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Abstract
Background Women with adenomyosis are characterized by having defective decidualization, impaired endometrial 
receptivity and/or embryo-maternal communication, and implantation failure. However, the molecular mechanisms 
underlying adenomyosis-related infertility remain unknown, mainly because of the restricted accessibility and the 
difficult preservation of endometrial tissue in vitro. We have recently shown that adenomyosis patient-derived 
endometrial organoids, maintain disease-specific features while differentiated into mid-secretory and gestational 
endometrial phase, overcoming these research barriers and providing a robust platform to study adenomyosis 
pathogenesis and the associated molecular dysregulation related to implantation and pregnancy disorders. For this 
reason, we aim to characterize the dysregulated mechanisms in the mid-secretory and gestational endometrium of 
patients with adenomyosis by RNA-sequencing.

Methods Endometrial organoids were derived from endometrial biopsies collected in the proliferative phase of 
women with adenomyosis (ADENO) or healthy oocyte donors (CONTROL) (n = 15/group) and differentiated into 
mid-secretory (-SECorg) and gestational (-GESTorg) phases in vitro. Following RNA-sequencing, the significantly 
differentially expressed genes (DEGs) (FDR < 0.05) were identified and selected for subsequent functional enrichment 
analysis and QIAGEN Ingenuity Pathway Analysis (IPA). Statistical differences in gene expression were evaluated with 
the Student’s t-test or Wilcoxon test.

Results We identified 1,430 DEGs in ADENO-SECorg and 1,999 DEGs in ADENO-GESTorg. In ADENO-SECorg, 
upregulated genes included OLFM1, FXYD5, and RUNX2, which are involved in impaired endometrial receptivity 
and implantation failure, while downregulated genes included RRM2, SOSTDC1, and CHAC2 implicated in recurrent 
implantation failure. In ADENO-GESTorg, upregulated CXCL14 and CYP24A1 and downregulated PGR were related 
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Introduction
Adenomyosis is a benign uterine disease, defined as an 
infiltration of the endometrial glands and stroma into 
the myometrium [1]. It affects approximately 35% of 
reproductive-aged women [2], although the prevalence 
can vary depending on the study population, diagnos-
tic methods, and geographic location [3]. Women with 
adenomyosis present abnormal uterine bleeding, chronic 
pelvic pain, dysmenorrhea, dyspareunia, and infertility 
[4], driving them to seek assisted reproductive technolo-
gies [5]. However, in vitro fertilization efficacy for these 
patients remains highly controversial, with some studies 
reporting lower implantation rates but no effect on mis-
carriage rates [6, 7], and others describing frequent mis-
carriages without any adverse effects on implantation or 
pregnancy rates [8, 9]. Nevertheless, meta-analyses con-
cluded that women with adenomyosis had higher miscar-
riage rates, lower implantation, pregnancy, and live birth 
rates compared to healthy patients [10–13], suggest-
ing adenomyosis may impair embryo implantation and 
early pregnancy [13]. In this regard, understanding the 
underlying molecular mechanisms involved in adenomy-
osis pathogenesis is essential for managing adenomyosis-
related infertility.

Defective decidualization [14], impaired endome-
trial receptivity [15], and/or embryo-maternal com-
munication [16], and implantation failure [17] have 
been described in women with adenomyosis. However, 
the molecular mechanisms underlying these infertil-
ity-related alterations in adenomyosis women remain 
unknown, mainly due to the limited availability and diffi-
cult maintenance of the eutopic and ectopic endometrial 
tissues in vitro. As embryo implantation occurs in the 
endometrial mid-secretory phase [18], and events related 
to the embryo-maternal communication and early preg-
nancy stages happen in the endometrial gestational phase 
[19], deciphering the transcriptome of these endometrial 
phases in women with adenomyosis will represent a step 
forward in understanding the dysregulation that contrib-
utes to adenomyosis-associated infertility.

Organoids have emerged as a three dimensional (3D) in 
vitro platform capable of reproducing the phenotypes of 
native tissues remaining genetically stable in long-term 
culture [20]. Endometrial organoids have been devel-
oped from healthy and diseased endometrium, mim-
icking endometriosis [21], endometrial cancer [21], and 
adenomyosis [22], among other conditions. Notably, 
patient-derived adenomyosis endometrial organoids dif-
ferentiated into mid-secretory and gestational phase phe-
notypes maintain disease-specific traits, overcoming the 
aforementioned research barriers and providing a reli-
able model to study adenomyosis pathogenesis and asso-
ciated molecular dysregulation related to implantation 
and pregnancy disorders. In this regard, our adenomyo-
sis organoids model allowed us to describe microRNAs 
contained in extracellular vesicles (EVs) secreted by 
these adenomyosis secretory and gestational organoids, 
involved in impaired embryo implantation and preg-
nancy disorders related with this disease [23]. However, 
there is not any study describing molecular mechanisms 
deregulated in eutopic endometrium in secretory and 
gestational phase from women with adenomyosis. There-
fore, the aim of our study was to analyze the transcrip-
tome of adenomyosis-derived endometrial organoids in 
the mid-secretory and gestational phases, to character-
ize the molecular mechanisms involved in adenomyosis-
related infertility.

Materials and methods
Study design
Endometrial organoids were derived from the eutopic 
endometrium of women with (n = 15) or without adeno-
myosis (control; n = 15) and further differentiated into 
mid-secretory and gestational endometrial phases by 
supplementation with ovarian and pregnancy hormones 
[22], respectively. RNA was extracted from mid-secretory 
and gestational adenomyosis and control endometrial 
organoids for RNA-sequencing (RNA-seq) (Supplemen-
tal Fig. 1).

to pregnancy loss. IPA predicted a significant inhibition of ID1 signaling, histamine degradation, and activation of 
HMGB1 and Senescence pathways, which are related to implantation failure. Alternatively, IPA predicted an inhibition 
of D-myo-inositol biosynthesis and VEGF signaling, and upregulation of Rho pathway, which are related to pregnancy 
loss and preeclampsia.

Conclusions Identifying dysregulated molecular mechanisms in mid-secretory and gestational endometrium 
of adenomyosis women contributes to the understanding of adenomyosis-related implantation failure and/or 
pregnancy disorders revealing potential therapeutic targets. Following experimental validation of our transcriptomic 
and in silico findings, our differentiated adenomyosis patient-derived organoids have the potential to provide a 
reliable platform for drug discovery, development, and personalized drug screening for affected patients.

Keywords Adenomyosis, Endometrial organoids, RNA-sequencing, Implantation failure, Pregnancy loss, Infertility
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Patients and endometrial biopsies
Endometrial biopsies were obtained from patients 
(18 ≤ 45 years old; BMI ≤ 28  kg/m2) with and with-
out adenomyosis, at the IVI Valencia Clinic (Table  1). 
Patients with any other suspected or diagnosed uterine 
pathologies were excluded. Control women were healthy 
egg donors with standard uterine volume, no evidence 

of adenomyotic lesions, and free of other gynecologi-
cal pathologies and medication during previous three 
months.

Diagnosis of adenomyosis
All patients were examined by transvaginal ultrasound. 
Adenomyosis was diagnosed in patients presenting a 
heterogeneous myometrium and a diffused endometrial 
border. Diffuse adenomyosis was diagnosed with a glob-
ally enlarged asymmetric uterus, hypoechoic striae, and 
areas with small cysts in the intramyometrial region, 
while focal adenomyosis was diagnosed by isolated 
intramyometrial clusters surrounded by areas of normal 
myometrium and altered vascularity [24, 25]. In all cases 
adenomyosis was confirmed by hysteroscopic evaluation 
of the endometrial cavity.

Establishment and differentiation of adenomyosis 
endometrial organoids
The adenomyosis and control endometrial organoids 
were derived from eutopic endometrium and differ-
entiated into the mid-secretory and gestational phases 
modelling native endometrial tissue and disease-specific 
traits, which showed in vivo glandular epithelial pheno-
type (pan-cytokeratin, Mucin-1 [Muc-1], Periodic acid 
Schiff [PAS] staining, Laminin, and Ki67; assessed by 
immunostaining) and secretory and gestational features 
(α-tubulin, SRY-Box Transcription Factor 9 [SOX9], 
Secreted Phosphoprotein 1 [SPP1], Progestagen Asso-
ciated Endometrial Protein [PAEP], LIF Interleukin 6 
Family Cytokine [LIF], and Hydroxysteroid 17-Beta 
Dehydrogenase 2 [17βHSD2] expression and SPP1 
secretion, assessed by immunostaining and quantitative 
real-time PCR (qRT-PCR)), as we previously described 
[22]. Immunohistochemistry of adenomyosis organ-
oids showed higher expression of Transforming Growth 
Factor Beta 2 [TGFβ-2] and SMAD Family Member 3 
[SMAD3] and increased gene expression of SPP1, PAEP, 
LIF, and 17βHSD2 by means of qRT-PCR [22]. Briefly, 
for mid-secretory phase differentiation, adenomyosis 
(ADENO-SECorg) and control organoids (CONTROL-
SECorg) were treated with 10 nM estradiol (E2; Sigma-
Aldrich, St. Louis, MO, USA, E4389), 1 µM progesterone 
(P4; Sigma-Aldrich, P7556) and 1 µM 8-bromoadenosine 
3′,5′-cyclic monophosphate sodium salt (cAMP; Sigma-
Aldrich, B7880). For gestational phase differentiation, 
adenomyosis (ADENO-GESTorg) and control organoids 
(CONTROL-GESTorg) were treated with 10 nM E2, 1 
µM P4, 1 µM cAMP, with an additional 20 ng/mL prolac-
tin (PRL; Peprotech, Cranbury, NJ, USA, 100-07) and 20 
ng/mL human placental lactogen (hPL; R&D, Minneapo-
lis, MN, USA, 5757-PL).

Table 1 Basic demographic parameters. Age is measured in 
years and BMI in kg/m2

PATIENT AGE BMI RACE PARITY TYPE OF 
ADENOMYOSIS

ADENO 1 42 26.40 White IF2, G4, 
M1, LB3

Focal

ADENO 2 38 26.18 White - Focal
ADENO 3 40 19.83 White - Focal
ADENO 4 39 21.30 White IF2, G2, 

M2
Focal

ADENO 5 37 22.32 NR IF2 Diffuse
ADENO 6 42 22.90 White IF2 Cystic and Diffuse
ADENO 7 41 22.15 White IF1, G1, 

M1
Diffuse

ADENO 8 42 25.26 White - Diffuse
ADENO 9 44 26.37 Hispanic - Focal
ADENO 10 37 28.00 White IF1 NR
ADENO 11 36 19.94 Hispanic IF1, G4, 

M4
Diffuse

ADENO 12 34 23.14 NR G2, M2 Focal
ADENO 13 42 21.87 White IF2, G2, 

M2
Focal

ADENO 14 38 28.00 NR IF1, G2, 
M2

Focal

ADENO 15 34 23.53 White - Focal
CONTROL 1 22 24.37 White - -
CONTROL 2 22 21.95 White - -
CONTROL 3 19 23.87 White - -
CONTROL 4 28 23.74 White - -
CONTROL 5 23 20.55 Hispanic - -
CONTROL 6 29 21.87 White G3, 2 M, 

LB1
-

CONTROL 7 24 22.13 Hispanic - -
CONTROL 8 21 21.30 NR - -
CONTROL 9 23 22.15 NR - -
CONTROL 
10

25 20.18 NR - -

CONTROL 
11

28 23.11 NR - -

CONTROL 
12

22 19.96 White - -

CONTROL 
13

27 22.12 White G1, LB1 -

CONTROL 
14

31 25.52 NR - -

CONTROL 
15

28 25.64 White G1, M1 -

IF: implantation failure; G: gestation; M: miscarriage; LB: live-birth; NR: non 
referred
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Library construction and RNA-sequencing
Total RNA was extracted from the ADENO-SECorg, 
CONTROL-SECorg, ADENO-GESTorg and CONTROL-
GESTorg groups (n = 15/group) using the RNeasy Mini 
Kit (Qiagen, Germantown, MD, USA, 74,104) accord-
ing to the manufacturer’s protocol, and quantified with a 
Qubit 3 Fluorometer (Invitrogen, Waltham, MA, USA).

Next, cDNA libraries were generated employing the 
TruSeq Stranded mRNA Library Prep (Illumina, San 
Diego, CA, USA, 20,020,595) and TruSeq RNA CD Index 
Plate (Illumina, 20,019,792) according to manufacturer’s 
instructions. The quality and concentration of the librar-
ies was assessed with the Agilent Technologies 2100 
(Agilent Technologies, Santa Clara, CA, USA, G2939BA). 
Paired-end sequencing (2 × 75 bp) was performed on Illu-
mina’s NextSeq 550 NGS platform.

Pre-processing, quality control and normalization
RNA-seq data libraries were processed within R comput-
ing environment (v 4.1.1). Library quality was analyzed 
with FastQC software [26]. Low-quality sequences (e.g., 
from one CONTROL-SECorg and two CONTROL-GES-
Torg samples) were removed with bbduk software [27]. 
Sequencing samples yielded an average of 14.1  million 
reads per sample. RNA-seq reads were aligned with the 
GRCh38 version of the human genome using subread 
software [28]. Read counts were normalized using the 
geometric median ratio method for each mRNA, using 
the DESeq2 R package. All raw sequencing data are avail-
able through the Gene Expression Omnibus (GEO) under 
accession number GSE244236.

Differentially expressed genes and functional enrichment 
analysis
Differential expression analysis (DEA) was carried out 
with the DESeq2 package to identify the differentially 
expressed genes (DEGs) between: (i) ADENO-SECorg 
versus CONTROL-SECorg; and (ii) ADENO-GESTorg 
versus CONTROL-GESTorg. Differentially expressed 
genes (DEGs) were considered significant when the 
P-value adjusted by false discovery rate (FDR) < 0.05. 
Gene ontology functional enrichment analysis and 
KEGG pathway analysis were performed by gene set 
enrichment analysis (GSEA) implemented in clusterPro-
filer [29]. Finally, the QIAGEN Ingenuity Pathway Analy-
sis (IPA) was used to analyze the dysregulated pathways 
in both comparisons.

Validation
To corroborate RNA-seq data, we selected DEGs impli-
cated in dysregulated pathways described in ADENO-
SECorg and evaluated their gene expression by qRT-PCR 
using Power-Up SYBR Green (Thermo Fisher Scientific, 
USA) on a StepOnePlus Real-Time PCR System (Applied 

Biosystems, USA). The selected genes included Aldehyde 
Dehydrogenase 1 Family Member A1 (ALDH1A1), Alde-
hyde Dehydrogenase 9 Family Member A1 (ALDH9A1), 
Monoamine Oxidase B (MAOB), Lysine Acetyltrans-
ferase 2B (KAT2B), Poly (ADP-Ribose) Polymerase 1 
(PARP1), Forkhead Box O3 (FOXO3), Superoxide Dis-
mutase 2 (SOD2) and Sequestosome 1 (SQSTM1). Rela-
tive gene expression levels were determined by the ∆∆Ct 
method and normalized to β-actin (ACTB) housekeeping 
gene expression. Fold change was calculated using the 
CONTROL-SECorg as the reference group.

Statistical analysis
All statistical analyses of omics data were carried out 
in R (v 4.1.1). Graphics were generated using the R core 
package, gplots, ggplot2, or GraphPad Prism 8.0. Statis-
tical differences in gene expression were evaluated with 
the Student’s t-test or Wilcoxon test in GraphPad Prism 
8.0. In all cases, P < 0.05 was considered statistically 
significant.

Results
Global transcriptomic behaviour of adenomyosis patient-
derived organoids
Principal Component Analysis (PCA) revealed distinct 
transcriptomic behaviour between the ADENO-SECorg 
and CONTRO-SECorg samples (Fig.  1A) and between 
the ADENO-GESTorg and CONTROL-GESTorg samples 
(Fig.  1B). In corroboration, the hierarchically-clustered 
heatmaps of the significant mRNAs (FDR < 0.05) showed 
different expression patterns between ADENO-SECorg 
and CONTROL-SECorg (Fig. 1C) and between ADENO-
GESTorg and CONTROL-GESTorg (Fig. 1D).

Differential gene expression of mid-secretory phase 
adenomyosis endometrial organoids
DEA identified 1,430 DEGs (500 up- and 930 downreg-
ulated; FDR < 0.05) between the ADENO-SECorg and 
CONTRO-SECorg in the mid-secretory phase (Fig.  1E). 
Among the top 20 downregulated DEGs selected for sub-
sequent analysis (Fig. 2A), we highlight ChaC Glutathione 
Specific Gamma-Glutamylcyclotransferase 2 [CHAC2], 
Metallothionein 1M [MT1M], Sclerostin Domain Con-
taining 1 [SOSTDC1], and Ribonucleotide Reductase 
Regulatory Subunit M2 [RRM2] (log2 Fold change [FC] = 
-2.20, -2.13, -2.07, and − 1.95, respectively) based on their 
possible implication in recurrent implantation failure 
(RIF). Alternatively, among the top 20 upregulated DEGs 
(Fig. 2B) we point out RUNX Family Transcription Fac-
tor 2 [RUNX2], Olfactomedin 1 [OLFM1], FXYD Domain 
Containing Ion Transport Regulator 5 [FXYD5], and MT-
RNR2 Like 1 [MTRNR2L1] (log2FC = 1.84, 1.70, 1.70, and 
1.44, respectively) due to their involvement in impaired 
endometrial receptivity and embryo implantation.
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Fig. 1 Global transcriptomic behavior of secretory and gestational endometrial organoids from patients with adenomyosis compared to healthy oocyte 
donors. Principal component analyses (A-B), heatmaps representing the fold-enrichment score of genes after unsupervised clustering (C-D), and volcano 
plots of the significantly differentially expressed genes (adjusted p value < 0.05 and log2FC>|2|; E-F) between ADENO-SECorg (red; n = 15) and CONTROL-
SECorg (blue; n = 14), or ADENO-GESTorg (red; n = 15) and CONTROL-GESTorg (blue; n = 13)
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Differential gene expression of gestational phase 
adenomyosis endometrial organoids
DEA identified 1,999 DEGs (153 up- and 1,846 down-
regulated; FDR < 0.05 and) between the ADENO-GES-
Torg and CONTROL-GESTorg in the gestational phase 
(Fig.  1F). Among the top 20 downregulated DEGs 
(Fig.  2C), we highlight ZW10 Interacting Kinetochore 
Protein (ZWINT), Establishment Of Sister Chromatid 
Cohesion N-Acetyltransferase 2 (ESCO2), Minichromo-
some Maintenance Complex Component 6 (MCM6), 

progesterone receptor (PGR) and Minichromosome 
Maintenance Complex Component 4 (MCM4) (log2FC 
= -2.57, -2.53, -2.48, -2.21, and − 2.07, respectively) based 
on their possible associations with recurrent pregnancy 
loss (RPL) and preeclampsia. From the top 20 upregu-
lated DEGs (Fig.  2D), we note Cytochrome P450 Fam-
ily 24 Subfamily A Member 1 (CYP24A1), C-X-C Motif 
Chemokine Ligand 14 (CXCL14), Cyclin Dependent 
Kinase Inhibitor 2 A (CDKN2A), Chloride Voltage-Gated 
Channel Ka (CLCNKA) and Platelet Activating Factor 

Fig. 2 Top 20 significantly differentially expressed genes between adenomyosis and control patient-derived endometrial organoids in mid-secretory 
and gestational phases. (A) Downregulated and (B) upregulated genes in ADENO-SECorg compared to CONTROL-SECorg. (C) Downregulated and (D) 
upregulated genes in ADENO-GESTorg compared to CONTROL-GESTorg. Statistical significance of the presented genes was established with adjusted p 
value < 0.05
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Receptor (PTAFR) (log2FC = 2.38, 1.55, 1.02, 1.01, and 
0.80, respectively) due to their implication in spontane-
ous miscarriage, trophoblast outgrowth and invasion 
inhibition, and gestational diabetes mellitus.

Functional implications of adenomyosis in the mid-
secretory phase endometrium
GO enrichment analysis identified 176 dysregulated 
biological processes in ADENO-SECorg (Supplemental 
Table 1). These processes were assigned to different func-
tional groups, such as oocyte and embryo development, 
DNA damage repair, response to oxygen levels and hor-
mones, immune response, cell-cell adhesion, cell cycle 
and apoptosis, aligning with the described functions of 
the mid-secretory phase DEGs we emphasized herein 
(Fig.  3A). On the other hand, KEGG pathway analysis 
revealed nine dysregulated pathways related to the cell 
cycle, mismatch repair, homologous recombination, cel-
lular senescence, estrogen and progesterone signaling, 
inflammation cascades and different types of viral infec-
tion, among others (Supplemental Table 1).

Functional implications of adenomyosis in the gestational 
phase endometrium
GO analysis revealed 356 dysregulated biological pro-
cesses in ADENO-GESTorg (Supplemental Table 2). 
Among the corresponding functional groups, embryo 
development, vital processes, developmental matura-
tion, recombination, response to oxygen levels, radiation, 
insulin and stimulus, signal transduction and immune 
response, all stood out for their possible involvement in 
pregnancy disorders and corroborated the previously 
published associations of the gestational phase DEGs 
we featured (Fig.  3B). Further, KEGG pathway analysis 
revealed 39 dysregulated pathways, related to homolo-
gous recombination, mismatch repair, apoptosis and p53 
signaling, different types of cancer, viral infection, dia-
betic complications and inflammation signaling cascades, 
among others (Supplemental Table 2).

Adenomyosis-related dysregulated pathways in the mid-
secretory phase endometrium
QIAGEN IPA predicted 36 downregulated and 21 upreg-
ulated canonical pathways in the mid-secretory endome-
trium of women with adenomyosis, compared to controls 
(Supplemental Table 3). Among the relevant downregu-
lated pathways in the mid-secretory endometrium, we 

Fig. 3 Functional enrichment analysis and canonical pathways predicted to be affected by Ingenuity Pathway Analysis (IPA). Functional implications of 
relevant significantly downregulated and upregulated genes in (A) ADENO-SECorg with respect to CONTROL-SECorg or (B) ADENO-GESTorg with respect 
to CONTROL-GESTorg. Differential expression of the genes is showed in a box under the gene in blue (downregulated) and red (upregulated) by means of 
log2FC scale. Downregulated and upregulated canonical pathways predicted by IPA and deemed relevant for adenomyosis pathogenesis and associated-
infertility in (C) ADENO-SECorg and (D) ADENO-GESTorg. DEGs, differentially expressed genes

 



Page 8 of 13Juárez-Barber et al. Reproductive Biology and Endocrinology           (2024) 22:10 

distinguished the degradation of noradrenaline and 
adrenaline (z-score=-2.4), dopamine (z-score=-2.4), and 
histamine (z-score=-2.0), along with the inhibitor of DNA 
binding 1 (ID1) signaling pathway (z-score=-1.8), ribo-
nucleotide reductase signaling pathway (z-score=-1.4), 
inhibition of angiogenesis by thrombospondin 1 (TSP1; 
z-score=-1.3), ATM signaling (z-score=-1.1), and sirtuin 
signaling pathway (z-score=-0.60), (Fig.  3C). Alterna-
tively, among the upregulated pathways, we emphasize 
acute phase response signaling (z-score = 2.7), high 
mobility group box 1 (HMGB1) signaling (z-score = 0.8), 
sumoylation (z-score = 0.7) and senescence pathways 
(z-score = 0.5) (Fig. 3C).

Adenomyosis-related dysregulated pathways in the 
gestational phase endometrium
QIAGEN IPA analysis predicted 141 downregulated 
and 14 upregulated canonical pathways in the ges-
tational phase endometrium of women with adeno-
myosis, compared to controls (Supplemental Table 
4). Among the ones relevant for adenomyosis patho-
genesis and infertility (Fig.  3D), D-myo-inositol-
5-phosphate metabolism (z-score=-4.6), and signaling 
pathways for microRNA biogenesis (z-score=-4.5), the 

actin cytoskeleton (z-score=-4.2), extracellular signal-
regulated kinase (ERK)/mitogen-activated protein 
kinase (MAPK) (z-score=-4.0) and ribonucleotide reduc-
tase (z-score=-2.7), together with vascular endothelial 
growth factor (VEGF) family ligand-receptor interac-
tions (z-score=-1.9), were predicted as downregulated. 
Meanwhile, the predicted upregulated pathways included 
those for Rho GDP dissociation inhibitor (RHOGDI; 
z-score = 3.6), phosphatase and tensin homolog (PTEN; 
z-score = 3.4), p53 (z-score = 1.1) and peroxisome prolifer-
ator activated receptor alpha (PPARα)/retinoid X recep-
tor alpha (RXRα) activation (z-score = 0.5).

Validation of differential gene expression in adenomyosis 
organoids
To validate RNA-sequencing results, eight DEGs were 
selected among the genes involved in the dysregulated 
pathways Histamine degradation, Dopamine degrada-
tion, Noradrenaline and Adrenaline degradation and 
Senescence in ADENO-SECorg. qRT-PCR results cor-
roborated the differential gene expression pattern 
observed in ADENO-SECorg by RNA-seq compared to 
CONTROL-SECorg (Fig. 4). Specifically, ALDH1A1 (fold 
change = 0.235; p = 0.023), ALDH9A1 (fold change = 0.675; 

Fig. 4 Validation of RNAseq results in ADENO-SECorg. Gene expression of (A) ALDH1A1, (B) ALDH9A1, (C) MAOB, (D) KAT2B, (E) PARP1, (F) FOXO3, (G) 
SOD2 and (H) SQSTM1 was validated in ADENO-SECorg by qRT-PCR. * p < 0.05; ** p < 0.005
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p = 0.035), MAOB (fold change = 0.136; p = 0.023), 
KAT2B (fold change = 0.624; p = 0.012), PARP1 (fold 
change = 0.746; p = 0.009), FOXO3 (fold change = 1.820; 
p = 0.011), SOD2 (fold change = 3.130; p = 0.003), 
SQSTM1 (fold change = 1.912; p = 0.034).

Discussion
Women with adenomyosis are characterized by impaired 
implantation and a higher number of miscarriages [10–
13], thus, being able to study the dysregulated pathways 
and their putative causes in the endometrium, when 
these events occur, is crucial to improve fertility care for 
affected patients. Conventionally, the study of the endo-
metrium in mid-secretory (implantation [30]) and ges-
tational (early pregnancy [31]) phases was restricted by 
the difficulty of accessing and culturing the endometrium 
in these phases. However, the recent generation and dif-
ferentiation of endometrial organoids overcomes these 
research barriers [20] and facilitates the study of specific 
endometrial disorders [21]. Going one step further, in 
this study, we performed next-generation sequencing of 
adenomyosis patient-derived organoids to identify the 
dysregulated genes and pathways in the eutopic secretory 
and gestational phase endometrium that may be respon-
sible for the implantation failure and miscarriages experi-
enced by affected women.

In ADENO-SECorg, we found CHAC2, MT1M, SOS-
TDC1 and RRM2 as significantly downregulated DEGs. 
CHAC2 has a pivotal role in the neutralization of reac-
tive oxygen species, being necessary for the maintenance 
of human embryonic stem cell self-renewal [32]. MT1M 
is critical for regulating oxidative stress, inflammation 
and hormone signaling in term and preterm labor [33]. 
SOSTDC1, was found expressed in the uterine glandu-
lar epithelial cells of the receptive rat endometrium, and 
thus, may be involved in the onset of endometrial recep-
tivity [34], while RRM2 expression was downregulated 
in the RIF endometrium, compared to fertile controls 
[35]. Based on this evidence, our findings suggest that 
the downregulation of these DEGs in the mid-secretory 
endometrium of women with adenomyosis advance the 
knowledge of adenomyosis and contributes to the endo-
metrial dysfunction that impedes embryo implantation. 
Our findings indicate that adenomyosis-related infertility 
is also a product of the significant upregulation of certain 
DEGs, such as RUNX2, increased in the endometrium of 
infertile women with endometriosis [36]. OLFM1, related 
with a non-receptive endometrium and negatively regu-
lates embryo attachment [37]; FXYD5, which drives the 
epithelial-to-mesenchymal transition [38] and promoted 
chronic inflammatory responses [39]; and MTRNR2L1, 
which was enhanced under hypoxic conditions in women 
with complicated pregnancies [40]. Based on the tran-
scriptomic findings of the adenomyotic mid-secretory 

phase endometrium, IPA predicted the dysregulation 
of several pathways, that corresponded with those pre-
viously associated with poor reproductive outcomes. 
Particularly, downregulated histamine degradation was 
associated with pregnancy complications, such as dia-
betes, miscarriage, and trophoblastic disorders [41]; 
Sirtuin deficiency impaired embryo invasion and decidu-
alization [42]; ATM-deficient dams had lower implanta-
tion rates [43]; and excessive noradrenaline inhibited 
decidualization, embryo, and fetal development in mice 
[44]. Further, impaired decidualization may be caused 
by aberrant stromal cell differentiation, mediated by 
downregulated ID1 expression, [45] stromal cell apop-
tosis, induced by the N-acyl dopamine family [46], or 
attenuation of ribonucleotide reductase signaling, which 
impeded decidualization and implantation in mice [35]. 
Finally, significant repression of TSP1 mRNA expression 
was linked to unexplained recurrent spontaneous abor-
tion (URSA) [47]. On the other hand, IPA predicted mid-
secretory phase adenomyosis etiologies may also include 
the upregulation of senescence pathway, as was observed 
in the peri-implantation endometrium and RPL [48]; 
hypersumoylation, since hyposumoylation was associ-
ated with a proper decidualization [49]; the premature 
activation of acute phase response signaling, which may 
interrupt early pregnancy [50]; and overactive HMGB1 
signaling, which was related to the reduced adhesion 
ability of epithelial cells in patients with RIF [51] and at 
the maternal-fetal interface of URSA patients [52], as it 
was also previously described as deregulated in the endo-
metrial tissue of adenomyosis women [53]. Findings from 
this study were corroborated by the validation in endo-
metrial organoids of expression levels of DEG involved in 
these pathways, supporting that the dysregulated path-
ways in the mid-secretory endometrium of women with 
adenomyosis contribute to the disruption of endometrial 
receptivity and/or defective decidualization, resulting in 
these women failing to achieve implantation, and ulti-
mately, pregnancy.

In ADENO-GESTorg, we focused on the downregula-
tion of ZWINT, ESCO2, MCM4/6, and PGR because of 
their roles in pregnancy-related processes. The knock-
down of ZWINT1 was related to a high incidence of 
aneuploidy, leading to miscarriage, infertility, and new-
born disorders [54]. Interestingly, elevated aneuploidy 
rates were also observed in ESCO2-mutant embryos [55]. 
Correct DNA replication requires the proper function-
ing of MCM family members, including MCM6 [56]. 
Indeed, MCM4 dysregulation causes genomic insta-
bility, and increases lethality of murine embryos [57]. 
Alternatively, dysregulated PGR expression was related 
to severe preeclampsia [58] and predisposition to RPL 
[59]. Among the upregulated genes, elevated CYP24A1 
was observed in spontaneous miscarriage [60] and 
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preeclamptic placentas [61]; CXCL14 is implicated in 
insulin [62] and inhibited trophoblast attachment and 
outgrowth, disrupting the establishment of pregnancy 
[63]; and CDKN2A and CLCNKA were respectively 
associated with gestational diabetes [64] and IGF-1 defi-
ciency [65], while PTAFR induced preterm delivery in 
mice [66]. Taken together, the contributions of these dys-
regulated genes showcase the complexity of adenomyosis 
pathogenesis.

Based on the findings presented herein, we empha-
size several putative causes for the pregnancy disorders 
in patients with adenomyosis. Particularly, the down-
regulated D-myo-inositol-5-phosphate metabolism may 
decrease oocyte and embryo quality [67]; the reduced 
VEGF family ligand-receptor interactions may restrict 
the trophoblasts’ hypoxia adaptation [68]; limited actin 
cytoskeleton signaling may impede the polymerization 
essential for trophoblast invasion and tube formation 
during placental development [69]; attenuated microRNA 
biogenesis (mediated by DICER and DROSHA ribonu-
cleases) during the endometrial receptivity phase may 
lead to implantation failure [70]; and repressed ERK/
MAPK signaling may directly lead to embryonic lethal-
ity, as observed with the placental malformations due 
to the loss of Map2k1 function in mice [71]. Given the 
reproductive impact of the biological processes involv-
ing these pathways, their downregulation is proposed 
as a potential contributor to the many miscarriages suf-
fered by women with adenomyosis. Interestingly, several 
pathways predicted to be affected by gestational phase 
adenomyosis have been related to preeclampsia, includ-
ing upregulated PPARα/RXRα activation, which nega-
tively regulated trophoblast invasion and led to recurrent 
miscarriage [72]; excessive p53 signaling [73]; along with 
enhanced RHOGDI and PTEN, which also inhibited tro-
phoblast invasion [74, 75].

To our knowledge, this is the first transcriptomic study 
of adenomyosis patient-derived endometrial organoids 
differentiated into mid-secretory and gestational phase. 
Although these in vitro models faithfully recapitulated 
the native microenvironment in which the events related 
to implantation and early pregnancy respectively occur, 
additional in vivo studies are required to validate the 
DEGs and predicted pathways we identified as altered in 
the eutopic endometrium of women with adenomyosis. 
Moreover, endometrial organoids only contain epithelial 
cells and the complexity of interactions present in the 
native tissues may not be fully reflected in this model. 
Therefore, further studies including stromal or immune 
system cells would be necessary to validate and to trans-
late our findings to the clinical practice. Nevertheless, it 
is important to highlight the importance of endometrial 
epithelial cells in the implantation and pregnancy pro-
cesses because they are the first maternal contact for 

an implanting embryo and thereby, our organoid model 
could define new biomarkers of adenomyosis pathogen-
esis and related infertility.

Conclusions
Dysregulated molecular mechanisms involved in defec-
tive decidualization, disrupted endometrial receptivity 
and impaired embryo implantation were identified in the 
mid-secretory phase endometrium of women with ade-
nomyosis, whereas dysregulated molecular mechanisms 
associated with inhibition of trophoblast outgrowth and 
invasion, impaired embryo development, pregnancy loss, 
preeclampsia and placental defects were observed in ges-
tational phase endometrium of women with adenomyo-
sis. These findings represent potential therapeutic targets 
that can be exploited to develop pharmacological treat-
ments, and ultimately, reduce the risk of adenomyosis-
related infertility.

Our differentiated patient-derived adenomyosis organ-
oids, together with the transcriptomic findings pre-
sented herein, can be used to develop and test targeted 
pre-conception therapies in vitro/ex vivo. Further, these 
pathological endometrial organoids can be used as per-
sonalized drug screening tools, to predict patient-specific 
drug efficacy in vitro prior to clinical administration.
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