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Abstract
Background  Premutations in the Fragile X Messenger Ribonucleoprotein 1 (FMR1) gene, defined as between 55 
and 200 CGGs, have been implicated in fragile X-associated primary ovarian insufficiency (FXPOI). Only 20% of female 
premutation carriers develop early ovulatory dysfunction, the reason for this incomplete penetrance is unknown. This 
study validated the mathematical model in premutation alleles, after assigning each allele a score representing allelic 
complexity. Subsequently, allelic scores were used to investigate the impact of allele complexity on age at amenorrhea 
for 58 premutation cases (116 alleles) previously published.

Methods  The allelic score was determined using a formula previously described by our group. The impact of each 
allelic score on age at amenorrhea was analyzed using Pearson’s test and a contour plot generated to visualize the 
effect.

Results  Correlation of allelic score revealed two distinct complexity behaviors in premutation alleles. No significant 
correlation was observed between the allelic score of premutation alleles and age at amenorrhea. The same lack of 
significant correlation was observed regarding normal-sized alleles, despite a nearly significant trend.

Conclusions  Our results suggest that the use of allelic scores combination have the potential to explain female 
infertility, namely the development of FXPOI, or ovarian dysfunction, despite the lack of correlation with age at 
amenorrhea. Such a finding is of great clinical significance for early identification of females at risk of ovulatory 
dysfunction, enhancement of fertility preservation techniques, and increasing the probability for a successful 
pregnancy in females with premutations. Additional investigation is necessary to validate this hypothesis.
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Background
The Fragile X Messenger Ribonucleoprotein 1 (FMR1) 
gene, located on the X chromosome (Xq27.3), con-
tains a polymorphic CGG repeat on its 5’ untranslated 
region (UTR) implicated in three disorders depending 
on the repeat number: Fragile X Syndrome (FXS; OMIM 
#300624) when CGGs > 200, and Fragile X-associated 
Tremor/Ataxia Syndrome (FXTAS; OMIM #300623) 
and Fragile X-associated Primary Ovarian Insufficiency 
(FXPOI; OMIM #311360) [1–3] in the premutation range 
55 < CGG < 200. The mechanism of FXPOI development 
is not fully understood but it is believed to be due to the 
toxic effect of elevated FMR1 mRNA levels [2, 4]. Pre-
mutation carriers with FXPOI show hypergonadotropic 
hypogonadism and absent or irregular menstrual cycles 
before 40 years of age [5]. The CGG repeat length cor-
relates unevenly with FXPOI, as females carrying 70 to 
100 CGGs have an increased risk of FXPOI when com-
pared with those with more than 100 repeats [6, 7]. Fur-
thermore, FXPOI development is not fully penetrant. In 
FMR1 normal-sized alleles (5 to 44 CGGs), the repetitive 
region is usually interrupted by one or more AGGs, typi-
cally occurring at every 9th or 10th CGG [8]. Premutation 
alleles are predominantly composed of pure CGGs; loss 
of AGG interruption(s) has been linked to the instability 
of the repetitive region and the increased risk of expan-
sion [3, 9–13]. A formula integrating the total repeat 
length, and the number and pattern of the AGGs was 
developed to calculate FMR1 allelic score [14]. Allelic 
score is a metric that reflects the complexity of the FMR1 
gene CGG repetitive region. Herein, we evaluate the 
association between the combination of normal and pre-
mutation allelic scores and ovulatory dysfunction under-
lying FXPOI. Our formula was applied to calculate the 
allelic scores in FMR1 premutation carriers, validating 
its use in samples with distinct genotypic characteristics. 
It was hypothesized that the combination of the AGG 
number and pattern from both normal and premutation 
alleles would associate indirectly with age at amenorrhea 
and hormone levels with a potential impact on FXPOI 
development.

Methods
FMR1 allelic scores determination
Molecular data of both alleles regarding samples from 
premutation carriers, previously published, were 
requested to the respective authors: Villate et al. [15] 
(Spain), Allen et al. [16] (United States of America) and 
Yrigollen et al. [17] (United States of America). Of all 
data provided by the authors, 577 results were retrieved: 
Villate et al. [15] (n = 20, designated by set 1), Allen et 
al. [16] (n = 59, designated by set 2) and Yrigollen et 
al. [17] (n = 498, designated by set 3). The allelic score, 
which reflects the FMR1 CGG/AGG substructure, was 

calculated separately for each allele (normal and pre-
mutation), using the formula described in Rodrigues 
et al. [14]. The age at amenorrhea - defined by at least 4 
months of secondary amenorrhea and menopausal levels 
of follicle-stimulating hormone (FSH) [16] - was reported 
in 58 observations from set 2 (mean age 38.7 ± 8.5 years, 
range 18–56) thus resulting in a slightly smaller dataset 
(58 observations instead of 59).

Reference set
The reference set, composed of one hundred and thirty-
one female samples with normal (n = 127) and interme-
diate genotypes (n = 4), was previously described and 
characterized in Rodrigues et al. [14] (the summary of 
the results can be found in Supplementary Table 1).

Statistical analysis
A linearized form of a logarithmic model [i.e., regres-
sion of ln(score 1) against score 2] was used to obtain a 
functional model to relate the complexity of both alleles 
in each set. Covariance analysis (ANCOVA) compared 
the reference set with premutation sample set regres-
sion models, following the methodology outlined by 
Zar [18]. SigmaPlot version 14.0 (Systat Software®Inc., 
Chicago, IL, USA) was used for One-Way ANOVA on 
ranks (Kruskal-Wallis test) to compare separately allelic 
score and the size of each allele (normal and premuta-
tion). Dunn’s method was used for multiple comparisons 
after conducting a Kruskal-Wallis test, comparing sets 
based on median allele size and allelic score. The relation-
ship between the age at amenorrhea and allelic score was 
assessed by Pearson correlation coefficient. R sofware 
version 4.3.0 by R Core Team [19] with the ggplot2 pack-
age [20] was used to generate contour plots to display the 
relationship between independent variables normal and 
premutation allelic scores, and the dependent variable, 
age at amenorrhea. All statistical tests were carried out 
for a significance level of 0.05.

Results
FMR1 CGG repeat characterization
FMR1 molecular data of 1154 alleles are summarized in 
Supplementary Table 2. In a set 3 sample both alleles are 
in the premutation (PM) range, a rare event previously 
reported in seven cases [21]. The most frequent repeat 
length among normal-sized alleles is 30 CGGs, despite 
the significant differences among allele sizes (Kruskal-
Wallis test: H = 12.3; df = 2; p = 0.002) (Supplementary 
Fig.  1a). The majority of normal-sized alleles contained 
one or two AGG interruptions (93.8%, n = 540) while pure 
alleles occurred in 4.7% of samples (n = 4, set 2, n = 23, 
set 3), and the remaining 1.5% of samples showed three 
AGGs (n = 9, set 3). In total, ninety-seven different AGG 
patterns (n = 8/ 20, set 1, n = 23/ 59, set 2 and n = 75/ 498, 
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set 3) were identified. The most common AGG intersper-
sion pattern in sets 1 and 3 is (CGG)10AGG(CGG)9AGG
(CGG)9. On the contrary, a very rare pattern was identi-
fied as commonest among set 2 samples (CGG)11AGG(
CGG)10AGG(CGG)7. Around half of the PM alleles had 
no AGGs (50.3%, n = 8, set 1, n = 26, set 2, n = 257, set 3), 
and approximately 49.7% showed one or two AGG inter-
ruptions (n = 287). Two hundred and eleven different pat-
terns were identified (n = 13/ 20, set 1, n = 45/ 59, set 2 
and n = 177/ 498, set 3) in PM alleles revealing very exclu-
sive CGG/AGG structures.

Mathematical model validation
Descriptive statistics and frequency analyses of premuta-
tion allelic scores are shown in Table 1. The median PM 
allelic scores did not show statistically significant dif-
ferences between sets (Kruskal - Wallis test: H = 1.45; 
df = 2; p = 0.484) (Supplementary Fig.  1d); despite the 
sets having significantly different normal median allelic 
scores (Kruskal-Wallis test: H = 33.20; df = 2; p < 0.001) 

(Supplementary Fig. 1b). To compare these PM samples 
with previously published data using the same math-
ematical model, a reference set was built from that pub-
lication [14]. All sets distributed allelic scores into four 
quadrants, separated by a value of 150 as previously 
observed in the reference set, revealing similar composi-
tions (Fig. 1): samples with alleles showing a similar com-
plexity (equivalent group, quadrants 1 and 3) (Fig. 1a) and 
samples where alleles have a different complexity (dissim-
ilar group, quadrants 2 and 4) (Fig. 1b). Thus, the correla-
tion between the allelic score of each allele (Fig. 1a and b) 
was described following a logarithmic model. Significant 
correlations were found in both groups from all sets: ref-
erence set – equivalent group: r = 0.551; df = 71; p < 0.0001 
and dissimilar group: r = 0.466; df = 54; p < 0.0001 (Fig. 1a 
and b, represented by circles); set 1 – equivalent group: 
r = 0.994; df = 8; p < 0.0001 and dissimilar group: r = 0.991; 
df = 6; p < 0.0001 (Fig. 1a and b, represented by squares); 
set 2 – equivalent group r = 0.933; df = 26; p < 0.0001 and 
dissimilar group: r = 0.938; df = 27; p < 0.0001 (Fig.  1a 

Table 1  Summary of the FMR1 allelic complexity (allelic score) results
A1 - Shorter CGG repeat length allele A2 - Longer CGG repeat length allele
Set 1 Set 2 Set 3 Set 1 Set 2 Set 3

Number of alleles 40 118 996 40 118 996
Allelic score Mean (± S.D.) 159.0 ± 66.5 165.8 ± 79.8 159.7 ± 105.5 152.7 ± 81.8 150.2 ± 81.7 131.0 ± 61.6

Median 205 207 193 217 214 109
Range 49–206 16–234 9–829 56–242 63–288 55–313
Most frequent (%, n) 205 (30%, n = 6) 223 (27.1%, n = 16) 205 (34.9%, n = 174) 231 (15%, n = 3) 133 (5.1%, n = 3) 103 (2.4%, n = 12)

206 (25%, n = 5) 207 (18.6%, n = 11) 189 (12.7%, n = 63) 217 (15%, n = 3) 83 (5.1%, n = 3) 100 (2.4%, n = 12)
Allelic scores Kruskal-Wallis Test H = 33.20; df = 2; p < 0.001 H = 1.45; df = 2; p = 0.484
S.D. = Standard deviation; % = Frequency; n = Number of alleles

p values represent significant levels between sets 1, 2 and 3 allelic scores; Multiple Comparison (Dunn’s Method) results in Supplementary Fig. 1b and d

Data published in Villate et al. [15] (set 1), Allen et al. [16] (set 2) and Yrigollen et al. [17] (set 3)

Fig. 1  Correlation between the FMR1 allelic complexity (allelic score) of each allele in all sets, according to groups: equivalent (a) and dissimilar (b). The 
graph was partitioned into four quadrants based on the dispersion of the data: Q1 (quadrant 1), Q2 (quadrant 2), Q3 (quadrant 3), and Q4 (quadrant 4). The 
reference set is denoted by circle symbols, while set 1, set 2, and set 3 are represented by squares, lozenges, and triangles, respectively. Samples marked 
with a grey circle represent alleles with an allelic score above 700
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and b, represented by lozenges), and set 3 – equivalent 
group: r = 0.912; df = 187; p < 0.0001 and dissimilar group: 
r = 0.882; df = 297; p < 0.0001 (Fig.  1a and b, represented 
by triangles). An exponential growth of the allelic score 
was observed, particularly in alleles having more than 
two AGGs (Supplementary Table  3); due to the rele-
vance attributed to the AGG number by the formula. For 
instance, samples with three AGGs show scores above 
700 (n = 6, reference set, and n = 8, set 3; represented by a 
grey circle in Fig. 1a and b). To validate the mathematical 
model in expanded alleles a covariance analysis between 
the reference and PM sample sets logarithmic models 
was performed separately for each group (Supplementary 
Fig. 2). Supplementary Table 4 shows the individual mod-
els resulting from each set. Coincident regression lines 
demonstrate the absence of statistically significant differ-
ences in each equivalent and dissimilar groups from PM 
samples sets when compared with those of the reference 
set. This result supports a more robust model includ-
ing observations from the four sets: equivalent group 
– F (6, 300) = 1.8278; p = 0.0934: Score 2 = -238.3 + 87.4 
× ln(score 1) and dissimilar group – F (6, 392) = 1.0679; 
p = 0.3812: Score 2 = 573.9–88.4 × ln(score 1).

FMR1 allelic scores and age at amenorrhea association
To understand the impact of FMR1 allelic score on the 
age at amenorrhea, normal-sized (allele 1) and PM 
(allele  2)alleles from set 2 samples were analyzed sepa-
rately (n = 58). No significant correlation was observed 
between A1 allelic score and age at amenorrhea (p > 0.05) 
(Supplementary Fig.  3a, c, e and g). The same was true 
when PM allelic score was used (p > 0.05) (Supplementary 
Fig. 3b, d, f, and h). A nearly significant trend (p = 0.058) 
is apparent between the A1 allelic score and age at amen-
orrhea in samples showing an  allelic score between 206 
and 234 (Supplementary Fig.  3a) and 16–68 (Supple-
mentary Fig.  3e) (quadrants 1 and 3, respectively). Two 
distinct behaviors were observed: age at amenorrhea 
rise with increasing allelic score (above 200, quadrant 1, 
mean age at amenorrhea 40 ± 8.5 years, Supplementary 
Fig. 3a), and age at amenorrhea decrease with increasing 
allelic score (below 70, quadrant 3, mean age at amenor-
rhea 38 ± 8 years, Supplementary Fig. 3e). The majority of 
these samples have alleles with less than 26 CGGs (78.6%, 
n = 11), with one or no AGG interspersions (71.4%, n = 10, 
28.6%, n = 4, respectively), whereas those with higher 
allelic scores have alleles ranging from 29 to 32 CGGs, 
with two AGG interspersions.

Age of amenorrhea assessment by allelic scores 
combination
PM alleles within the range 70–100 CGGs are known to 
have increased risk of developing FXPOI [6, 7, 22], how-
ever not all carriers develop disease and there is lack of 

knowledge on the underlying mechanisms. This led us to 
speculate if FXPOI development could be associated with 
a combined effect of FMR1 allelic complexity. To analyze 
the joint effect of A1 and PM allelic scores in the age at 
amenorrhea, a contour plot was generated. Overall, dif-
ferent trends were observed: menopause age approaches 
normal (mean 51 years, range 40 to 60 years) when the 
allelic score of both alleles increases or decreases, show-
ing that balanced allelic scores have minimal impact 
on early amenorrhea. Deeper analysis of samples with 
mean age at amenorrhea below 40 years and PM allelic 
score between 70 and 123 show that age decreases with 
increasing A1 allelic score (Fig. 2, A1 allelic score between 
50 and 55).

Discussion
In our study, aiming to validate the previously published 
mathematical model ascertained in normal and interme-
diate alleles, we compared three distinct datasets with 
premutation carriers and subsequently explored the rela-
tionship between allelic complexity of the FMR1 gene 
and age at amenorrhea – a clinical manifestation associ-
ated with development of FXPOI.

A comparative analysis of the CGG/AGG substruc-
ture across the sets revealed that the normal-sized 
allele with 30 repeats was the most frequent with 
the more prevalent AGG interspersion pattern being 
(CGG)10AGG(CGG)9AGG(CGG)9 in sets 1 and 3, con-
sistent with findings in other populations [14, 23, 24]. A 
notably rare pattern, (CGG)11AGG(CGG)10AGG(CGG)7, 
emerged as the most prevalent in set 2, which can be 
attributed to intrinsic characteristics of this subpopu-
lation such as complexity and heterogeneity of genetic 
traits. Expectedly, approximately half of the PM alleles 
showed one or two AGG interruptions with an over-
all average repeat length of 90.3 (S.D. = 20.8), since PM 
alleles with longer CGG lengths tend to demonstrate 
a lower incidence of AGG interruptions [11]. Notably, 
many different AGG interspersion patterns were found in 
PM alleles, most probably due to the inherent instability 
of these alleles [8].

No statistically significant difference was observed 
among the allelic score of PM alleles, but was found for 
the allelic score of normal-sized alleles. A similar result 
was observed when comparing the total CGG repeat 
length of normal alleles, revealing great variability in 
the complexity of the CGG repetitive region of normal-
sized alleles. The combination of allelic scores revealed 
the emergence of two groups with distinct characteris-
tics: equivalent and dissimilar, both exhibiting signifi-
cant correlations. Similar outcomes had been reported by 
Rodrigues et al. [14]. The validation of our mathematical 
model in females with FMR1 expansions showed that this 
model can be applied in populations that exhibit varied 
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genotypic characteristics, namely expanded alleles such 
as premutations.

Several studies have sought to comprehend the impact 
of the CGG repetitive region on the development of 
FXPOI. However, the majority focus on examining the 
influence of the CGGs and AGGs independently, as 
exemplified by Friedman-Gohas et al. study [25]. Here, 
we employed our formula, which integrate the total 
CGG repeat length, the number of AGGs, and the AGG 
interspersion pattern. No statistically significant corre-
lations were found between A1 allelic scores and age at 
amenorrhea, nor PM allelic scores and age at amenor-
rhea. The lack of statistical significance might be due to 
the reduced number of observations in each grouping 
[26]. Nevertheless, a significant trend was observed with 
normal allelic scores between 206 and 234 and 16–68 and 
age at amenorrhea. The influence of FMR1 gene alleles 
within normal size in ovarian reserve is controversial. 
Gleicher et al., demonstrated a negative effect in ovarian 
reserve of alleles with less than 26 CGGs, evidenced by 
low levels of anti-Müllerian hormone (AMH) [27–29]. 
Wang et al. demonstrated reduction in FMR1 mRNA 
levels in granulosa cells from females carrying alleles 
with CGGs < 26 and simultaneously a misregulation 

steroidogenic enzymes and hormone receptors, lead-
ing to ovarian dysfunction and ultimately infertility [30]. 
Rechnitz et al. illustrated a poor response to ovarian 
stimulation and elevated expression of FMR1 mRNA in 
granulosa cells when compared to samples with different 
FMR1 gene sub-genotypes [31]. Interestingly, the major-
ity of our samples with alleles < 26 CGGs show one or no 
AGGs, while alleles with a repeat size between 29 and 
32 CGGs show two AGG interruptions. Lekovich et al. 
demonstrated that premutation with none or one AGG 
showed poorer ovarian reserve than those with two, sug-
gesting AGG interspersions have a protective effect [32]. 
It is thus tempting to speculate that by a similar mecha-
nism the absence of AGGs in normal alleles correlates 
with ovarian dysfunction.

A minimal effect of FMR1 allelic complexity with age at 
amenorrhea is observed in balanced allelic scores. More-
over, it appears that the age of amenorrhea decreased 
with increasing A1 allelic score when the PM allele had a 
score between 70 and 123. Despite the absence of statis-
tical significance, a trend towards a correlation with the 
allelic score of the A1 suggests the need for larger-scale 
investigations to assess the impact of the combined allelic 
scores on the age at amenorrhea. It is likely that the age 

Fig. 2  Contour plot evaluating the interaction between three variables: allelic score of both alleles (independent variables – x, y) and age of amenorrhea 
(dependent variable – z). Samples in witch combination of allelic complexity is associated with amenorrhea before age 40 years and after age 40 years 
are represented by red and green circles, respectively. The different colors of the contour lines indicate the ages at amenorrhea as a function of the allelic 
score of both alleles
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at amenorrhea may not provide a comprehensive assess-
ment of FXPOI development. Therefore, it is important 
to test other clinical parameters, such as AMH levels, to 
gain a deeper understanding of the impact of combining 
allelic scores on disease development.

Conclusion
This is the first report investigating the combined effect 
of normal and premutation allelic scores on FXPOI devel-
opment impacted by age at amenorrhea. In our analysis, 
the presence of the correlation trend indicates the need 
for further studies and additional samples to explore the 
complex relationship between allelic score combinations 
and the development of FXPOI. Skewed X chromosome 
inactivation and hormonal deregulation were not consid-
ered and might impact age at amenorrhea. Nevertheless, 
the use allelic scores combination may pave the way to 
the identification of an ovulatory dysfunction biomarker. 
This is of major clinical importance to improve fertility in 
premutation carriers, to make choices about preservation 
strategies such as oocyte cryopreservation, increasing 
chances of a successful pregnancy.
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