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Abstract 

Background The cumulative live birth rate (CLBR) has been regarded as a key measure of in vitro fertilization (IVF) 
success after a complete treatment cycle. Women undergoing IVF face great psychological pressure and financial 
burden. A predictive model to estimate CLBR is needed in clinical practice for patient counselling and shaping 
expectations.

Methods This retrospective study included 32,306 complete cycles derived from 29,023 couples undergoing IVF 
treatment from 2014 to 2020 at a university-affiliated fertility center in China. Three predictive models of CLBR were 
developed based on three phases of a complete cycle: pre-treatment, post-stimulation, and post-treatment. The 
non-linear relationship was treated with restricted cubic splines. Subjects from 2014 to 2018 were randomly divided 
into a training set and a test set at a ratio of 7:3 for model derivation and internal validation, while subjects from 2019 
to 2020 were used for temporal validation.

Results Predictors of pre-treatment model included female age (non-linear relationship), antral follicle count (non-
linear relationship), body mass index, number of previous IVF attempts, number of previous embryo transfer failure, 
type of infertility, tubal factor, male factor, and scarred uterus. Predictors of post-stimulation model included female 
age (non-linear relationship), number of oocytes retrieved (non-linear relationship), number of previous IVF attempts, 
number of previous embryo transfer failure, type of infertility, scarred uterus, stimulation protocol, as well as endome-
trial thickness, progesterone and luteinizing hormone on trigger day. Predictors of post-treatment model included 
female age (non-linear relationship), number of oocytes retrieved (non-linear relationship), cumulative Day-3 embryos 
live-birth capacity (non-linear relationship), number of previous IVF attempts, scarred uterus, stimulation protocol, 
as well as endometrial thickness, progesterone and luteinizing hormone on trigger day. The C index of the three 
models were 0.7559, 0.7744, and 0.8270, respectively. All models were well calibrated (p = 0.687, p = 0.468, p = 0.549). 
In internal validation, the C index of the three models were 0.7422, 0.7722, 0.8234, respectively; and the calibration P 
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values were all greater than 0.05. In temporal validation, the C index were 0.7430, 0.7722, 0.8234 respectively; however, 
the calibration P values were less than 0.05.

Conclusions This study provides three IVF models to predict CLBR according to information from different treat-
ment stage, and these models have been converted into an online calculator (https:// h5. eheren. com/ hcyc/ pc/ index. 
html#/ home). Internal validation and temporal validation verified the good discrimination of the predictive models. 
However, temporal validation suggested low accuracy of the predictive models, which might be attributed to time-
associated amelioration of IVF practice.

Keywords In vitro fertilization, Cumulative live birth rate, Predictive model, Restricted cubic splines

Introduction
In vitro fertilization (IVF) is the most common therapeu-
tic option for couples with continuously unresolved fer-
tility problems. It is estimated that the total number of 
IVF cycles conducted is over 1 million, with more than 
400,000 babies born around the globe every year [1]. For 
patients who undergo treatment, live birth is the most 
crucial criterion to determine IVF success. Success rates 
of IVF are traditionally reported as live birth per embryo 
transfer (ET). With the increasing use of embryo freez-
ing and thawing, it is essential to evaluate the cumulative 
live birth rate (CLBR) following multiple transfer cycles 
as the ultimate measure of success [2].

A precise predictive model of CLBR could help to 
achieve expected outcomes as much as possible for cou-
ples during assisted reproductive technology (ART) 
treatment, reduce the surgical risk and formulate appro-
priate individualized treatment for patients. Few stud-
ies have developed the predictive model to estimate the 
CLBR. McLernon DJ et al. developed multiple predictive 
models to estimate the chances of a live birth over mul-
tiple complete IVF cycles based on national data from 
the United States and the United Kingdom [3–5]. How-
ever, more scholars prefer the CLBR of a complete cycle, 
which can directly evaluate the efficiency of a single ovar-
ian stimulation cycle and has more significance for clini-
cal detail evaluation [6]. Existing models for CLBR after 
a complete IVF cycle were mainly based on the first IVF 
cycle and whole freeze-all IVF cycle [7–10].

Many IVF predictive models based on clinical out-
comes have been developed in previous studies, and 
emerging patient and treatment characteristics have 
been proved to be important predictors [3, 11–13]. How-
ever, those models are rarely used in clinical practice. It 
could be blamed on the inconsistencies in the variables 
included and the poor predictive precision [14]. There-
into, the precise relationship between variables and IVF 
outcomes is a key impediment to improve predictive 
accuracy. Several predictors like female age, antral folli-
cle count (AFC) and oocyte number were considered to 
be non-linearly associated with the chance of live birth 
[15–17]. However, there are rare studies to exploit the 

nonlinearity in the models. Churpek et al. reported that 
using restricted cubic spline allows for predicting nonlin-
earity with higher accuracy than traditional logistic mod-
els in the context of critical care medicine [18]. Therefore, 
it is a necessary attempt to apply non-linearity in the IVF 
predictive models.

Embryo quality is another essential factor in IVF treat-
ment, associated with implantation potential and live 
birth [19]. After completion of in vitro culture, embryolo-
gists assessed each embryo through visual inspection of 
morphological features [20, 21]. Following fresh trans-
fer, supernumerary embryos with acceptable implan-
tation potential were cryopreserved for subsequent 
frozen embryo transfer (FET) cycles to improve CLBR. 
However, given the adjustment of the transfer strategies 
in different cycles, it could be difficult for researchers 
to consider the effect that embryo quality poses on the 
CLBR in ART treatment [22, 23]. Current IVF predictive 
models about CLBR are lack of comprehensive consid-
eration of all embryos in a stimulation cycle. We believe 
that to establish an available CLBR model with high pre-
cision, it is indispensable to include embryo character-
istics. However, how to consider the predictive value of 
all embryo in a complete cycle for the CLBR becomes an 
urgent problem.

In this study, we aimed to develop a set of predictive 
models to assess the predicted cumulative probability of 
live birth. The first was a pre-treatment model for pre-
dicting the cumulative chance before couples receiving 
treatment; the second was a post-stimulation model to 
revise predictions after oocyte retrieval; and the last was 
a post-treatment model that comprehensively included 
information of all implantable embryos to predict 
success.

Materials and methods
Study design and participants
Between January 1, 2014 and June 30, 2020, we con-
ducted a retrospective analysis of women undergoing 
IVF or intracytoplasmic sperm injection (ICSI) treat-
ment at the Reproductive Medicine Center of Jiangxi 
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Maternal and Child Health Hospital Affiliated to Nan-
chang Medical College. A total of 32,306 treatment 
cycles derived from 29,023 couples were included. All 
data of the subjects were retrieved from the electronic 
medical records of our center. The study protocol was 
approved by the Reproductive Medicine Ethics Com-
mittee of Jiangxi Maternal and Child Health Hospital 

(SZYX-202,306). The inclusion and exclusion criteria 
and study design are shown in Fig. 1.

IVF/ICSI treatment procedure
Before commencing IVF treatment, couples underwent 
standard infertility assessments, including serum test and 
transvaginal ultrasound (TVUS). Ovarian stimulation 

Fig. 1 Flowchart of selection for the study
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was performed using recombinant follicle stimulating 
hormone and/or urinary human menopausal gonado-
tropins (rFSH/hMG). The main stimulation regimens 
included follicular phase gonadotropin-releasing hor-
mone (GnRH) agonist protocol [24], luteal phase GnRH 
agonist protocol, and GnRH antagonist protocol. Follicu-
lar development was monitored by ultrasonography, and 
final oocyte maturation was induced by human chorionic 
gonadotrophin (hCG) when at least three follicles of 18 
mm in diameter were observed. TVUS-guided follicular 
aspirations were performed 36 h after triggering.

Fertilization was carried out in  vitro by either con-
ventional IVF or ICSI depending on semen parameters. 
Embryos were cultured in sequential medium, with 
incubation conditions set at 6%  CO2, 5%  O2, and 37.0 
°C. Recorded morphological characteristics included 
fragmentation, cell number and symmetry of all day 3 
embryos with implantation potential.

Fresh embryo transfers were carried out under ultra-
sound guidance on day 3, day 5 or day 6. Supernumerary 
embryos were cryopreserved. The vitrification procedure 
was performed using the Cryo Bio System (France). Sub-
sequent frozen-thawed transfer was performed through a 
natural cycle with hCG or through an artificial cycle with 
or without GnRH agonist pre-treatment [25]. The num-
ber of embryos transferred varied from one to two based 
on patient features.

Main outcome measures
The main outcome was the CLBR of a complete IVF 
treatment cycle. The birth of at least one live-born baby 
per initiated cycle was defined as a live birth, and all the 
other adverse outcomes were classified as no live birth. 
A complete cycle included a fresh embryo transfer and 
associated frozen embryo transfers resulting from a sin-
gle episode of ovarian stimulation.

Statistical analysis
We developed three predictive models divided by three 
consecutive stages of a complete cycle, namely pre-treat-
ment, post-stimulation and post-treatment.

Pre‑treatment model
For a couple ready to embark on IVF treatment, we esti-
mated the CLBR using the couple’s baseline characteris-
tics and fertility check-up.

Post‑stimulation model
For a couple who finished the initiated cycle and success-
fully retrieved oocytes (the number of oocytes > 0), we 
included stimulation treatment characteristics along with 
the features from the pre-treatment model.

Post‑treatment model
For a couple who obtained implantable cleavage embryos 
after embryo culture, we assessed the CLBR based on the 
characteristics of post-stimulation model and cumulative 
Day-3 embryos live birth capacity. The cumulative Day-3 
embryos live birth capacity indicates the potential for live 
births of all Day-3 embryos obtained from a single cycle. 
Specifically, we collected data about embryos morphol-
ogy and outcomes of fresh single Day-3 embryo transfer 
from all complete cycles (n = 2594). We chose cell num-
ber, fragmentation and symmetry of Day-3 embryo as 
explanatory variables to develop logistic regression model 
of live birth probabilities. Then we imported relative data 
of all Day-3 embryos in every eligible complete cycle, cal-
culated cumulative Day-3 embryos live-birth capacity of 
all cycles, and treated it as a new variable added to post-
treatment model. The model information and calculation 
formula were shown in Supplemental text 1.

Continuous data were presented as the mean 
value ± standard deviation (SD) or median with inter-
quartile range, and categorical data were described as the 
number of cases and percentages. Comparisons between 
the live birth and non-live birth groups were determined 
using Student’s t-test for continuous variables and Chi-
squared test for categorical variables. To detect any pos-
sible linear or non-linear correlation between female age, 
AFC, number of oocytes retrieved, cumulative Day-3 
embryos live birth capacity and the CLBR and to allow 
for a flexible interpretation of the relationships, continu-
ous changes in these variables were assessed through 
restricted cubic splines (RCSs) [26]. We put 3, 4, 4, 3 
cut-off points for female age, AFC, number of oocytes 
retrieved and Cumulative Day-3 embryos live birth 
capacity as the knots, respectively. Other continuous var-
iables, including female body mass index (BMI) (< 18.5, 
18.5 ~ 23.9, 24.0 ~ 27.9, ≥ 28 kg/m2), duration of infertil-
ity (< 2, 2 ~ 5, > 5 years), abortion number (0, 1, 2, > 2), 
number of previous ART treatments (0, 1, 2, > 2), num-
ber of previous ET failure (0, 1, 2, > 2), endometrial thick-
ness (< 7, ≥ 7 mm), estradiol (E2) (< 1049, 1049 ~ 1795, 
1796 ~ 2751, > 2751 pg/mL), progesterone (P) (< 0.47, 
0.47 ~ 0.68, 0.69 ~ 0.97, > 0.97 ng/mL), and luteinizing 
hormone (LH) (< 0.65, 0.65 ~ 1.06, 1.07 ~ 1.96, > 1.96 
mIU/mL) on trigger day were transformed into categori-
cal variables before modeling.

We fitted multivariable logistic regression models to 
predict live birth through a complete cycle of IVF. Step-
wise variable selection was used to remove uninformative 
variables in regression models. In short, starting from the 
full model performance, we iteratively remove one fea-
ture from the model while including last removed feature 
to the model, and assert whether the model has improved 
according to the akaike information ccriteria (AIC). The 
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procedure is iterative and continues until there is no 
change in the AIC.

All eligible subjects were split by time. We used sub-
jects in the first phase (January 2014–December 2018) 
for model derivation and internal validation, by randomly 
dividing into a training set and a test set at a ratio of 7:3. 
Subjects in the second phase (January 2019–June 2020) 
were used for temporal validation. When the sample size 
is very large, this approach has been shown to be meth-
odologically more rigorous than a simple random split 
of the dataset [27]. The performance of the models was 
evaluated by means of C index and calibration. The C 
index, equivalent to the area under the receiver operating 
characteristic (ROC) curve, assesses the model’s discrim-
inative capacity. Calibration refers to the level of agree-
ment between the estimated and observed probabilities 
of a given event. Calibration was assessed by means of 
Hosmer-Lemeshow test. All analyses were performed 
with the use of the statistical software R software version 
4.0.2 (http:// www.R- proje ct. org/). P-value < 0.05 was con-
sidered statistically significant for all analyses.

Results
After exclusion, the study included 32,306 complete 
cycles (defined as all fresh and frozen embryo trans-
fers resulting from one episode of ovarian stimulation) 
derived from 29,023 couples undergoing IVF treatment. 
Table 1 summarizes the distribution of the detailed char-
acteristics and cycle information of the couples. Among 
all eligible cycles, 31,436 (97.3%) cycles had oocytes 
retrieved after ovarian stimulation, 29,397 (90.9%) 
obtained usable embryos after in  vitro culture, and 
18,758 (58.1%) ended with live birth after transfer.

Prediction of CLBR by pre‑treatment model
A total of 17,922 cycles was included for this model. Uni-
variable analysis showed that all baseline patient char-
acteristics had statistically significant associations with 
CLBR, except for intrauterine adhesion (Supplemental 
Table  1). After multivariable logistic regression mod-
eling with stepwise variable selection, the predictors of 
CLBR were female age, AFC, BMI, number of previous 
IVF attempts and ET failure, type of infertility, tubal fac-
tor, male factor, and scarred uterus (Table  2). The RCS 
(Fig.  2a-d) illustrated the relations between continuous 
changes of female age, AFC and changes in odds ratios 
(ORs) for the CLBR. As shown in Fig. 2 (a), there was a 
non-linear correlation between the change of unadjusted 
female age and ORs with an inverted S-shape curve. At 
the age of 26 ~ 27, the unadjusted OR was up to 2.559 
(95%CI: 2.451–2.671) and then became a continuous 
downward trend. After adjusting for other confound-
ing factors in logistic model, the non-linear relationship 

between female age and ORs of CLBR still remained 
(Fig. 2b). For AFC, the effect on unadjusted and adjusted 
ORs of live birth also shown a non-linear relationship 
with S-shape curves (Fig.  2c, d). With the increase of 
AFC, the effect turned to be positive (OR: 1.082, 95%CI: 
1.026–1.142) until 8 ~ 9, reached the highest point (OR: 
3.367, 95%CI: 3.153–3.595) at about 21, and began to 
descend afterward. Other covariates also made effects 
on CLBR. Increasing number of previous IVF attempts 
reduced the probabilities of live birth gradually (1, 2, > 2 
vs. 0; adjusted OR: 0.389, 0.284 − 0.144), while the incre-
ment of previous ET failure improved the odds (1, 2, > 2 
vs. 0; adjusted OR: 1.566, 2.308–2.696). Couples with a 
diagnosis of tubal or male factor infertility had slightly 
higher CLBR, with the ORs of 1.126 (1.041–1.218) and 
1.147 (1.062–1.240), respectively. Women with vagi-
nal sonograph of scarred uterus had reduced odds (OR: 
0.803, 95%CI: 0.716-0.900). Finally, the pre-treatment 
model of cumulative live birth was established, the area 
under the ROC curve was 0.7559 (Fig.  3, pre-treatment 
model), and the model calibrated well (p = 0.687, Hos-
mer-Lemeshow test). The calibration curve was shown in 
Fig. 4 (a).

Prediction of CLBR by post‑stimulation model
To predict the CLBR in couples who successfully 
retrieved oocytes from the initiated cycles, we remained 
17,423 eligible cycles and developed the post-stimulation 
model after adding new information of ovarian stimula-
tion. In univariable analysis, the diagnoses of tubal factor 
and intrauterine adhesion had no insignificant associa-
tions with live birth (Supplemental Table 2). After step-
wise selection from multivariable logistic regression 
model, a total of 10 predictors remained, as shown in 
Table 3. Compared to follicular phase GnRH agonist pro-
tocol, choosing luteal phase GnRH agonist, GnRH antag-
onist and other protocols reduced the odds of live birth 
by 30.4%, 24.7%, 39.4%, respectively. On the hCG trig-
ger day, women with endometrial thickness ≥ 7 mm had 
mildly higher CLBR than those whose thickness was < 7 
mm (OR:1.354, 95%CI: 1.152–1.592). Women with peak 
LH level of > 1.07 or > 1.96 mIU/mL had 13.5% or 23.5% 
improved live birth odds than those of < 0.65 mIU/mL, 
while higher P level reduced the odds (> 0.97 v < 0.47 ng/
mL; OR:0.814, 0.731–0.907). RCS indicated the positive 
relationship between the oocyte number and the ORs of 
CLBR with four knots (Fig.  2e, f; p value for nonlinear-
ity < 0.001). In multivariable adjustments, the odds of live 
birth turned to be significant until 4–5 (OR:1.172, 95%CI: 
1.030–1.334), and the increasing trend became relatively 
steep after that point. The effects of other factors were 
similar to those appeared in the pre-treatment model. 
Finally, the post-stimulation model of cumulative live 

http://www.R-project.org/
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birth was established, the area under the ROC curve was 
0.7744 (Fig.  3, post-stimulation model), and the model 
calibrated well (p = 0.468, Hosmer-Lemeshow test). The 
calibration curve was shown in Fig. 4 (b).

Prediction of CLBR by post‑treatment model
To predict the CLBR in women who obtained implant-
able embryos, we remained 16,301 eligible cycles 
(embryo number > 0) and developed the post-treatment 

Table 1 Characteristics of women and their treatment at a complete cycle

BMI Body mass index, IVF In vitro fertilization, ET Embryo transfer, PCOS Polycystic ovary syndrome, GnRH Gonadotropin-releasing hormone, E2 Estradiol, P 
Progesterone, LH Luteinizing hormone, hCG Human chorionic gonadotrophin, ICSI Intracytoplasmic sperm injection

Characteristics Pre‑treatment
(n = 32,306)

Post‑stimulation
(n = 31,436)

Post‑treatment
(n = 29,397)

Baseline characteristics
 Female age (y), Median (interquartile range) 31 (8) 30 (8) 30 (8)

 Antral follicle count, Median (interquartile range) 11 (9) 11 (9) 12 (9)

 Female BMI (kg/m2), Mean ± SD 21.97 ± 3.03 21.95 ± 3.02 21.94 ± 3.02

 Duration of infertility (y), Mean ± SD 4.51 ± 3.52 4.48 ± 3.49 3.83 ± 3.41

 No. of abortion, Mean ± SD 0.60 ± 0.97 0.60 ± 0.96 0.60 ± 0.93

 No. of previous IVF attempts, Mean ± SD 1.36 ± 0.81 1.34 ± 0.78 1.31 ± 0.71

 No. of previous ET failure, Mean ± SD 0.22 ± 0.61 0.21 ± 0.61 0.21 ± 0.60

Type of infertility, n (%)

 Primary infertility 13,695 (42.39) 13,346 (42.45) 12,409 (42.21)

 Secondary infertility 18,611 (57.61) 18,090 (57.55) 16,988 (57.79)

Infertility diagnosis, n (%)

 Tubal factor 23,063 (71.39) 22,518 (71.63) 21,181 (72.05)

 Male factor 8714 (26.97) 8500 (27.04) 7964 (27.09)

 Ovulatory disorder 4636 (14.35) 4545 (14.46) 4349 (14.79)

 Endometriosis 2224 (6.88) 2156 (6.86) 1968 (6.69)

 PCOS 3017 (9.34) 2979 (9.48) 2917 (9.92)

 Intrauterine adhesion, n (%) 5034 (15.58) 4908 (15.61) 4615 (15.7)

 Scarred uterus, n (%) 3637 (11.26) 3534 (11.24) 3301 (11.23)

Ovarian stimulation characteristics
 Stimulation protocol, n (%)

  Follicular phase GnRH agonist protocol - 23,472 (74.67) 22,758 (77.42)

  Luteal phase GnRH agonist protocol - 1894 (6.02) 1801 (6.13)

  GnRH antagonist protocol - 2861 (9.10) 2585 (8.79)

  Others - 3209 (10.21) 2253 (7.66)

Endometrial thickness on trigger day (mm), Mean ± SD - 10.59 ± 2.67 10.68 ± 2.63

E2 level on trigger day (pg/mL), Mean ± SD - 2113.38 ± 1433.09 2186.96 ± 1421.79

P level on trigger day (ng/mL), Mean ± SD - 0.78 ± 0.58 0.78 ± 0.54

LH on trigger day (IU/L), Mean ± SD - 1.68 ± 2.29 1.53 ± 1.92

Types of trigger, n (%)

 hCG - 28,416 (90.39) 27,243 (92.67)

 GnRH agonist - 1562 (4.97) 1058 (3.60)

 hCG + GnRH agonist - 1458 (4.64) 1096 (3.73)

 No. of oocytes retrieved, Median (interquartile range) - 10 (9) 11 (8)

Embryo transfer characteristics
 Fertilization method, n (%)

  IVF - - 21,964 (74.72)

  ICSI - - 6034 (20.53)

  IVF + ICSI - - 1399 (4.76)

  Cumulative Day-3 embryos live birth capacity, Median (inter-
quartile range)

- - 1.49 (1.66)
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model after taking fertilization method and cumulative 
Day-3 embryos live-birth capacity as new predictors. 
In univariable analysis, all factors between live birth 
group and no live birth group had statistically signifi-
cant differences, except for tubal infertility and intrau-
terine adhesion (Supplemental Table 3). After stepwise 
multivariable logistic regression modeling based on 
AIC criteria, the following 9 predictors were selected 
to explain the variation of cumulative live birth prob-
abilities, as seen in Table  4. As shown in Fig.  2 (g, h), 
there were nonlinear relationships between the Day 3 
embryo cumulative live-birth capacity and the ORs 
of CLBR with a J shaped curve. The odds began to be 
positive from the capacity of 1.036 (OR: 1.044, 95%CI: 
1.002–1.087), and then rose exponentially. As the 
adjustment variable involved, the positive effect point 
moved forward to 0.776 (OR: 1.158, 95%CI: 1.026–
1.308), and then the rising curve was elevated overall. 
The area under the ROC curve of post-treatment model 
was 0.8270 (Fig.  3, post-treatment model), which cali-
brated well (p = 0.549, Hosmer-Lemeshow test). The 
calibration curve was shown in Fig. 4 (c).

Validation of CLBR prediction models
Independently, we used the internal validation set from 
the same source as the modeling data and temporal vali-
dation set from the different sources to evaluate these 
predictive models. As shown in Table  5, the C index of 
internal validation set were 0.7422 (0.7308 to 0.7536), 
0.7722 (0.7612 to 0.7832), 0.8234 (0.8134 to 0.8333), 
respectively; and the calibration P values were all greater 
than 0.05, suggesting the relative robustness of models 
and no overfitting of predictor effects. In temporal vali-
dation, the C index were 0.7430 (0.7308 to 0.7536), 0.7722 
(0.7612 to 0.7832), 0.8234 (0.8134 to 0.8333) respectively, 
suggesting that model prediction had a great repeatabil-
ity; however, the calibration P values were less than 0.05.

Visualization of CLBR prediction models
Finally, we developed an on-line calculator, in which 
clinicians and couples can use it to calculate their own 
CLBR (available on https:// h5. eheren. com/ hcyc/ pc/ 
index. html#/ home). Detailed calculation formulas for 
three predictive models were showed in Supplemental 
text 2.

Table 2 Effect of each predictor on cumulative live birth rate of ART treatment adjusted for patient characteristics (Pre-treatment 
model)

BMI Body mass index, IVF In vitro fertilization, ET Embryo transfer
a The binomial of restricted cubic splines
b The trinomial of restricted cubic splines

Predictors Coefficient Odds ratio 95% CI P value

Intercept -1.826 0.161 0.097~0.266 <0.001

Female age 0.043 1.044 1.026~1.061 <0.001

Female  agea -0.206 0.814 0.795~0.832 <0.001

Antral follicle count 0.158 1.171 1.134~1.208 <0.001

Antral follicle  counta -0.180 0.836 0.716~0.974 0.022

Antral follicle  countb 0.182 1.200 0.830~1.738 0.333

Female BMI, (vs <18.5)

 18.5~23.9 0.065 1.067 0.954~1.193 0.255

 24.0~27.9 -0.035 0.965 0.846~1.100 0.596

 >28.0 -0.212 0.809 0.664~0.986 0.035

No. of previous IVF attempts, (vs 0)

 1 -0.944 0.389 0.342~0.442 <0.001

 2 -1.258 0.284 0.229~0.351 <0.001

 >2 -1.936 0.144 0.104~0.198 <0.001

No. of previous ET failure, (vs 0)

 1 0.449 1.566 1.341~1.831 <0.001

 2 0.836 2.308 1.832~2.912 <0.001

 >2 0.992 2.696 1.906~3.818 <0.001

Type of infertility, primary infertility vs. second-
ary infertility

0.148 1.160 1.075~1.251 <0.001

Tubal factor, (yes vs no) 0.119 1.126 1.041~1.218 0.003

Male factor, (yes vs no) 0.137 1.147 1.062~1.240 <0.001

Scarred uterus, (yes vs no) -0.220 0.803 0.716~0.900 <0.001

https://h5.eheren.com/hcyc/pc/index.html#/home
https://h5.eheren.com/hcyc/pc/index.html#/home
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Fig. 2 Non-linear association between predictors and cumulative live birth rate. Restricted cubic splines of the unadjusted and adjusted odds ratios 
of the cumulative live birth rate with female age (a, b), antral follicle count (c, d), number of oocytes retrieved (e, f), cumulative Day-3 embryos live 
birth capacity (g, h)

Fig. 3 The area under the ROC curve of three predictive models
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Fig. 4 Calibration plots showing the observed cumulative live birth rate (95% CI) from the training dataset and the predicted cumulative live birth 
rate over the pre-treatment model (a), post-stimulation model (b), and post-treatment model (c)

Table 3 Effect of each predictor on cumulative live birth rate of ART treatment adjusted for patient characteristics and stimulation 
information (Post-stimulation model)

IVF In vitro fertilization, ET Embryo transfer, GnRH Gonadotropin-releasing hormone, P Progesterone, LH Luteinizing hormone
a The binomial of restricted cubic splines
b The trinomial of restricted cubic splines

Predictors Coefficient Odds ratio 95% CI P value

Intercept -2.615 0.073 0.042 ~ 0.129 < 0.001

Female age 0.045 1.046 1.028 ~ 1.065 < 0.001

Female  agea -0.217 0.805 0.783 ~ 0.828 < 0.001

No. of oocytes retrieved 0.254 1.289 1.243 ~ 1.338 < 0.001

No. of oocytes  retrieveda -0.362 0.696 0.614 ~ 0.789 < 0.001

No. of oocytes  retrievedb 0.683 1.980 1.417 ~ 2.774 < 0.001

No. of previous IVF attempts, (vs. 0)

 1 -0.671 0.511 0.445 ~ 0.587 < 0.001

 2 -0.837 0.433 0.342 ~ 0.547 < 0.001

 > 2 -0.911 0.402 0.284 ~ 0.564 < 0.001

No. of previous ET failure, (vs. 0)

 1 0.333 1.396 1.182 ~ 1.649 < 0.001

 2 0.523 1.686 1.327 ~ 2.146 < 0.001

 > 2 0.711 2.036 1.421 ~ 2.921 < 0.001

Type of infertility, primary infertility vs. secondary infertility 0.156 1.168 1.081 ~ 1.263 < 0.001

Scarred uterus, (yes vs. no) -0.189 0.828 0.736 ~ 0.932 0.002

Stimulation protocol, (vs. Follicular phase GnRH agonist protocol)

 Luteal phase GnRH agonist protocol -0.362 0.696 0.609 ~ 0.797 < 0.001

 GnRH antagonist protocol -0.283 0.753 0.650 ~ 0.874 < 0.001

 Others -0.501 0.606 0.501 ~ 0.732 < 0.001

 Endometrial thickness on trigger day, (≥ 7 mm vs. < 7 mm) 0.303 1.354 1.152 ~ 1.592 < 0.001

P level on trigger day, (vs. < 0.47)

 0.47 ~ 0.68 -0.008 0.992 0.889 ~ 1.108 0.890

 0.69 ~ 0.97 -0.057 0.945 0.849 ~ 1.051 0.295

 > 0.97 -0.205 0.814 0.731 ~ 0.907 < 0.001

LH level on trigger day, (vs. < 0.65)

 0.65 ~ 1.06 0.047 1.048 0.951 ~ 1.156 0.344

 1.07 ~ 1.96 0.127 1.135 1.029 ~ 1.252 0.011

 > 1.96 0.211 1.235 1.099 ~ 1.389 < 0.001
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Discussion
Principal findings
We have developed a package of predictive models to 
estimate the individual CLBR at three different stages 
of treatment over one IVF cycle. We applied restricted 
cubic splines to explore the nonlinear effect between 

several predictors and the CLBR. In modeling, we found 
that predictors such as female age, AFC, number of 
oocytes retrieved and cumulative Day-3 embryos live-
birth capacity had nonlinear correlations with live birth 
in different treatment stages. We have obtained more 
precisive prediction when the significant nonlinear terms 
were put into models.

Interpretation of study findings and comparison 
with existing literature
These final models show that maternal age is a key fac-
tor in CLBR prediction during IVF treatment, no matter 
which stage the prediction was made. This conclusion was 
identical with previous studies [3, 9, 11, 12, 28]. In mod-
eling, we recommend adding female age as a continuous 
variable to the prediction, which might clearly reflect the 
continuous effect of age change on personal live birth 
probability. Previous studies have reported the nonlinear 
relations between female age and pregnancy outcome with 

Table 4 Effect of each predictor on cumulative live birth rate of ART treatment adjusted for patient characteristics, stimulation and 
transferred embryo information (Post-treatment model)

IVF In vitro fertilization, GnRH Gonadotropin-releasing hormone, P Progesterone, LH Luteinizing hor-mone
a The binomial of restricted cubic splines
b The trinomial of restricted cubic splines

Predictor Coefficient Odds ratio 95% CI P value

Intercept -2.014 0.134 0.072~0.249 <0.001

Female age 0.030 1.031 1.011~1.051 0.003

Female  agea -0.223 0.800 0.776~0.825 <0.001

No. of oocytes retrieved 0.005 0.995 0.959~1.033 0.808

No. of oocytes  retrieveda -0.091 0.913 0.801~1.039 0.166

No. of oocytes  retrievedb 0.262 1.300 0.866~1.957 0.207

Cumulative Day3 embryos live-birth capacity 1.663 5.275 4.709~5.912 <0.001

Cumulative Day3 embryos live-birth  capacitya -1.039 0.354 0.297~0.423 <0.001

No. of previous IVF attempts, (vs 0)

 1 -0.240 0.787 0.708~0.874 <0.001

 2 -0.154 0.857 0.699~1.050 0.138

 >2 -0.317 0.729 0.528~0.995 0.049

Scarred uterus, (yes vs. no) -0.200 0.818 0.721~0.929 0.002

Stimulation protocol, (Follicular phase GnRH agonist protocol vs.)

 Luteal phase GnRH agonist protocol -0.288 0.750 0.645~0.872 0.001

 GnRH antagonist protocol -0.333 0.717 0.610~0.843 0.001

 Others -0.418 0.658 0.537~0.806 0.001

Endometrial thickness on trigger day, (≥7 mm vs. <7 mm) 0.401 1.493 1.254~1.779 <0.001

P level on trigger day, (vs <0.47)

 0.47~0.68 -0.039 0.962 0.852~1.085 0.524

 0.69~0.97 -0.056 0.946 0.841~1.063 0.352

 >0.97 -0.185 0.831 0.738~0.936 0.002

LH level on trigger day, (vs <0.65)

 0.65~1.06 -0.030 0.970 0.871~1.081 0.583

 1.07~1.96 0.054 1.056 0.946~1.178 0.331

 >1.96 0.177 1.194 1.051~1.358 0.007

Table 5 Internal and temporal validation of the predictive 
models

C index 95% CI Calibration c2 P value

Baseline characteristics
 Pre-treatment 0.7422 0.7308~0.7536 8.730 0.366

 Post-stimulation 0.7722 0.7612~0.7832 10.151 0.255

 Post-treatment 0.8234 0.8134~0.8333 12.337 0.137

Temporal validation

 Pre-treatment 0.7430 0.7307~0.7553 21.402 0.006

 Post-stimulation 0.7747 0.7630~0.7863 83.618 <0.001

 Post-treatment 0.8221 0.8113~0.8328 114.59 <0.001
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different methods. McLernon et  al. found the nonlinear 
relation between the age and the probability of live birth 
using RCS in univariate analysis [4]. A study of Chen et al. 
also indicated that female age was nonlinearly associated 
with outcomes using generalized additive model [29]. And 
then they utilized the nonlinear relations to determine the 
cutoffs and segment the age in the process of modelling. 
However, this categorization approach was considered to 
be unreasonable because the specified truncation points 
in different studies was not uniform; the information of 
the variables was compressed into linear; and categoriza-
tion assumed that the relationship between the predictor 
and the response is flat within intervals which was lack of 
consistency in most cases [26]. We therefore included the 
age with restricted cubic spline into multiple predications. 
Results showed that the accuracy of each model has been 
improved after considering nonlinear effect, and the effect 
persisted after adjustment for confounding variables at 
each stage, with an inverted S-shape curve.

AFC and the number of oocytes retrieved are also 
recognized as key predictors. It has been reported that 
basal AFC is able to predict live birth before receiving 
IVF treatment [17], and increasing AFC has a nonlinear 
association with higher odds of live birth [16, 17]. After 
considering the nonlinear effect of AFC with RCS and 
adding to prediction, we found that our pre-treatment 
model provided a higher precision than previous studies 
(C index = 0.7559). After including stimulation informa-
tion, the association between AFC and CLBR became 
insignificant in the post-stimulation model, and instead, 
the oocytes number provided more significant effect. 
This might be due to the strong correlation between AFC 
and the number of oocytes retrieved. The conclusion 
that oocyte number has a nonlinear relation with preg-
nancy outcome has been reported already, with the rise 
in the odds of live birth gradually being flat when oocytes 
retrieved constantly increased [15, 30]. Therefore, our 
post-stimulation model (C index = 0.7744) has a similar 
CLBR prediction value to the pre-treatment model.

The number and quality of embryos transferred are 
considered to be key predictors for IVF/ICSI outcome. 
Terriou et  al. found that embryo score predicted preg-
nancy better than the number of transferred embryos 
or female age [31]. Embryo morphology grading system 
has developed to be an international standard method to 
assess embryo quality in clinical practice [32]. However, 
although embryo score has been proved to be the inde-
pendent predictor of live birth [11], few studies have taken 
embryo quality into account to predict CLBR as the num-
ber and quality of embryos couples obtained from one 
stimulation cycle are varied [3, 5]. Our study tentatively 
considered intact cleavage embryo information and quan-
tified it by establishing LB regressions and then explored 

its prediction function for CLBR. We found the nonlinear 
association between cumulative embryo probabilities and 
odds of live birth, which indicated that the increase of the 
cumulative embryo quality brings a steep curve of CLBR. 
Ultimately, we obtained a more precisive predictive model 
for IVF/ICSI treatment (C index = 0.827).

Clinical and research implications
We have built a set of predictive models to meet the needs 
of couples at different stages during IVF/ICSI treatment. 
These models are convenient and practical because infor-
mation on all variables included was generally available 
clinically. In practice, if couples are successful at a certain 
stage, the following models will then provide revised pre-
dictions of CLBR according to information on this stage. 
These models might serve as a counseling tool in clinics. 
Couples could assess their own chances of delivery in each 
treatment stage according to personalized conditions, and 
clinicians could adjust reliable treatment protocols accord-
ing to couples’ basic characteristics. The results from our 
model might help couples plan their time and prepare 
emotionally and financially for their complete IVF journey.

In prior studies, models were built based on national 
data [3, 4], but these data often came from multiple 
clinics, leading to variance of IVF/ICSI techniques and 
diagnostic criteria, as well as the absence of some poten-
tially important predictors, such as P level on trigger 
day. Our single-center study confirmed the prediction 
value of several clinical indicators for CLBR, which have 
been reported previously [12, 33–36]. To the best of our 
knowledge, the C index of our models are the highest for 
ART models to date. This might be due to the inclusion 
of non-linearity, the effect of complete embryo informa-
tion, or a combination of both.

Strengths and limitations
The present study is strengthened by the inclusion of over 
30,000 treatment cycles, the use of RSC for model con-
struction, and the consideration of CLBR over a complete 
cycle as the study subject. Our detailed medical data, 
including fertility check-up, stimulation characteristics 
and embryo outcomes, allowed us to develop a package 
of models at different stages of treatment with high preci-
sion. In addition, both internal validation and temporal 
validation were applied to verify the robustness and good 
discrimination of the predictive models.

Whereas our models showed good results in the test 
sets, the current study contains several potential limita-
tions. First, some factors associated with men were not 
considered in our models, such as male age and BMI. How-
ever, previous studies have reported that male BMI did 
not influence both LBR and CLBR [37, 38], and one study 
pointed that paternal age had no association with LBR after 
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adjusting for female age [39]. Nonetheless, some potentially 
important predictors were poorly recorded and should be 
better considered in future study, such as ethnicity and 
AMH level. Second, although we examined our models 
with internal population in internal and temporal valida-
tion, it was lack of external validation on independent data, 
and its generalizability needs to be confirmed. Moreover, 
the temporal validation showed that the Hosmer-Leme-
show test χ2 in the calibration were relatively large, implying 
low accuracy of the predictive models possibly attributed to 
time-associated amelioration of IVF practice. Third, this 
study was conducted in a single center. The clinical applica-
tion and generalizability of the findings are restricted due 
to the specific characteristics of the study population and 
regional variations in IVF practices. To expand the appli-
cable population for the predictive models, further multi-
center studies are needed in the future.

Conclusions
In summary, we have built a set of IVF/ICSI models to 
predict CLBR according to information from different 
treatment stages. In modeling, we included the effect of 
non-linearity of several key predictors, such as female 
age, basal AFC, oocyte number and cumulative embryo 
live birth probabilities. Our models show good stability 
and should provide a practically useful consulting tool for 
both couples and clinicians.
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