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Abstract
Background Increasing number of studies have demonstrated certain patterns of microbial changes in 
gynecological diseases; however, the interaction between them remains unclear. To evaluate the consistency or 
specificity across multiple studies on different gynecological diseases and microbial alterations at different sites of the 
body (gut and genital tract), we conducted a systematic review and meta-analysis.

Methods We searched PubMed, Embase, Web of Science, and Cochrane Library up to December 5, 2022(PROSPERO: 
CRD42023400205). Eligible studies focused on gynecological diseases in adult women, applied next-generation 
sequencing on microbiome, and reported outcomes including alpha or beta diversity or relative abundance. The 
random-effects model on standardized mean difference (SMD) was conducted using the inverse-variance method for 
alpha diversity indices.

Results Of 3327 unique articles, 87 eligible studies were included. Significant decreases were found in gut 
microbiome of patients versus controls (observed species SMD=-0.35; 95%CI, -0.62 to -0.09; Shannon index SMD=-
0.23; 95%CI, -0.40 to -0.06), whereas significant increases were observed in vaginal microbiome (Chao1 SMD = 1.15; 
95%CI, 0.74 to 1.56; Shannon index SMD = 0.51; 95%CI, 0.16 to 0.86). Most studies of different diagnostic categories 
showed no significant differences in beta diversity. Disease specificity was observed, but almost all the changes were 
only replicated in three studies, except for the increased Aerococcus in bacterial vaginosis (BV). Patients with major 
gynecological diseases shared the enrichment of Prevotella and depletion of Lactobacillus, and an overlap in microbes 
was implied between BV, cervical intraepithelial neoplasia, and cervical cancer.

Conclusions These findings demonstrated an association between alterations in gut and genital microbiota and 
gynecological diseases. The most observed results were shared alterations across diseases rather than disease-specific 
alterations. Therefore, further investigation is required to identify specific biomarkers for diagnosis and treatment in 
the future.
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Introduction
Gut microbiome, the “second genome” of human body, 
is the most abundant microbiome in the human body 
and most studied human microbiome that relates to obe-
sity, inflammation, metabolism, cancer and so on [1–4]. 
Microbiota in the genital tract are mainly found in the 
lower genital tract (vagina, cervix) which has long been 
considered sterile [5]. Thanks to the rapid advance-
ments of next-generation sequencing (NGS) technologies 
and bioinformatics, the understanding of microbiome 
colonized in various parts of human body is gradually 
improved, with more and more relative studies being car-
ried out. Based on a recent study, the upper genital tract, 
including the uterus, fallopian tubes, and peritoneal fluid, 
harbors diverse communities of bacteria despite their 
low abundance [6]. However, very few studies could be 
retrieved due to the difficulty of invasive sampling of the 
upper reproductive tract.

Major gynecological diseases include bacterial vagino-
sis (BV), aerobic vaginitis (AE), vulvovaginal candidiasis 
(VVC), human papillomavirus infection (HPV), poly-
cystic ovary syndrome (PCOS), endometriosis (EM), 
adenomyosis (AM), cervical intraepithelial neoplasia 
(CIN), cervical cancer (CCA), endometrial cancer (EC), 
uterine fibroids (UF) and ovarian cancer (OC) [7–10]. 
Systematic reviews in individual gynecological diseases 
have identified certain patterns of microbial changes. 
Women with EM had higher levels of Proteobacteria, 
Enterobacteriaceae, Streptococcus and E. coli. [11] More 
remarkably, patients with endometriosis have been found 
to have an increased Firmicutes to Bacteroidetes ratio, 
similar to irritable bowel syndrome [12]. Patients with 
PCOS had an increase in Lactobacillus, Escherichia/
Shigella and Bacteroides, and a decrease in biodiversity 
in the gut microbiome [13]. L. iners was associated with 
higher HPV prevalence compared to L. crispatus, a pro-
tective factor in the progression from CIN to CCA [14, 
15]. Another study demonstrated the protective effect of 
each Lactobacillus species against vaginal dysbiosis, as 
well as a strong probiotic multi-microbial consortium by 
L. iners, L. jensenii, L. gasseri, and L. acidophilus against 
AV and BV [16]. However, the specificity and reproduc-
ibility of the microbial changes among different diseases 
require further exploration because of the inconsistent 
results from the individual studies. Consequently, it is 
crucial to characterize the microbial diversity and com-
position across a broader range of gynecological diseases.

Our aim was to discover the bidirectional interaction 
between gynecological diseases and microbial altera-
tions at different sites of the body (gut and genital tract) 
and to evaluate the consistency or specificity across mul-
tiple studies focused on gynecological diseases in adult 
women, which in turn may provide potential biomark-
ers. Therefore, in the present, we conducted a systematic 

review and meta-analysis of studies that characterized 
the composition of the microbiota between women with 
and without gynecological diseases. In addition to the 
studies on the intestinal tract, those on the genital tract 
were also included.

Methods
The protocol of study was preregistered with PROSPERO 
(CRD42023400205). We also followed the Preferred 
Reporting Items for Systematic Reviews and Meta-analy-
ses (PRISMA) reporting guideline [17].

Search strategy and information sources
The search was conducted using PubMed, Embase, Web 
of Science, and Cochrane Library and was last updated 
on December 5, 2022. The search strings have been pre-
sented in Appendix S1. Included studies were limited to 
those including human studies and were published in 
English since 2005. The reference lists of relevant reviews 
were also manually examined to identify additional eli-
gible studies missed by the initial search.

Eligibility criteria and study selection
Studies were eligible if they [1] focused on major gyne-
cological diseases in adult women as previous described 
in introduction, [2] applied next-generation sequencing 
on the microbiome from the intestinal tract, genital tract, 
peritoneal fluid, or biopsy sample, and [3] reported out-
comes including alpha or beta diversity or relative abun-
dance. Interventional studies and studies without control 
groups were excluded. Two reviewers independently 
screened titles and abstracts. A full-text assessment was 
then performed by them. Discrepancies were resolved by 
discussion with a third author or among all reviewers.

Data extraction and assessment of risk of bias
A pilot-tested form was used to extract data from eligible 
studies. For each study, the following information was 
extracted: first author’s name, year of publication, coun-
try, number of patients and controls, age and Body Mass 
Index (BMI) of participants, sampling type, sequencing 
platform, and database. As for primary outcomes, we 
extracted the alpha and beta diversity of microbial com-
munities, as well as the relative abundance of taxonomic 
findings at the phylum, family, and genus levels.

The quality of included studies was examined indepen-
dently by two reviewers using the Newcastle–Ottawa 
Scale (NOS) for case–control studies [18]. The NOS is 
based on three dimensions: selection, comparability, 
and outcome. A total NOS score of ≤ 5 was considered 
low-quality.
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Data synthesis
For studies that did not provide original data but box 
plots of alpha diversity indices, we used WebPlotDigitizer 
version 4.6 to extract the data from the figures according 
to previously published methods [19]. The sample mean 
and standard deviation were estimated using a web-based 
tool (https://www.math.hkbu.edu.hk/~tongt/papers/
median2mean.html) with the sample size, median, range, 
and interquartile range [20]. If the data were significantly 
skewed, an alternative validated procedure was followed 
[21]. In consideration of the high likelihood of between-
study differences, the random-effects model on standard-
ized mean difference (SMD) was conducted using the 
inverse-variance method and were visualized by means of 
forest plots. Tests for heterogeneity were reported using 
the I2 statistic, which was categorized as low (25-50%), 
moderate (51-75%), or high (> 75%). Publication bias 
was examined with funnel plots. Preplanned subgroup 
analyses were performed by specific type of gynecologi-
cal disease. In addition, further subgroup analyses were 
performed by country and body weight of participants in 

studies on PCOS, as there are sufficient studies for such 
a classification. All statistical analyses were conducted 
in Review Manager version 5.4 for Windows (Cochrane 
Collaboration).

Results
Study selection
A total of 3327 articles were identified through the pre-
liminary search. After removing duplicates, 1876 articles 
were screened based on the titles and abstracts. A total of 
177 full-text articles were retrieved for a detailed eligibil-
ity evaluation, 90 of which were excluded. As a result, 87 
studies across nine diseases were included in our meta-
analysis (Fig. 1). The number of studies included for each 
disease was 13 for BV, 13 for EM, one for AM, 26 for 
PCOS, 10 for CIN, 14 for CCA, four for OC, five for EC, 
and one for UF.

Study characteristics and methodologies
Table S1 describes the characteristics of the included 
studies. In total, 7726 participants were included, and 

Fig. 1 PRISMA flowchart showing the study selection process
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the sample sizes of the included studies ranged from 
13 to 439. Most studies (n = 58) were conducted in East 
Asia (45 in China), 12 in Europe, 14 in North and South 
America, one in Africa, and two in multiple countries.

The methodology of composition analysis and sequenc-
ing details were various, with 16  S rRNA sequencing 
being most common (Table S2). We also noted heteroge-
neity regarding the amplified region of the 16  S rDNA, 
with the most widely used being V3-V4 (n = 37 studies), 
and V4 (n = 20). Most of these sequencing analyses were 
conducted on the Illumina MiSeq, Illumina HiSeq, Ion 
PGM, and 454 GS platforms. The remaining three stud-
ies used shotgun metagenomics and created metage-
nome libraries. The most widely used databases were 
the Greengenes database and Ribosomal Database Proj-
ect (RDP) Classifier. Besides, most studies (76/87) were 
matched by age, some of which also carried out subgroup 
analyses stratified by BMI, stage of disease, HPV status, 
smoking, or other disease-related factors.

Risk of bias of included studies
As shown in Table S3, all of the included studies were 
assessed using the Newcastle-Ottawa Scale (NOS) 
and received a moderate score ranging from 6 to 8 
(mean = 7.10). None of the included studies scored in 
the non-response rate category, which is not applicable 
to these study methodologies. No study was excluded 
because of the risk of bias (Table S3).

Alpha diversity
79 of the 87 studies assessed the alpha diversity of the 
microbial communities, among which 64 provided sta-
tistical charts or accurate data between the patients and 
controls. Within each sample type, indices with suffi-
cient studies (n > 5) were included in the meta-analysis. 
The most widely used indices were the Shannon index, 
Chao1, observed species, and Simpson index. Visual 
inspection revealed no evidence of publication bias in 
any of the funnel plots (Figure S1).

Regarding the richness of the gut microbiome, 13 
studies reported observed species in patients (n = 366) 
and controls (n = 283) [22–34]. A significant decrease in 
patients (standardized mean difference [SMD]=-0.35, 
[95%CI: -0.62, -0.09], I2 = 58%) was observed when pool-
ing the data during the meta-analysis (Fig.  2A). Within 
individual diagnoses, there was a significant decrease 
in PCOS. Twelve studies reported Chao1 in patients 
(n = 413) and controls (n = 331), with no statistically sig-
nificant change in the pooled estimate (SMD=-0.21, 
[95%CI: -0.53, 0.10], I2 = 74%) (Fig.  2B) [24–27, 30, 
32–38].

Regarding the diversity of the gut microbiome, 24 stud-
ies reported the Shannon index in patients (n = 929) and 
controls (n = 1042) [22, 25, 26, 28, 29, 31–49]. There was 

a significant decrease in patients (SMD=-0.23, [95%CI: 
-0.40, -0.06], I2 = 66%) (Fig.  2C). Considering individual 
diagnoses, there was a significant decrease only in EM 
and PCOS. Six studies reported Simpson in patients 
(n = 156) and controls (n = 118), and no significant differ-
ence between groups was observed (SMD=-0.24, [95%CI: 
-0.62, 0.15], I2 = 57%) (Fig. 2D) [22, 32, 37, 40, 46, 49].

To understand inter-study heterogeneity, we further 
performed a subgroup analysis according to the BMI and 
country of participants for sufficient studies in PCOS 
(Table S4). It should be noted that BMI may have an asso-
ciation with findings. Decreases in alpha diversity indi-
ces were consistently seen in obese PCOS patients and 
heterogeneity between studies was substantially reduced 
to 0%. We noticed that the majority of studies were con-
ducted in China, suggesting whether the findings were 
influenced by dietary structures between different coun-
tries. All three indices showed different outcomes in 
China compared with others, with moderate heterogene-
ity still observed.

With regard to vaginal microbiome composition, 10 
studies provided data on Chao1 in patients (n = 656) ver-
sus controls (n = 736), and there was a significant increase 
in patients (SMD = 1.15, [95%CI: 0.74, 1.56], I2 = 91%) 
(Fig. 3A) [50–59]. Data on Shannon index were reported 
by 17 studies in patients (n = 771) versus controls (n = 925) 
[39, 50, 51, 53–66]. The pooled estimate demonstrated a 
significant increase in patients (SMD = 0.51, [95%CI: 0.16, 
0.86], I2 = 91%) (Fig.  3B). Seven studies provided data 
on Simpson in patients (n = 231) vs. controls (n = 233), 
and the difference between them was not significant 
(SMD = 0.44, [95%CI: -0.18, 1.07], I2 = 90%) (Fig. 3C) [50, 
54, 55, 62, 63, 65, 67]. Within diagnostic categories, those 
increases were mainly seen in CIN and CCA with moder-
ate to high heterogeneity.

As for cervical microbiota, nine studies provided data 
on the Shannon index in patients (n = 81) versus controls 
(n = 105) [39, 40, 64, 66, 68–72]. The pooled data showed 
no significant differences (SMD = 0.08, [95%CI: -0.23, 
0.38], I2 = 66%) (Fig. 3D). Only four studies provided data 
on Simpson, which were not included in the meta-analy-
sis [40, 70–72].

Beta diversity
Beta diversity compares the differences in microbial com-
munity composition between samples from different 
body sites in patients and controls. 68 of the 87 studies 
conducted beta diversity using variable measures (Table 
S5). Regarding fecal microbiota, 30 studies assessed the 
beta diversity between patients and controls. Among 
them, 3 of 5 studies in EM, 4 of 21 in PCOS, and 1 of 3 
in cervical cancer reported significant differences. In the 
vaginal microbiota, 4 of 5 studies in BV showed signifi-
cant differences between groups, and one study showed 
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consistently significant difference of beta diversity 
between groups with HPV infection, cervical dysplasia, 
and cervical cancer. In the cervical microbiota, consis-
tent no significant differences were reported by all three 
studies in EM and one in PCOS. Because of the different 
grades of lesions in patients with CIN and cervical can-
cer, the beta diversity of the different studies could not be 
combined for analysis. All of the two studies in ovarian 
tissue and more than half of the studies of peritoneal fluid 

reported significant differences, while most of the studies 
of endometrial tissue showed no significant difference.

Differentially abundant microbial taxa
We summarized the representative taxa at three lev-
els (phylum, family, and genus). Seventy of the 87 stud-
ies assessed the relative abundance of microbial taxa 
between patients and control groups. Overall, 22 phyla, 
50 families, and 154 genera were identified from six 
different sample types, including stool, vaginal swab, 

Fig. 2 Forest Plots of Alpha Diversity in the Gut Microbiota of Patients with Gynecological Diseases Compared with Healthy Controls. (A) Observed spe-
cies. (B) Chao1. (C) Shannon index. (D)Simpson index
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cervical mucus, endometrial tissue (ET), ovarian tissue 
(OT), and peritoneal fluid (PF). To summarize within- 
and between- disease comparisons for the microbial taxa, 
in studies reporting the same microbes, findings with less 
than 60% agreement were categorized as “not consistent” 
(Fig. 4).

Disease specificity
If a taxon was altered in the same direction in only a sin-
gle disease and was consistent in more than two studies, 
it was considered a candidate for disease specificity. Thus, 
our findings indicate some disease-specific alterations, 
such as the depletion of Odoribacter and Paraprevotella 
in PCOS. We also observed a depletion of Bifidobacte-
rium in CIN. There was also evidence of the enrichment 

Fig. 3 Forest Plots of Alpha Diversity in the Genital Microbiota of Patients with Gynecological Diseases Compared with Healthy Controls. (A to C) Alpha 
Diversity in the vaginal microbiota (A) Chao1. (B) Shannon index. (C) Simpson index. (D) Shannon index in the cervical microbiota
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of Aerococcus, Eggerthella and Gemella in BV. However, 
there was limited evidence of these disease specificities 
because the majority of the consistent within-disease 
alterations were reproduced in only three studies.

Shared alteration across diseases
Our study indicates a consistent alteration across dis-
eases for certain microbes. The most consistent changes 
were the enrichment of Prevotella (PCOS, BV, and CC) 
and the depletion of Lactobacillus in three diseases 
(PCOS, BV, and CC). The Clostridium and Megasphaera 
genera were enriched in both BV and CIN, whereas 
Sneathia was enriched in both BV and CC. Therefore, 
an overlap between BV, CIN, and CC was implied in the 
vaginal microbiota.

Discussion
This meta-analysis assessed microbiota alterations with 
the aim of evaluating consistency or specificity across a 
spectrum of gynecological diseases. We summarized the 
alpha diversity (within sample), beta diversity (between 
samples), and differentially abundant microbial taxa 
at the phylum, family, and genus levels. The main find-
ings were as follows: [1] a small effect size decrease in 
observed species and Shannon index of gut microbiota; 
a moderate to large effect size increase in Chao1 and 
Shannon index of vaginal microbiota; [2] significant dif-
ferences of β diversity were reported mostly in EM and 
BV, whereas no significant differences were frequently 
reported; [3] disease specificity was observed in three 
diseases, but almost all the changes were only replicated 
in three studies, except for Aerococcus in BV; [4] patients 

with major gynecological diseases shared the general 
changes of the enrichment of Prevotella and the deple-
tion of Lactobacillus in vaginal samples; an overlap was 
implied between BV, CIN, and CC.

In terms of alpha diversity, our meta-analysis showed 
that both richness and diversity of the gut microbiota 
in patients with gynecological diseases showed a sta-
tistically significant decrease. In terms of individual 
diagnosis, the Shannon index of gut microbiota was sig-
nificantly decreased in EM patients with no heterogene-
ity between studies. In previous animal experiments, EM 
mice showed a significant decrease in Shannon index and 
metabolites like alpha-linolenic acid, which can increase 
the expression of the ZO-2 protein in the intestinal wall, 
reduce the content of LPS and the aggregation of macro-
phages in the peritoneum, as well as decreased the oxi-
dative stress and inflammation [73–75]. However, Yuan 
et al. [76] reported no significant difference in Shannon 
index. The pooled estimate of our meta-analysis favored 
a reduction in the diversity of the intestinal flora of the 
EM patients, in accordance to the hypothesis that diverse 
communities may increase the stability and productivity 
of an ecosystem. Moreover, antibiotic-induced microbi-
ota-depleted mice has shown a reduction of endometri-
otic lesion, possibly by fecal metabolite like quinic acid 
and modulation of immune cell populations like macro-
phages in peritoneum [77].

On the other hand, the observed species and Shan-
non index in PCOS patients were significantly decreased. 
The subgroup analysis on their BMI demonstrated that 
observed species, Chao1, and Shannon index were sig-
nificantly decreased in obese PCOS patients with 0-13% 

Fig. 4 Summary of Changes in Relative Abundance of Microbial Taxa (Phylum, Family, Genus) by at Least 2 Studies from a Diagnostic Category. ET, endo-
metrial tissue; PF, peritoneal fluid; * consistent in 3 or more studies
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heterogeneity, but no significant differences were shown 
of Chao1 and Shannon in non-obese patients. Obesity 
is one of the representative features of PCOS, which 
was associated with lower alpha diversity of the gut 
microbiome in previous meta-analyses [78–80]. As we 
suspected, metabolism and obesity have specific interac-
tions with the gut microbiome of PCOS, but the mecha-
nism remains to be further demonstrated. Generally, 
gut microbiome may contributed to PCOS by affecting 
energy absorption, short chain fatty acids, lipopolysac-
charide, choline and bile acid, intestinal permeability and 
the brain-gut axis [81]. Meanwhile, in the reproductive 
endocrine system, the gut microbiome has a complex 
interaction with insulin, estrogen, and testosterone. The 
intestinal flora promotes the glucose metabolism disor-
der of PCOS possibly through the FXR signaling pathway, 
while the removement of it decreases serum testosterone 
levels, ameliorated insulin resistance and increased rela-
tive FXR mRNA levels [30]. Microbiome is also affected 
by genetic, nutritional, and environmental factors, 
resulting in a high heterogeneity among individuals [9]. 
Through meta-analysis and subgroup analysis, we tried to 
minimize the effect of heterogeneity among studies and 
obtained more trustworthy pooled results.

Vaginal microbiota dysbiosis, characterized by a pro-
gressive replacement of certain Lactobacillus species by 
pathogenic microorganisms who can develop biofilms, 
plays an important role in gynecological diseases [82, 83]. 
Analysis showed that Chao1 and Shannon indices were 
significantly increased in patients, mainly in CIN and 
CCA, which proved that vaginal dysbiosis was associated 
with an increased risk of persistent HPV infection and 
cervical dysplasia, as previous studies carried out [14, 
15, 84, 85]. Meanwhile, no significant differences were 
observed in cervical microbiota.

In our meta-analysis, we found that studies related 
to upper genital tract remain very few. A recent study 
revealed that intracellular microbiota in breast tumor 
tissue regulated the host-cell viability and metastatic 
colonization through reorganizing actin cytoskeleton and 
enhancing resistance to fluid shear stress [86]. Another 
study has demonstrated the microbial continuum in the 
female reproductive tract, with different microbial com-
munities distributed from lower to upper genital tract. 
ET and PF samples contains lower bacterial biomass but 
higher diversity than vaginal sites, which is similar to 
tumor tissue [6]. These findings give us a hint that future 
studies can investigate more about the microbiota in tis-
sues and its mechanism to uterine-related diseases such 
as EM, EC, and OC.

As for beta diversity, most studies of different diag-
nostic categories and sites demonstrated no significant 
differences between patients and controls, or conflict-
ing results between studies. No consistent changes were 

observed, suggesting that the measurement of beta diver-
sity may not be suitable as a diagnostic biomarker.

In general, disease specificity was observed in PCOS, 
BV, and CIN, but these alterations were weakly repro-
duced because most of the consistent within-disease 
changes were replicated in only three studies. It is worth 
noting that the Aerococcus genus was enriched in four of 
seven studies on BV (Figure S2D), which can also cause 
urinary tract infections and infective endocarditis [87, 
88]. Furthermore, the Odoribacter genus was decreased 
in PCOS, which is a promising probiotic for its ability 
to improve glucose tolerance and inflammation related 
to obesity [89]. Researchers have found that the trypsin-
degrading property is conserved in all Paraprevotella 
strains, which were also decreased in PCOS [90]. In 
addition, the Streptococcus genus, a pro-inflammatory 
microbe, was increased in the fecal and peritoneal fluid 
of EM patients, which is consistent with a previous meta-
analysis reporting its enrichment in cervical mucus and 
endometrial tissue [11]. This indicated the migration of 
microbes along the genital tract, thus contributing to the 
imbalance of bacteria in the peritoneal fluid.

Our findings indicate shared alterations of vaginal 
microbial changes between BV, CIN, and CC, as men-
tioned before. Most consistently in vaginal microbiota, 
the Clostridium, Sneathia, Megasphaera, and Prevotella 
genera were enriched, while the Lactobacillus genus was 
depleted. A study on Prevotella reported its relation with 
the production of sialidase, an enzyme that enhances the 
ability of microorganisms to invade and destroy tissue 
[91]. Candidate gene analysis also showed associations 
between genetic variants of interleukin-5 and the abun-
dance of Prevotella spp [92]. Recently, another study sug-
gested that Prevotella was significantly correlated with 
the expression levels of NF-κB and C-myc in cervical 
cells, influencing the occurrence of HPV infection and 
cervical lesions [93].

Strengths and limitations
To the best of our knowledge, this is the first meta-analy-
sis that integrates microbiota alterations across the wide 
range of gynecological diseases. However, the limitations 
of this study must be mentioned. First, the modest sam-
ple sizes of some included studies and the small number 
of studies on the upper genital tract may have under-
mined the reliability of the related results, requiring 
further validation with larger sample sizes. Second, inter-
study heterogeneity was observed, especially in vaginal 
samples, which makes the findings difficult to replicate 
and the quality of the evidence reported low. Additional 
subgroup analyses are required to explore the sources of 
heterogeneity. Third, because of the exclusion of stud-
ies with interventions, we were unable to explore the 
confounding effects of antibiotics or other treatments, 
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since we know antimicrobial resistance has been more 
frequent especially in BV [94]. Finally, our study focused 
on microbial composition rather than function. The role 
of gut and genital microbiota in gynecological diseases 
should be further elucidated by functional analysis.

Conclusion
Our study demonstrated that alterations in gut and geni-
tal microbiota are associated with major gynecological 
diseases. The overall results showed a decrease of diver-
sity in gut microbiota and an increase in genital tract. 
The most observed results were shared alterations across 
diseases rather than disease-specific alterations. There-
fore, further investigation is required to identify specific 
biomarkers that may serve as promising diagnostics in 
the future and to explore the mechanisms and pathways 
between gynecological diseases and microbial alterations.
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