, Gn starting dose, Ovarian sensitivity 
index (OSI), E2 level on HCG day, Progesterone (P) value 
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on HCG day, luteinizing hormone (LH) value on HCG 
day, endometrial thickness on HCG day; pronuclei (2PN) 
number, transferable embryos number, high-quality 
embryos number, embryo transfer strategy (the stage and 
embryos transferred number)).

The proposed research is outlined in Fig. 1.

Machine learning methods
The LBO prediction model aims to, by taking the clinical 
information of patients as input, output the result of live 
birth or not. Therefore, it is a classification model. This 
study uses two typical classification models, i.e., artifi-
cial neural network (ANN) and support vector machines 
(SVM) to build the LBO prediction model. The corre-
sponding two models are defined as the ANN-based LBO 
model and the SVM-based LBO model.

Artificial neural network model
By choosing appropriate ANN hyperparameters, ANN, 
in theory, can approximate any linear and nonlinear func-
tion. The dataset is randomly divided into a training set 
(70%), a validation set (17%), and a test set (13%). These 
sets are respectively used for calibrating and optimizing 
the parameters of the ANN, adjusting the hyperparam-
eters and complexity of the model, and testing the gen-
eralization ability of the trained ANN model. Note that 
the sample division for the three sets is determined via a 
trial-and-error method: we have tried dozens of combi-
nations for the percentage of training, validation, and test 
set, and the one with the best prediction performance 
is our final selection. During training, the Polak-Ribiére 
conjugate gradient algorithm is employed to update the 

parameters of the neural network, with the iteration ter-
mination conditions being: the maximum number of iter-
ations is 2000, the minimum gradient is 1× 10−10, or the 
minimum iteration step size is 1× 10−6 . Since the pro-
posed model is a classification model, cross entropy func-
tion is selected as the loss function.

Support vector machines (SVM) model
SVM is also a powerful classification model in machine 
learning. When training the SVM model, the data is 
randomly divided into a training set (80%) and a test set 
(20%), with the main parameters set as follows: SVM ker-
nel function: Gaussian function; kernel scale parameters: 
automatically selected; optimization algorithm: ISDA 
iterative single data algorithm. Other parameters of the 
SVM model (such as the number of cross-folds, tolerance 
of gradient differences, maximum number of numerical 
optimization iterations, etc.) are automatically selected 
and optimized using the OptimizeHyperparameters 
function of the SVM algorithm.

Evaluation indicators of the prediction model
The following indicators of classification models can 
express the modeling performance of the proposed 
ANN-based and SVM-based LBO:

(1) Graphic indicators: receiver operating characteristic 
(ROC) curve and area under curve (AUC) value. Among 
them, the closer the ROC curve is toward the point (0,1), 
i.e., the further it deviates from the 45-degree diagonal to 
the upper left corner, the larger the area of the AUC, and 
the better performance of the classification model.

Fig. 1 Overview of the proposed research. (1)~(2) Collect data of patients and find the factors related to the LBO; (3) Conduct univariate analysis to 
determine the significant influencing factors of LBO initially; (4) Conduct multivariate analysis to determine the influencing factors of LBO further; (5) 
Based on machine learning method, the ANN-based LBO model and SVM-based LBO model are built; (6) The prediction performance of the two models 
are compared, and the one, i.e., the SVM-based LBO model, that has better modeling performance is selected. (7) 81 new patients were involved in the 
clinical application of the proposed model to verify the prediction performance and the function of recommendation of the embryo transfer strategy
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(2) Quantitative indicators: precision, sensitivity (also 
called recall), accuracy, and F1 score. The greater the pre-
cision, sensitivity, accuracy and F1 score, the better the 
performance of the prediction model.

Clinical application and validation of the model
The clinical application of the proposed model is applied 
to the incoming patients after the model has been built. 
With the same screening criterion as these for building 
the mode, we select 82 patients who underwent IVF-ET 
treatment at the Reproductive Center of Renmin Hos-
pital of Wuhan University, to whom we apply the pro-
posed model for predicting the LBO and customizing the 
embryo transfer strategy.

Statistical and machine learning model
Univariate and multivariate analyses were applied 
to determine whether the 16 factors, as previously 
described, had statistically significant effects on the LBO. 
The selected meaningful influencing factors (P<0.05) 
were taken as input to establish the machine learning 
model of LBO. Data processing and correlation analysis 
are completed in IBM SPSS Statistics 24. In the univari-
ate analysis, continuous and categorical variables were 
analyzed by t -test and χ2-test, respectively, while the 

multivariate analysis was conducted by binary logistic 
regression. A two-sided test was performed, with P < 0.05 
considered significant.

The ANN and SVM machine learning method is pro-
grammed and implemented in MATLAB R2021a. The 
software prototype “Decision Support System of IVF–
Embryo transfer strategy recommendation”, as shown in 
Fig. 2, is developed in Visual Studio 2019 and QT 6.0.

Results
Univariate analysis of factors influencing live birth 
outcomes
The 1405 patients were divided into a live birth group 
(592 patients) and a non-live birth group (813 patients), 
as listed in Table  1. Univariate analysis revealed that 
10 out of the 16 potential influencing factors exhib-
ited statistical significance on the outcome of live 
birth: age (P < 0.001), OSI (P = 0.003), infertility cause 
(P = 0.048), COS treatment regimen (P < 0.001), Gn start-
ing dose (P = 0.001), endometrial thickness on HCG day 
(P = 0.007), LH value on HCG day (P < 0.001), P value on 
HCG day (P = 0.032), 2PN number (P = 0.049) and embryo 
transfer strategy (P < 0.001). The age, P value of HCG day, 
and LH value of HCG day in the live birth group were 
significantly lower than those in the non-live birth group 

Fig. 2 Prototype software - Decision Support System of IVF – Embryo transfer strategy determination. For each patient, the user manually inputs the 
values of 7 influencing factors on the left side of the software and clicks the “Predict the LBO” button on the right to call the SVM-based LBO model 
embedded in the software. The predicted result will show in the dialog box of “LBO”. By clicking the “Recommend embryo transfer strategy” button, the 
strategy that has good LBO will be recommended in the dialog box. The information displayed on the software interface in Fig. 3 is the clinical informa-
tion of Patient # 48 and its corresponding predicted LBO, for which the predicted LBO is “Non-live birth” and the recommended strategy is “2 embryos at 
cleavage stage”
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(P<0.05); and OSI, Gn starting dose, endometrial thick-
ness on HCG day and 2PN number of the live birth group 
were significantly higher than those of non-live birth 
group (P<0.05). However, there were no statistically sig-
nificant differences in infertility type, infertility duration, 
BMI, E2 level on HCG day, transferable embryo number, 
and high-quality embryo number between the live birth 
group and the non-live birth group (P > 0.05).

Multivariate analysis of factors influencing live birth 
outcomes
Ten factors selected in univariate analysis (age, OSI, 
infertility cause, COS treatment regimen, Gn starting 
dose, endometrial thickness on HCG day, LH value on 
HCG day, P value on HCG day, 2PN number, embryo 
transfer strategy) were further included in binary logis-
tic regression for multivariate analysis. The results are 
presented in Table  2. It shows that age (P < 0.001), OSI 
(P = 0.027), COS treatment regimen (P ≤ 0.028), Gn start-
ing dose (P < 0.001), endometrial thickness on HCG 
day (P < 0.001), P value on HCG day (P = 0.023), embryo 
transfer strategy (P ≤ 0.045) were significant correlated 

with LBO (P < 0.05). The remaining three factors (infertil-
ity causes, LH value on HCG day, and 2PN number) have 
no significance (P > 0.05), and therefore were excluded in 
the subsequent modeling of LBO process.

Live birth outcome model based on machine learning
Given the 7 final selected impact factors from multivari-
ate analysis, the proposed ANN-based and SVM-based 
LBO model can be built with the input and output being:

7 inputs: Age, OSI, COS treatment regimen, Gn start-
ing dose, endometrial thickness on HCG day, P value on 
HCG day, and embryo transfer strategy.

Output: LBO (whether live birth is achieved or not)
Modeling results of ANN-based LBO model
The total 1405 samples were randomly divided into a 
training set (979 cases), a verification set (243 cases), 
and a test set (183 cases). To effectively train the model, 
the samples in the three sets are randomly chosen from 
the total dataset, and each sample can be randomly cho-
sen only once when constructing the three sets. In this 
way, the model can be trained with good prediction 

Table 1 Demographic information and univariate analysis results of the 16 influencing factors of the LBO model
Characteristics Live birth group (592) Non-live birth group(813) Statistic P
Age 30.55(3.52) 32.17(4.21) 13.985* < 0.001
Infertility type (%) Primary infertility 330(55.74) 430(52.89) 1.123** 0.289

Secondary infertility 262(44.26) 383(47.11)
Infertility duration 3.87(2.65) 3.33(2.43) 2.536* 0.112
BMI 22.32(3.22) 22.23(3.10) 1.508* 0.220
OSI 5.75(3.49) 5.52(3.85) 8.848* 0.003
Infertility causes Pelvic and fallopian tube factors 270(45.61) 341(41.94) 62.019** 0.048

PCOS ovulatory obstacle 47(7.94) 33(4.06)
Poor ovarian reserve 37(6.25) 71(8.73)
Endometriosis 31(5.24) 32(3.94)
Multiple factors 40(6.76) 162(19.93)
Others 167(28.21) 174(21.40)

COS treatment regimen GnRH agonist long protocol 247(41.72) 222(27.31) 57.254** < 0.001
Ultra-long GnRH agonist protocol 251(42.40) 332(39.95)
GnRH antagonist protocol 94(15.88) 259(31.17)

Gn starting dose 188.75 (60.99) 177.87(70.97) 11.668* 0.001
Endometrial thickness on HCG day 12.22(2.41) 10.40(2.39) 2.552* 0.007
E2 level on HCG day 2976.78 (1398.96) 2521.44(1294.69) 0.650* 0.420
LH value on HCG day 1.28(1.39) 1.72(2.07) 18.077* < 0.001
P value on HCG day 0.75(0.35) 0.99(0.33) 0.480* 0.032
2 PN number 6.70(3.33) 6.05(3.64) 3.582* 0.049
Transferable embryos number 4.81(2.59) 4.01(2.50) 4.369* 0.067
High-quality embryos number 4.24(2.71) 3.26(2.77) 0.432* 0.511
Embryo transfer strategy 1 embryo at cleavage stage 10(1.69) 55 (6.77) 72.484** < 0.001

2 embryos at cleavage stage 401(67.74) 464(55.07)
1 embryo at blastocyst stage 62(10.47) 194(23.86)
2 embryos at blastocyst stage 119(20.10) 100(12.30)

The OSI is calculated as the number of retrieved oocytes (among which the percentage of mature oocytes is more than 95%)/total gonadotropin dose × 1000

Superscript * represents t -test while ** represents χ2-test

Values are expressed as quantity (percentage) or mean (variance)The bold type indicates the significant influencing factors with P < 0.05
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performance and generalization. The number of nodes 
and hidden layers of the ANN model was determined 
by trial and error: the ANN-based LBO model in this 
work has 2 hidden layers containing 5 and 3 nodes, 
respectively.

The modeling performance of the proposed ANN-
based LBO is shown in Fig.  3. The ROC curves of the 
training set, validation set, and test set are shown in 
Fig.  3(a), (b), and (c), respectively, with the AUC being 

0.726, 0.719, and 0.701. The precision, sensitivity, accu-
racy, and F1 score is listed in Table 3.

The overall prediction performance of the proposed 
model on the training set is a litter better than that on the 
validation and test sets. This is because the parameters of 
the ANN model itself are calibrated and optimized from 
the training set. In addition, there is not much difference 
between the performance of the two, indicating that the 
established ANN-based LBO model has good generaliza-
tion ability.

Table 2 Multivariate analysis results of the 10 initial screened impact factors
Characteristics B (Partial regres-

sion parameter)
S.E. Wals OR (Odds 

ratio)
95% CI P value

Age -0.122 0.018 47.327 0.885 0.855–0.916 < 0.001
OSI 0.110 0.000 10.275 0.912 0.526–0.949 0.027
Infertility causes Pelvic and fallopian tube factors Ref

PCOS ovulatory obstacle 0.828 0.266 9.705 2.289 1.359–3.854 0.051
Poor ovarian reserve -0.093 0.254 0.135 0.911 0.554–1.499 0.714
Endometriosis 0.150 0.291 0.265 1.162 0.657–2.056 0.606
Multiple factors -0.819 0.213 14.733 0.441 0.290–1.670 0.513
Others 0.347 0.151 5.313 1.145 1.053–1.902 0.053

COS treatment 
regimen

GnRH agonist long protocol Ref
Ultra-long GnRH agonist protocol -0.326 0.149 4.820 0.722 0.593–0.966 0.028
GnRH antagonist protocol -1.067 0.182 34.230 0.344 0.241–0.492 < 0.001

Gn starting dose 0.007 0.001 36.412 1.007 1.005–1.009 < 0.001
Endometrial thick-
ness on HCG day

0.110 0.026 18.453 1.117 1.062–1.174 < 0.001

LH value on HCG 
day

-0.044 0.048 0.832 0.957 0.870–1.052 0.362

P value on HCG 
day

-0.310 0.176 2.974 0.734 0.520–0.735 0.023

2 PN number 0.026 0.023 1.352 1.027 0.982–1.073 0.245
Embryo transfer 
strategy

1 embryo at the cleavage stage Ref
2 embryos at the cleavage stage 1.032 0.382 7.295 2.807 0.146–0.742 0.007
1 embryo at blastocyst stage 0.109 0.419 0.068 0.897 0.539–1.037 0.045
2 embryos at the blastocyst stage 1.111 0.415 7.174 3.036 1.347–6.845 < 0.001

Constant 0.613 0.784 0.612 1.846 / 0.034
The bold type indicates the significant influencing factors with P < 0.05

Fig. 3 ROC curves of ANN-based LBO model. (A) the training set; (B) the validation set; (C) the test set
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Modeling results of SVM-based LBO model
Unlike the ANN model, the SVM model only needs to 
divide the samples into two groups: training set (1124) 
and test set (281). The two sets are also generated ran-
domly, like those for the ANN model. For both the train-
ing set and test set, the established SVM-based LBO 
model has good classification performance, with the two 
ROC curves shown in Fig. 4 and AUCs being 0.912 and 
0.854, respectively. The precision, sensitivity, accuracy, 
and F1 score are listed in Table 4.

Compared with the test set, the training set has bet-
ter performance except for sensitivity. This is because 
the parameters of the SVM model itself are determined 
based on the training set, so it has a better classification 
effect on the training set. In addition, for the test set itself, 
the SVM model’s AUC = 0.854 and F1 score = 77.18% for 
its classification results, indicating that the established 
model has good generalization ability, facilitating its fur-
ther clinical application and verification.

Comparison and selection of the final LBO model
To select the final model for predicting the LBO of the 
IVF-ET cycle, the modeling performance of the proposed 
two models is compared. Regardless of the training set or 
the test set, the modeling evaluation indicators of SVM-
based model is significantly better these of the ANN 
model: training set (AUC: 0.912 vs. 0.726; precision: 
86.41% vs. 67.23%; sensitivity: 75.58% vs. 67.72%; accu-
racy: 84.78% vs. 75.52%; F1-score: 80.63% vs. 67.47%); 
test set (AUC: 0.854 vs. 0.701; precision: 77.50% vs. 
62.96%; sensitivity: 76.86% vs. 68.92%; accuracy: 80.43% 
vs. 71.04%; F1-score: 77.18% vs. 65.81%). Therefore, the 
SVM-based LBO model is selected as the final model for 
predicting the LBO of patients under the IVF-ET cycle.

Validation and clinical application of the proposed SVM-
based LBO model
Validation of the proposed SVM-based LBO model
Based on the proposed SVM-based LBO model, a pro-
totype software called “Decision Support System of IVF 
– Embryo transfer strategy determination” is developed, 
with the user interface shown in Fig. 2.

Table 3 Modeling performance of the proposed ANN-based 
LBO model

AUC Precision(%) Sensitivity(%) Accu-
racy(%)

F1 
Score(%)

Train-
ing 
set

0.726 67.23 67.72 72.52 67.47

Vali-
da-
tion 
set

0.719 65.09 66.99 70.78 66.03

Test 
set

0.701 62.96 68.92 71.04 65.81

Table 4 Modeling performance of the proposed SVM-based 
LBO model

AUC Precision(%) Sensitivity(%) Accu-
racy(%)

F1 
Score(%)

Train-
ing 
set

0.912 86.41 75.58 84.78 80.63

Test 
set

0.854 77.50 76.86 80.43 77.18

Fig. 4 ROC curves of SVM-based LBO model. (A) the training set; (B) the test set
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The predictive performance of the established SVM-
based LBO model was verified in actual clinical prac-
tices. For each of the new 82 patients, the information of 
7 impact factors (i.e., OSI, COS treatment regimen, Gn 
starting dose, endometrial thickness on HCG day, P value 
on HCG day, and embryo transfer strategy) was taken as 
the input of the software (shown in Fig. 2), and the SVM-
based LBO model embedded in the software is used for 
prediction.

The overall prediction results (i.e., ROC) of 82 patients 
are shown in Fig. 5, with the evaluation indicators of the 
prediction: AUC = 0.862, precision = 90.57%, sensitiv-
ity = 75.00%, accuracy = 74.39%, F1 score = 82.05%. Pre-
diction results prove that the proposed model has good 
prediction performance, which further verifies the effec-
tiveness of the model.

Also, the calibration plot and decision curve analysis 
(DCA) of the proposed model toward the clinical appli-
cation sample are shown in Fig.  6. Both the apparent 
and bias-corrected curves are pretty close to the ideal 
line (Fig. 6(A)), and by utilizing our model, the net ben-
efit could constantly be improved significantly for any 
threshold probability (Fig. 6(B)); therefore, the effective-
ness of the model in terms of prediction the LOB and 
clinical application is further validated.

Clinical application of the proposed model in recommending 
the embryo transfer strategy
In addition to the prediction of LBOs, the established 
model is utilized to guide the clinical practice, e.g., 
achieving optimal embryo transfer strategy in the IVF 
cycle. The process of customizing the embryo transfer 
strategy involves two steps:

(1) Given six basic indicators of the patients (Age, 
OSI, COS treatment regimen, Gn starting dose, 
endometrial thickness on HCG day, and P value on 
HCG day), the corresponding LBO is predicted for 
the four embryo transfer strategies (i.e., Strategy-1: 
1 embryo at cleavage stage; Strategy-2: 2 embryos 
at cleavage stage; Strategy-3: 1 embryo at blastocyst 
stage; Strategy-4: 2 embryos at blastocyst stage).

(2) Among four predicted LBOs, the one with the 
good outcome (i.e., live birth) will be selected as the 
optimal strategy, which will be further used to assist 
clinicians in making the final decision on embryo 
transfer.

Fig. 6 (A) Calibration plot of the proposed model; (B) DCA curve of the proposed model

 

Fig. 5 ROC of the proposed model on the clinical application sample
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The recommended embryo transfer strategy based on 
our model for the 82 patients is shown in Fig. 7. As can 
be seen from the figure, there may be several different 
alternatives for the same patient, and all of which have 
the predicted live birth. For example, both Strategy-2 
and Strategy-4 can give Patient #4 live birth; Patient 
#20 has even more options: Strategy-2, Strategy-3, and 
Strategy-4.

Compared with a clinician-based embryo transfer 
strategy that relies on the experience of clinicians, the 
recommended strategy based on the proposed model 
may have better LBOs for some patients. For example, for 
Patient #48 shown in Fig. 2: the clinician-based decision 
is Strategy-4, and the outcome is non-live birth; however, 
the recommended result from our model is Strategy-2 (as 
shown in Fig.  7), meaning that, by choosing Strategy-2 
instead of Strategy-4, Patient #48 could have a greater 
likelihood of live birth. Similarly, for Patient # 53, if Strat-
egy-4 is adopted instead of Strategy-3, it has a greater 
probability of obtaining a live birth.

Discussion
This study constructed a novel LBO prediction model 
based on the retrospective clinical data from 1405 
patients. Before constructing the model, univariate and 
multivariate analysis identified 7 statistically signifi-
cant influencing factors out of 16: Age, OSI, COS treat-
ment regimen, Gn starting dose, endometrial thickness 
on HCG day, P value on HCG day and embryo transfer 
strategy. By taking the 7 screened factors as inputs and 
the LBO as outputs, two machine learning models, i.e., 
the ANN-based LBO model and the SVM-based LBO 
model, were established. By comparing the evaluation 

indexes of the two models, the SVM-based LBO model 
demonstrates superior modeling performance, with pre-
cision: 77.50% (test set) ~ 86.41% (training set), sensitiv-
ity: 75.58%~76.86%, accuracy: 80.43%~84.78%, F1 score: 
77.18%~80.63%, AUC: 0.854 ~ 0.912. Therefore, the SVM-
based LBO model is selected as the final model for pre-
dicting the LBO. Compared with the prevailing research 
methods, the model proposed in this study demonstrates 
significantly improved predictive performance.

Our proposed model demonstrates that female age 
is a significant predictor of LBO. As women age, their 
ovarian reserve capacity and reactivity decrease, lead-
ing to a reduction in the number of oocytes and embryos 
acquired [2, 3, 6], decreased fertilization ability of 
eggs and developmental potential of embryos, and an 
increased proportion of abortion and abnormal birth [7, 
8]. In clinical practice, it is advisable for older women to 
promptly arrange a pregnancy plan and actively engage 
in pregnancy assistance intervention.

Our finding in Sect. 3 also revealed that the Gn start-
ing dose is an essential factor affecting the LBO. The indi-
vidualization of Gn starting dose is a standard clinical 
practice during COS in patients undergoing ART treat-
ment [9], and it is determined based on the patient’s age, 
AMH, AFC, bFSH, BMI, etc. [10]. A small amount of Gn 
starting dose will lead to insufficient follicle recruitment. 
However, a large amount will lead to excessive follicle 
recruitment [11], resulting in an increased incidence of 
OHSS, and a rise in the progesterone level during COS, 
ultimately leading to an increase in the cancellation rate 
of fresh cycle transfer or a decrease in pregnancy rate 
[12] due to asynchronous endometrial development.

Fig. 7 Comparison between model-based recommended strategy and clinician-based strategy (In the figure, the horizontal axis represents the patient 
ID., and the vertical axis represents the embryo transfer strategy)
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In our proposed model, we have established a robust 
correlation between the Ovarian Sensitivity Index (OSI), 
a composite measure of ovarian response [13, 14], and 
the LBO in patients undergoing IVF treatment for the 
first time. While previous studies have relied on indi-
cators such as the number of retrieved oocytes, which 
are often used to reflect ovarian responsiveness, to pre-
dict LBO [15], clinical observations have revealed that 
patients with high ovarian response can still achieve 
favorable LBO outcomes even with minimal Gn dosage 
and a smaller quantity of retrieved oocytes [16]. On the 
contrary, for patients with poor ovarian response (POR), 
even with increased doses and duration of Gn stimula-
tion and a normal number of oocytes obtained, the live 
birth rate could still remain low [17, 18]. The concept of 
OSI serves as a superior measure of ovarian responsive-
ness to Gn stimulation [14, 19]. In this study, we chose 
OSI as an indicator due to its comprehensive reflection 
of both the total dose of Gn and the ovarian response. It 
allows for simplification in inputting the proposed model 
without compromising modeling performance.

Results in Sect.  3 also indicate that the COS treat-
ment regimen is a crucial determinant of LBO. In con-
trast to agonists, antagonists lack the “flare-up” effect 
and can suppress Gn within a few hours without causing 
excessive pituitary gland suppression, thereby reducing 
the required dose and duration of Gn and significantly 
lowering the incidence of OHSS [20, 21]. Neverthe-
less, numerous studies have demonstrated that the live 
birth outcome associated with GnRH antagonist regi-
mens is inferior to that of GnRH agonist long regimens 
[22–24]. In our study, a total of 353 patients were treated 
with GnRH antagonist regimens, among which only 94 
achieved live birth, with a live birth rate of 26.63%, which 
was much lower than the 55.24% of the GnRH agonist 
long regimens and the 43.05% of the Ultra-long GnRH 
agonist regimens. This phenomenon may be attributed 
to reduced endometrial receptivity in infertile women 
undergoing GnRH antagonist regimens, leading to a 
decreased embryo implantation rate [25].

Scholars have suggested establishing a threshold for 
the P value on HCG day at 1.5-2.0ng/mL [26] due to 
the potential risk of fresh transplant pregnancy failure 
associated with higher values [27]. Furthermore, studies 
have indicated that an increase in P value on HCG day 
may lead to abnormal expression of endometrial embryo 
implantation proteins (vascular endothelial growth fac-
tor and placental expression factor) and differences 
in epigenetic profiles, ultimately leading to asynchro-
nous development of the embryo and endometrium 
and adverse pregnancy outcomes [28]. Elevated P value 
on HCG day has also been linked to reduced oocyte 
and embryo quality, leading to lower rates of excel-
lent embryos and cumulative live birth rates [29]. These 

findings are consistent with the negative partial regres-
sion coefficient of P value on HCG day (i.e., B=-0.310) 
presented in Table 2.

The appropriate endometrial thickness on HCG day is 
crucial for successful embryo implantation. Some studies 
have reported that no pregnancy occurs when endome-
trial thickness is less than 5 mm [30]. Additionally, when 
the endometrial thickness falls below 7  mm [31, 32] or 
exceeds 16  mm, it is not conducive to embryo transfer 
and implantation, which results in a low clinical preg-
nancy rate [33]. Currently, endometrial thickness of more 
than 7 mm is considered the conventional lower limit for 
embryo transfer. Our study suggests that endometrial 
thickness on HCG day should be regarded as an impor-
tant index before embryo transfer; endometrial thickness 
should be adjusted to the ideal thickness before transfer 
to improve the live birth rate.

Embryos are usually transferred into the womb during 
the cleavage stage (2–3 days after fertilization) in early 
times. Prolongation of embryo culture time in vitro to 
blastocyst stage (5–6 days after fertilization) has been 
widely employed recently, with the benefits of screening 
high-quality embryos and keeping the embryo develop-
ment stage relatively synchronous with the endometrium 
[34]. Studies have reported that blastocyst transfer yields 
a higher clinical pregnancy rate and birth rate than cleav-
age embryos when an equivalent number of embryos 
are transferred [35–37]. The data in Table 1 also demon-
strates that the live birth rate following blastocyst trans-
fer is significantly higher than that of embryo transfers at 
the cleavage stage (1 embryo transfer: 22.42% vs. 15.38%; 
2 embryo transfer: 54.34% vs. 46.34%). Two cleaved 
embryos and one or two blastocyst embryos were inde-
pendent promotors of clinical live birth compared with 
one cleaved embryo. It is important to note that the out-
come of IVF live birth is not only related to the timing 
and number of embryos transferred but also the quality 
of the embryos [38]. However, due to the inherent sub-
jectivity in embryo quality rating and the lack of wide-
spread adoption of time-lapse technology in IVF centers, 
IVF center rating is not entirely consistent, so we did not 
include factors of embryo quality rating in this study. This 
is an aspect that will be explored in future research, uti-
lizing a machine learning algorithm to assess the impact 
of embryo quality on LBOs. Overall, our findings high-
light the significant influence of both stage and number 
of embryos transferred on the outcome of live birth.

The findings in Sect.  3.4 indicate that the recom-
mended strategy derived from the proposed model may 
yield superior LBOs for some patients compared to the 
clinician-based embryo transfer approach. These results 
have potential implications for informing evidence-based 
decision-making in IVF clinical practice. Due to the tra-
ditional preference for transferring 2 embryos in IVF-ET 
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treatment, the historical data utilized to model the LBO 
also predominantly supports this strategy, leading to a 
tendency towards a potential transplant strategy of 2 
embryos (the clinical LBO of Strategy-3 is significantly 
higher than that of Strategy-1 in Sect.  3.4.2 ). However, 
scholars believe higher LBOs can be achieved with a 
single blastocyst transferred (i.e., Strategy-3), and this 
strategy is becoming the mainstream method of embryo 
transfer for its decreased multiple pregnancies rate and 
OHSS risk and increased cumulative pregnancy rate. 
As the practice of single blastocyst transfer gradually 
becomes prevalent in current and forthcoming data, 
the expertise and knowledge encompassed in the newly 
established model will be continuously updated to align 
with this mainstream embryo transfer strategy, thereby 
enhancing the recommended outcomes.

The proposed LBO prediction model in this study 
is developed by leveraging clinical big data through 
machine learning techniques. The model considers a 
comprehensive range of factors, including basic clinical 
characteristics, COS treatment regimen, OSI, P value 
on HCG day, endometrial thickness on HCG day, and 
embryo transfer-related indicators to capture the criti-
cal processes in the IVF cycle. Based on the established 
prediction model, it is possible to forecast LBO by itera-
tively selecting different embryo transfer strategies and 
ultimately identifying the optimal strategy based on 
expected outcomes.

In addition to the recommendation of embryo transfer 
strategy, the proposed model is also suitable for decision-
making on other influencing factors of the LBO model. 
For example, the model can calculate the endometrial 
thickness interval, from which the expected live birth 
situation can be achieved. In this way, whether or not to 
perform embryo transfer can be determined based on 
actual endometrial thickness and the prediction LBO. 
This will be another future work.

Conclusions
We have developed an SVM-based model that can accu-
rately predict the LBO of the IVF, as measured by the 
indicators of precision, accuracy, sensitivity, and F1 
score. This model has been successfully applied in clini-
cal practice to provide precise LBO predictions and as a 
reliable and scientific tool for guiding decision-making in 
IVF treatment. For example, it can recommend embryo 
transfer strategies, optimize COS treatment regimens, 
and determine the ideal endometrial thickness interval 
for future embryo transfers. It is of great significance in 
making treatment decisions, alleviating patients’ psy-
chological burden, and promoting patient compliance 
throughout the IVF treatment cycle.
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