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Abstract 

Background  Deep learning has been increasingly investigated for assisting clinical in vitro fertilization (IVF). The 
first technical step in many tasks is to visually detect and locate sperm, oocytes, and embryos in images. For clinical 
deployment of such deep learning models, different clinics use different image acquisition hardware and different 
sample preprocessing protocols, raising the concern over whether the reported accuracy of a deep learning model 
by one clinic could be reproduced in another clinic. Here we aim to investigate the effect of each imaging factor 
on the generalizability of object detection models, using sperm analysis as a pilot example.

Methods  Ablation studies were performed using state-of-the-art models for detecting human sperm to quantita-
tively assess how model precision (false-positive detection) and recall (missed detection) were affected by imaging 
magnification, imaging mode, and sample preprocessing protocols. The results led to the hypothesis that the rich-
ness of image acquisition conditions in a training dataset deterministically affects model generalizability. The 
hypothesis was tested by first enriching the training dataset with a wide range of imaging conditions, then validated 
through internal blind tests on new samples and external multi-center clinical validations.

Results  Ablation experiments revealed that removing subsets of data from the training dataset significantly reduced 
model precision. Removing raw sample images from the training dataset caused the largest drop in model precision, 
whereas removing 20x images caused the largest drop in model recall. by incorporating different imaging and sample 
preprocessing conditions into a rich training dataset, the model achieved an intraclass correlation coefficient (ICC) 
of 0.97 (95% CI: 0.94-0.99) for precision, and an ICC of 0.97 (95% CI: 0.93-0.99) for recall. Multi-center clinical validation 
showed no significant differences in model precision or recall across different clinics and applications.

Conclusions  The results validated the hypothesis that the richness of data in the training dataset is a key factor 
impacting model generalizability. These findings highlight the importance of diversity in a training dataset for model 
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evaluation and suggest that future deep learning models in andrology and reproductive medicine should incorporate 
comprehensive feature sets for enhanced generalizability across clinics.

Keywords  Semen analysis, Sperm detection, Generalizability, Multicenter validation, Deep learning

Introduction
Deep learning has been increasingly applied to facili-
tate diagnosis and treatment of various diseases [1, 2]. 
Taking infertility as an example, which affects one in 
six couples worldwide [3, 4], numerous deep learning 
models have been developed with the aim of improving 
clinical outcomes and optimizing the operational effi-
ciency in in  vitro fertilization (IVF) clinics [5–8]. Most 
of these models take images as input, for instance, to 
evaluate sperm motility, concentration, and morphology 
for selecting high-quality sperm for fertilization [9–11] 
or for diagnosing male infertility [12–14], to help iden-
tify and distinguish sperm and debris in testicular sperm 
samples [15, 16], or to examine the quality of oocytes 
[17]. Models have also been developed to use embryo 
images or time-lapse videos to grade embryos [18, 19] 
and to predict treatment outcomes such as implantation 
[20], pregnancy [21], and live birth [22–24].

Despite the potential of deep learning models for 
advancing clinical practice, existing studies focused on 
improving model accuracy [25–28] or precision [29–32] 
while little attempt has been made to investigate model 
generalizability, an essential aspect for deploying deep 
learning models for clinical applications. Translating a 
technique from technical development to clinical deploy-
ment can involve various factors that impact the gen-
eralizability of the developed technique. Regardless of 
applications or the types of cells to analyze, the first tech-
nical step for deep learning models is often to visually 
identify and locate an object (oocyte [33, 34], sperm [35–
39], and embryo [20, 40–42]) in images. Different clinics, 
however, use different image acquisition conditions (e.g., 
microscope brands and models, imaging modes [43–45], 
magnifications [9, 33], illumination intensity, and cam-
era resolutions [13–15, 39] etc.), as evident in Table 1. In 
addition, even though the images are acquired under the 
same conditions, sample preprocessing protocols may 
also be different among clinics (e.g., for sperm analysis 
using raw semen versus washed samples). These factors 
inevitably change the appearance of the images for analy-
sis by deep learning models, thus raising concerns over 
whether the accuracy of a model reported in one clinic 
could be reproduced in another clinic.

This question is important but has not been investigated 
in literature. Existing studies [12–15, 35–39, 43–45], were 
retrospective studies where a retrospectively collected 
dataset was split into training, validation, and testing 

sub-datasets. Although such datasets may include data 
from multiple clinics [10, 11], model validation and test-
ing were still performed under the same data collection 
conditions as the training dataset. The lack of prospec-
tive model validation and testing with new data beyond 
the retrospectively collected dataset challenges the gen-
eralizability of the developed model under different 
clinical setups. To address this question, what is needed 
is prospective validation and testing of model generaliz-
ability. However, existing studies mainly use accuracy or 
precision as the sole metric for evaluating the developed 
models. Reproducibility metrics such as coefficient of var-
iation or intraclass correlation coefficient (ICC) has rarely 
been reported in literature.

Technically, applying a pre-trained model in differ-
ent clinics may involve domain shift, that is, the data (in 
each clinic) used to evaluate the model is drawn from a 
population different from the training data. Despite the 
importance and implications of domain shift in image 
analysis and deep learning have been discussed in the 
literature [49–53], few studies have explored the specific 
factors that contribute to domain shift and its impact on 
model generalizability in real-world clinical settings. For 
instance, variations in clinical imaging settings – such as 
differences in microscope models, imaging modes, mag-
nifications, and sample preparation protocol – may all 
lead to different data distributions between the testing 
dataset and training dataset. However, it remains unclear 
how each specific factor/variation affects model general-
izability in clinical settings.

Here we fill this knowledge gap by performing ablation 
studies which quantitatively revealed how model preci-
sion and recall were affected by imaging magnification, 
imaging mode, and sample preprocessing protocols. The 
workflow of this manuscript is shown in Fig. 1. As a pilot 
study, we evaluated performance of state-of-the-art deep 
learning models for detecting and identifying human 
sperm, due to their wide applications in andrology labo-
ratories and IVF clinics. Based on the ablation studies, we 
hypothesized that improving the diversity and richness of 
the training dataset could increase model generalizability. 
This hypothesis was first tested by calculating the model’s 
ICC for repeated measurements on new samples. Then 
the hypothesis was prospectively tested via external vali-
dation in three clinics (excluding the academic lab where 
the model was trained) that used different image acqui-
sition conditions and sample preprocessing protocols. 
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The results validated the hypothesis that the richness 
of data in the training dataset is a key factor impacting 
modelgeneralizability.

Results
Investigating factors that impact model generalizability
Deep learning is a data-driven approach, and the train-
ing dataset deterministically affects model performance. 
Considering that different clinics use different imag-
ing conditions, we first investigated how model gener-
alizability is affected by imaging magnification, sample 

preprocessing protocols, and imaging mode. Ablation 
study was performed where the training images for each 
factor was removed from the training dataset, then the 
model was re-trained to compare performance (Supple-
mentary Table 1 and Supplementary Table 2). Model per-
formance was evaluated by model precision and recall. 
A lower precision indicates a higher rate of false positive 
detection, and a lower recall indicates a higher rate of 
missed detection.

Imaging magnification: when 20× sperm images were 
removed from the training dataset (i.e., training the 

Table 1  Summary of clinical applications of object detection models in IVF

a Phase contrast is a technique that enhances the contrast of transparent and colorless specimens by converting phase shifts in light passing through the specimen 
into changes in intensity

 b Hoffman modulation contrast (HMC) enhances the contrast of unstained transparent samples by modulating the phase and amplitude of transmitted light. It is 
commonly used for visualizing sperm and oocytes during in vitro fertilization treatment

 c Differential Interference Contrast (DIC) microscopy is an optical imaging technique that uses polarized light to produce high-contrast images of transparent 
specimens, enhancing the three-dimensional appearance of structures by exaggerating differences in optical paths

Object Clinical Application Algorithm Datasets Reference

Sources Imaging mode Resolution Magnification

Sperm Selecting high-quality 
sperm during intracyto-
plasmic sperm injection 
(ICSI) treatment

YOLO Single center Bright field 128×128 60× , 40× [9]

VGG Multi-center Bright field 131×131 10× [10]

VGG Multi-center Bright field 131×131 10× [11]

YOLO Single center Bright field / 60× [46]

Detecting sperm 
in semen quality analysis 
for male infertility diag-
nosis (locating sperm 
for subsequent measure-
ment of sperm concentra-
tion, motility, and mor-
phology)

YOLO Single center Phase contrasta 640×480 40× [12]

YOLO Single center Phase contrast 1280×960 10× [13]

YOLO Single center Phase contrast 640×480 40× [14]

YOLO Single center Phase contrast 640×480 40× [43]

YOLO Single center Phase contrast 640×480 40× [44]

YOLO Single center Hoffman modulation 
contrastb

448×448 40× [45]

YOLO Single center Hoffman modulation 
contras

1664×1664 / [35]

YOLO Single center / / / [36]

YOLO Single center Bright field 640×640 10× [37]

YOLO VGG Single center Bright field 598×528 20× [38]

VGG Single center Bright field 150×150 40× [39]

CNN Single center DICc / 20×,100× [47]

Searching for sperm 
in testicular sperm extrac-
tion samples for azoo-
spermia patients

YOLO Single center DIC 3264×2448 1920×1940 63× [15]

U-Net Single center Bright-field Fluorescence 256×256 10× [16]

Oocyte Detecting oocytes 
for the selection of high-
quality oocytes dur-
ing ICSI

DeepLabV3 Single center Bright field 1392×1024 20× [17]

U-Net Single center Bright field 1280×1024 4×,15×30×,40× [33]

CNN Single center Bright field 250×250 20× [34]

Embryo Locating embryos 
for grading and selecting 
high-quality embryos 
for transfer

ResNet Single center Bright field 720×480 / [18]

CNN Single center Bright field 250×250 20× [20]

YOLO Single center Bright field 500×500 / [40]

VGG Single center Bright field / / [41]

AlexNet Single center Bright field / / [42]

EfficientNetV2 Single center Bright field 1024×768 / [48]
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model with only 40× sperm images, but testing it with 
both 20× and 40× images), model precision significantly 
dropped from 90.64% to 75.09% ( p < 0.01 , Fig.  2A). 
Model recall also significantly dropped from 92.08% 
to 15.27% ( p < 0.0001 , Fig.  2A). A higher drop was 
observed in model recall than precision, possibly because 
the model learned sperm features from 40× images, and 
the model perceptual field cannot be mapped directly 
to 20× images. This interpretation was confirmed by the 
model weight heatmaps in Fig. 2A. The model raised less 
weight/attention to sperm, leading to missed detection 
(drop in recall).

Sample preprocessing protocols: when images of raw 
semen samples were removed from the training data-
set, model precision significantly dropped by 58.11% 
( p < 0.0001 , Fig.  2B). Raw semen samples contained 
a high number of non-sperm impurities (e.g., epithe-
lial cells, spermatocytes and leucocytes). Using only 
processed samples in the training dataset, the ratio 
between foreground (sperm) and background objects 
(non-sperm impurities) decreased, making the model 

to learn features mainly from the sperm but not enough 
features to distinguish the impurities. As a result, the 
model falsely raised more weight/attention to impuri-
ties and detected them as sperm, leading to a low preci-
sion. No significant drop in model recall was observed. 
This is reasonable because impurities in raw semen 
does not change the appearance of sperm itself, thus 
not causing missed detection.

Imaging mode: interestingly, we also noticed that when 
removing Hoffman modulation contrast images from the 
training dataset, model precision and recall also dropped 
(Fig.  2C). Although the drops in precision ( p < 0.01 ) 
and recall ( p < 0.1 ) are still significant, they are smaller 
than that caused by removing 20× images or raw sam-
ple images. The situation was similar for removing 
phase contrast images, where model precision and recall 
dropped by 15.01% ( p < 0.01 ) and 15.06% ( p < 0.01 ) 
respectively (Fig. 2D). Hoffman modulation contrast and 
phase contrast imaging modes mainly changed image 
contrast, and the resulting images were largely similar 
to brightfield images. Among the two experiments, the 

Fig. 1  Flowchart of study design, including experiments and samples used in each section

(See figure on next page.)
Fig. 2  Ablation studies were performed to investigate how model generalizability is affected by imaging magnification, imaging mode, and sample 
preprocessing protocols. A-D In the ablation experiment, each investigated factor was removed from the training dataset and the model 
was re-trained to compare the precision and recall. The detection result images and visualization heatmap are also shown. Example raw sample 
images are shown in (B), and example processed sample images are shown in (A), (C), (D). Each scale bar represents 10µm . Each error bar represents 
the standard deviation of repeatedly training the model on the same dataset by three times. E, F The decrease in precision and recall caused 
by each factor was ranked. Removing raw sample images from the training dataset caused the largest drop in model precision, whereas removing 
20× images caused the largest drop in model recall. (*p < 0.1 , **p < 0.01 , ***p < 0.001 , ****p < 0.0001)
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Fig. 2  (See legend on previous page.)
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model focused on similar regions in the weight heatmaps 
(Fig. 2C, D).

Collectively, among all the factors, removing raw sam-
ple images caused the largest drop (58.11%, Fig.  2E) in 
model precision (the most false-positive detections), 
while removing 20× images caused the largest drop 
(76.81%, Fig. 2F) in model recall (the most missed detec-
tions). Removing a set of data from the training dataset 
reduced data richness and resulted in a decrease in both 
model precision and recall, confirming that richness of 
data in the training dataset significantly impacts model 
performance.

Improving model generalizability by increasing data 
richness of the training dataset
Based on the ablation study, we hypothesized that 
increasing richness of training data would make model 
performance generalizable under different imaging con-
ditions. Here data richness is twofold: 1) the training 
dataset should be diverse and include as many features 
as possible - for a model to correctly detect sperm under 
different imaging conditions, the model should have seen 
and learned such features during training to ensure a 
generalizable model performance; 2) the balance of fore-
ground and background objects in the training dataset 
should be ensured - the lack of background objects (e.g., 
non-sperm impurities) decreases model precision.

To test the hypothesis, we included sperm images cap-
tured under different imaging magnifications, sample 
preprocessing protocols, and imaging modes into the 
training dataset (Supplementary Table 2). The detection 
model was re-trained (Fig.  4 and Supplementary Fig.  1) 
and its generalizability was then tested in both internal 
blind tests on unseen samples and external multicenter 
validation.

Testing the hypothesis via internal blind test of repeated 
measurement on unseen samples
We first tested the hypothesis by repeatedly detecting 
sperm from the same sample, but under different imag-
ing and sample preprocessing conditions. The compari-
son experiments were repeated on 5 raw samples and 5 
processed samples. None of these samples were included 
in the training dataset. Generalizability was evaluated by 
ICC.

As summarized in Table 2, model precision and recall 
were both consistently around 91%, regardless of imaging 
magnification, imaging mode, and raw or process sam-
ples. The precision and recall values were also consistent 
with model training (Supplementary Fig.  1). The maxi-
mum standard deviation was 1.66% for precision and 
1.77% for recall. In addition, no significant differences 
were observed in model precision and recall among 

different imaging magnifications, imaging modes or 
between raw samples versus process samples ( p > 0.05 ). 
Collectively, by incorporating different imaging and sam-
ple preprocessing conditions into a rich training dataset, 
the model achieved an ICC of 0.97 (95% CI: 0.94-0.99) 
for precision, and an ICC of 0.97 (95% CI: 0.93-0.99) for 
recall.

Testing the hypothesis via external validation among three 
clinics
We further performed an external multicenter clinical 
validation study to test model generalizability in clini-
cal setups. The pre-trained sperm detection model was 
tested in three clinics, and in each clinic the model was 
evaluated in two clinical applications. 1) Raw semen anal-
ysis: the model was applied to detect sperm in raw semen 
samples. This application aids the computation of sperm 
concentration, which is for computer-aided sperm analy-
sis (CASA) and the diagnosis of male infertility. 2) Pro-
cessed sample analysis: the model was applied to detect 
sperm in processed and washed samples. This application 
is for calculating the dilution ratio necessary for conven-
tional IVF treatments. In each clinic, 10 samples (includ-
ing 5 raw samples and 5 processed samples) were tested, 
totaling 30 samples across all sites. This experimental 
design ensured an evaluation of the model’s performance 
under different sample conditions and clinical setups. 
The imaging setup in each clinic is summarized in Sup-
plementary Table 3.

Detecting sperm in raw semen is challenging because 
of the interference of non-sperm cells in semen such as 
leukocytes and epithelial cells. Similar size and shape 
could make the algorithm incorrectly identify the sperm 
cells, leading to a decrease in precision, which may have 
an impact on sperm concentration calculation. None-
theless, the model’s detection precision of raw samples 
ranged from 91.40% to 91.78% in the three clinics, and 
no significant differences were observed among clinics 

Table 2  Model performance under repeated measurements 
with different image acquisition conditions

Conditions Raw sample Processed sample

Precision 
(%)

Recall (%) Precision 
(%)

Recall (%)

Bright field 20× 91.82±0.31 90.78±0.43 91.73±0.33 90.81±1.53

40× 91.77±0.85 90.58±0.74 91.59±1.56 90.57±1.46

Phase 
contrast

20× 91.71±0.56 90.70±0.34 91.84±0.84 90.46±0.66

40× 91.73±1.50 91.00±1.24 91.53±1.66 90.73±1.01

HMC 20× 91.91±0.52 90.60±0.25 91.53±0.98 90.54±1.77

40× 91.63±1.62 90.50±1.47 91.76±1.21 90.44±1.02
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( p > 0.05 , Fig. 3). A similar result was obtained for model 
recall (ranged from 89.82% to 90.16%, p > 0.05 , Fig. 3).

Not surprisingly, for processed samples which had a 
cleaner background and less interference than raw sam-
ples, the model consistently achieved a precision ranged 
from 91.52% to 91.70% in the three clinics, with no sig-
nificant differences among clinics ( p > 0.05 , Fig.  3). 
Model recall for processed samples ranged from 89.98% 
to 90.16% ( p > 0.05 ). Compared with the precision and 
recall validated during model training, the difference in 
the three clinics was in the range of 0.02% to 0.20% for 
precision and −0.32 % to −0.14 % for recall, and no sig-
nificant differences were observed ( p > 0.05 , Fig.  3). 
Collectively, within each clinic, there was no significant 
difference between the precision or recall tested on raw 
samples and the processed samples ( p > 0.05 , Fig. 3).

Discussion
Sperm detection in andrology labs and IVF labs has high 
reproducibility requirements. Although deep learning 
models have been developed to automate this tedious 
task [54], model generalizability remains poorly under-
stood [55]. In clinical research, this type of generalizabil-
ity is also defined as conceptual reproducibility [56–59] 
in the literature, referring to the model’s ability to gen-
eralize and yield consistent outcomes when validating 
results on novel data from different sources or under 
various conditions. As deep learning models are increas-
ingly applied in various clinical applications, the general-
izability of such models must be investigated before they 
can be deployed for clinical use. Using sperm detection 
as a pilot study, this work 1) investigated potential factors 

affecting generalizability of the deep learning model, and 
2) hypothesized strategies for improving the generaliz-
ability of object detection models and tested the hypoth-
esis in multiple clinics.

For the first aim, considering deep learning is a data-
driven approach and the model learns features from the 
provided training dataset, we investigated how the train-
ing dataset affects model generalizability. In the ablation 
experiments, the model was re-trained using the data-
set ablating/without 20× images. When tested with 20× 
images as input, the re-trained model showed a signifi-
cant drop in recall. The drop in recall was also observed 
when ablating images of raw semen and ablating images 
captured under the Hoffman modulation contrast and 
phase contrast imaging mode. These results suggest 
that richness of the training dataset is necessary for the 
model’s performance to be generalizable under different 
clinical setups. In other words, for the model to correctly 
identify an image feature during clinical deployment, the 
model must have seen and learned such features in the 
training dataset.

Interestingly, in the ablation study, we noticed that 
among the three factors, imaging magnification caused 
the largest drop in recall, with imaging mode ranked 
next, whereas differences in sample preprocessing pro-
tocols did not cause a significant drop (Fig.  2). One 
potential reason is that the appearance of sperm under 
20× vs. 40× was more different than that under Hoff-
man modulation contrast/phase contrast vs. bright field 
imaging. Changing magnifications changed the number 
of pixels occupied by a sperm, and fewer features were 
available under a smaller magnification. Compared to 

Fig. 3  Testing the hypothesis in three clinics. The model precision and recall were tested using both raw samples and processed samples in two 
clinical applications. There was no significant difference in model precision and recall among three clinics as compared to the performance tested 
in during model training. (ns: not significant, p > 0.05)
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magnification-caused changes, Hoffman modulation 
contrast imaging mainly changed imaging contrast and 
the resulting images had similar appearance to bright 
field images. Hence, although the targets to be detected 
belong to the same class of sperm, the intra-class distance 
[60, 61] was small for sperm images under different imag-
ing modes and large for different magnifications. Identi-
fying objects with a larger intra-class distance typically 
requires a more comprehensive and richer dataset [62, 
63]. In contrast, the impurities in raw samples did not 
change the appearance of sperm itself, thus not causing 
missed detection (recall).

Another aspect of data richness is the richness of 
positive samples (i.e., sperm) and negative samples (i.e., 
background, non-sperm cells) in the training dataset. 
Removing the images of raw semen resulted in the larg-
est drop in model precision. This suggests that balance of 
positive and negative samples should be ensured in the 
dataset. In the ablation experiments, the lack of negative 
samples such as impurities from raw semen resulted in 
a significantly lower precision when interferences were 
present. A balanced proportion of positive and negative 
samples can improve the anti-interference ability of the 
model, reduce false identification, and improve model 
generalizability under interference [64, 65].

In addition to the richness of data in the training data-
set, the normalization steps during image preprocessing 
in the model may also contribute to model generaliz-
ability. In clinical practice, inconsistencies in the camera 
and image acquisition schemes lead to different bright-
ness, color (white balance) and resolution of the acquired 
images. By performing image preprocessing, the bright-
ness and color of the images can be normalized, and the 
resolution can be resized to the same for inputting into 
the model (Fig.  4), and the effect of inconsistencies in 
image acquisition hardware on model performance could 
be minimized.

For the second aim, according to the hypothesis, we 
re-trained the model with rich data and tested its gen-
eralizability among three clinics. It is worth noting that 
the objective of this work is not to create a novel model 
for sperm detection with improved accuracy; instead, we 
focused on testing the generalizability of state-of-the-art 
learning models under different clinical setups.

Fig. 4  Architecture of the deep learning-based sperm detection 
model. The model takes a single microscopic image as input (raw 
sample in this example), then uses image preprocessing to normalize 
image luminance, resolution, and color. Sperm is detected using 
Yolo v5, one of the state-of-the-art convolutional neural networks 
for object detection. The model outputs the image of the detected 
with anchor box markers (bounding boxes) and coordinates of each 
sperm
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The major difference between this work and existing 
studies is that in addition to validating model on the 
retrospectively collected dataset, we further performed 
prospective experiments to quantify model ICC, and 
prospective testing among multiple clinics. In existing 
studies, as a routine for model development and valida-
tion, a retrospectively collected dataset is usually split 
into training, validation, and test sub-datasets. After 
each step/epoch of model training, the validation sub-
dataset is fed into the model to evaluate its accuracy 
and precision. Hence, existing studies reported the 
accuracy or precision as the evaluation metric for the 
developed model. Although such datasets may involve 
data from multiple clinics, the validation and test sub-
datasets were collected under the same conditions as 
the training sub-dataset. The lack of external validation 
did not allow the investigation of reproducibility met-
rics such as ICC.

In addition to the routine model development and 
validation on the sub-datasets, this work further meas-
ured model ICC by repeatedly testing the model on 
the same sperm samples but imaged under different 
image acquisition and sample processing conditions. 
The model achieved an ICC higher than 0.9. In further 
prospective multicenter validation, although each clinic 
used different setups, the model consistently achieved 
a precision and recall higher than 90%, under different 
image acquisition conditions (magnifications, imag-
ing modes, camera resolution etc.) and different sam-
ple processing procedures (raw samples and processed 
samples).

Our results highlight the importance of considering 
the imaging conditions used during model develop-
ment and training. As an explorative study, we aimed to 
comprehensively include imaging conditions to provide 
a complete picture of the model’s performance across 
various imaging settings. In practice, clinics are likely 
to maintain consistent imaging conditions for a given 
application to ensure standardization and comparabil-
ity of results. When deploying deep learning models in 
a single clinic, it is crucial to ensure that the training 
data closely matches the intended use case. If a model 
is to be applied across multiple clinics or imaging set-
ups, it is necessary to include a diverse range of imag-
ing conditions in the training data to improve model 
generalizability.

The approach for testing a model’s generalizability 
from this study paves the foundation for generalizability 
evaluation of deep learning models in wider andrology 
and reproductive medicine applications. Our results also 
draw the attention to the training dataset of deep learning 

models and suggest that the richness of the training data-
set directly impacts the quality of a model.

Materials and methods
Sample processing and dataset collection
All human semen samples were collected, processed and 
tested under the guidance of the World Health Organi-
zation protocol, with the approval of the ethics commit-
tee (CUHKSZ and three IVF clinics, with IRB numbers 
listed in section “Testing generalizability among clinics” 
below) and informed consent of all patients under test. 
Semen samples were liquefied at room temperature for 
30-60 min. Raw samples were untreated, processed sam-
ples were purified by the swim-up method, and diluted 
to a density of 15-200× 106 cells/ml density for analysis 
to facilitate normal medical tests. All experiments were 
completed within 3 hours after sperm collection.

For model training in the ablation study and hypoth-
esis testing, a dataset containing images of 7,353 sperm 
from 60 semen samples was collected using a standard 
inverted microscope (Nikon ECLIPSE Ti2-E, Nikon Inc.) 
equipped with a camera (Basler MED ace 2.3, Basler 
Inc.). The 60 semen samples consist of 35 samples from 
volunteers and randomly selected medical examiners and 
25 samples from infertile patients, all randomly selected, 
whose semen analysis parameters are summarized in 
Supplementary Table  1. Three embryologists annotated 
the sperm images and obtained the location information 
(i.e., bounding box) of the 7,353 sperm. The collected 
dataset contained images captured under two differ-
ent magnifications (20× , 40× ) and three imaging modes 
(bright field, Hoffman modulation contrast and phase 
contrast). More details of the dataset can be found in 
Supplementary Table 2.

Deep learning model for sperm detection
The overall sperm detection model framework is based 
on YOLO v5, which is one of the state-of-the-art object 
detection deep learning models (Table 1). The detection 
model takes a single image as input, and the output is the 
image of the detected sperm with anchor box markers 
and coordinates. The neural network structure consists 
of a backbone module, neck module, and head module, 
and more details of the network can be found in Fig. 4. 
The acquired image resolution, luminance, and color may 
be different in each clinic; hence, an image preprocess-
ing module was added to normalize these factors. The 
image was resized into 640×640 resolution and fed into 
the detection model. Similarly, the luminance and color 
normalization step minimized their impact on model 
learning.
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Training of the deep learning model
The model was trained based on the dataset containing 
the 7,353 sperm as mentioned above (part of the data-
set for ablation experiments, and the entire dataset for 
hypothesis testing). During training, in order to avoid 
overfitting, mosaic data augmentation was used to crop, 
arrange and stitch images randomly to augment the 
dataset. In training, the GIoU loss (generalized inter-
section over union) was used to evaluate the robustness 
and convergence of the model. The deep learning model 
was trained using the Pytorch framework (Python 3.9, 
Pytorch version 1.7.1), on GPU (model: NVIDIA GeForce 
RTX 3090 24G). The hyperparameters for training were 
set as follows: the optimizer was Adam, the epochs were 
600, the learning rate was 0.001, and the batch size was 
64.

Visualization of model weights
To enhance the interpretability of the model, this study 
utilized the Gradient Weighted Class Activation Mapping 
(Grad-CAM) technique [66]. It is a visualization tech-
nique for understanding the decision-making process of 
a deep learning model in an image detection task. Grad-
CAM can be integrated with common deep learning 
frameworks to generate class activation maps by taking a 
simple image as input, predicting the labels using the full 
model computation, inserting the global average pooling 
layer in the model, and computing the gradient of the fea-
ture map. The class activation maps generated by Grad-
CAM visualize the regions of interest of the model on the 
input image. For all visualization, Grad-CAM was used in 
the last Conv layer of the detection model, because the 
last layer represents the most abstract and decision-rele-
vant features learned by the network.

Model evaluation
In the study, objective evaluation indicators such as pre-
cision, recall, were used to evaluate the performance of 
the trained sperm detection model. The calculation equa-
tions are as follows:

where TP is the number of correctly identified sperm 
targets; FP is the number of falsely identify targets; and 
FN is the number of sperm targets that were missed by 
the model. In the blind test and multicenter validation, at 
least 200 sperm were detected in each patient sample and 
benchmarked against manual sperm detection results to 
calculate TP, FP, and FN.

(1)
precision =

TP

TP + FP

recall =
TP

TP+ FN

Testing generalizability among clinics
Model generalizability was tested among three clinics, 
including 1) The 3rd Affiliated Hospital of Shenzhen Uni-
versity in Shenzhen, China, with IRB approval number: 
2021-LHRMYY-SZLL-012; 2) Reproductive & Genetic 
Hospital of Citic-Xiangya in Changsha, China, with IRB 
approval number: LL-SC2021-016; and 3) CReATe Fertil-
ity Centre in Toronto, Canada, with IRB approval num-
ber: UT35544. It is worth noting that the academic lab 
(CUHKSZ) for collecting the training dataset was not 
within these three clinics. Each clinic used a different 
setup for image acquisition, including different micro-
scopes, cameras, imaging modes and magnifications. A 
complete list of the setup in each clinic is summarized in 
Supplementary Table 3.

In each clinic, 5 raw samples and 5 processed samples 
were processed by lab technicians. For each sample, tech-
nicians recorded videos and extracted images from them. 
Then the model detected the total number of sperm and 
benchmarked to manual results.

Statistics
The results were expressed as means and standard devia-
tion. No data points were excluded from the analysis. 
Statistical analysis was performed with MedCalc 18.3 
software (MedCalc Software Ltd.). Differences between 
the means of two groups were tested with a two-tailed 
student’s t-test, and differences among more than two 
groups were tested by one-way analysis of variance 
(ANOVA), followed by Holm-Sidak pairwise com-
parison for normally distributed data or Dunn’s test for 
non-normally distributed data. Model generalizability in 
precision and recall was evaluated with ICC (intraclass 
correlation coefficient). For all tests, p < 0.05 (labeled 
with an asterisk in the figures) was considered as a statis-
tically significant difference.
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