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A potential new mechanism for pregnancy
loss: considering the role of LINE-1
retrotransposons in early spontaneous
miscarriage
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Abstract

LINE1 retrotransposons are mobile DNA elements that copy and paste themselves into new sites in the genome. To
ensure their evolutionary success, heritable new LINE-1 insertions accumulate in cells that can transmit genetic information
to the next generation (i.e., germ cells and embryonic stem cells). It is our hypothesis that LINE1 retrotransposons,
insertional mutagens that affect expression of genes, may be causal agents of early miscarriage in humans. The
cell has evolved various defenses restricting retrotransposition-caused mutation, but these are occasionally relaxed in
certain somatic cell types, including those of the early embryo. We predict that reduced suppression of L1s in germ cells
or early-stage embryos may lead to excessive genome mutation by retrotransposon insertion, or to the induction of an
inflammatory response or apoptosis due to increased expression of L1-derived nucleic acids and proteins, and so disrupt
gene function important for embryogenesis. If correct, a novel threat to normal human development is revealed, and
reverse transcriptase therapy could be one future strategy for controlling this cause of embryonic damage in patients
with recurrent miscarriages.
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Background
Spontaneous abortion or miscarriage is defined as nat-
ural death of an embryo or fetus before the twentieth
week of pregnancy (the term stillbirth is used after 20
weeks). Most miscarriages occur during the first 7 weeks
when the embryonic trophoblast invades the endomet-
rium in a process analogous to tumor invasion and me-
tastasis. Among clinically confirmed pregnancies, the
incidence of spontaneous miscarriage is about 15 per-
cent. However, it is estimated that about 50 to 75 per-
cent of total pregnancies are miscarried. Among these,
most of the aborted embryos cease development soon
after implantation, appearing as menorrhagia or delayed
menstruation, and escape notice (reviewed in [1, 2]).
Numerous causes of spontaneous abortion have

been identified, including maternal reproductive tract

abnormalities, endocrine and immunological dysfunc-
tion, sperm issues, reproductive tract infections, cer-
vical insufficiency, thrombophila, and chromosome
abnormalities, among others [1, 3]. Abnormal chromo-
some karyotype is seen in about 50% of spontaneous abor-
tion patients, with triploidy most common, followed by
autosomal unbalanced translocation, and polyploidy, X
monomer, autosomal monomer, chromosome balanced
translocation, deletion, chimerism, inversion, overlap, and
so on [4, 5]. During embryonic development a single lethal
gene mutation may also lead to death of the embryo [6].
Furthermore, evidence suggests that epigenetic anomalies
may lie behind some cases of early pregnancy loss [7]. Re-
cently, the key role that the placenta exerts on embryo de-
velopment has been uncovered, adding another layer of
complexity to the miscarriage phenomenon [8]. However,
in the case of recurrent pregnancy loss, defined as at least
three consecutive miscarriages prior to 24 weeks gestation
[9], cause can be identified in only about 50 percent of
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cases [10]. In general, the genetic causes of miscarriage
are poorly understood: much more study is required.
Here we propose the hypothesis that Long Inter-

spersed Element-1 (LINE-1 or L1) retrotransposon ac-
tivity may be a previously unrecognized causal factor
for some cases of spontaneous miscarriage in humans.
We suggest that during the development of gametes or
human embryos, increased LINE-1 genomic insertions
may disrupt one or more genes critical for early human
embryonic development leading to miscarriage. Retro-
transposon insertions may also mediate chromosomal
rearrangements and alter the local epigenetic environ-
ment, among other effects. Furthermore, as discussed
below, there is increasing evidence that, apart from
insertion mutation, elevated L1 expression, especially
of its reverse transcriptase (RT) and endonuclease
activities, may initiate DNA damage or an immune re-
sponse [11, 12]. Such phenomena could lead to embryo
damage.
It has been estimated that over two-thirds of the hu-

man genome is repetitive DNA, most of this transpos-
able elements (TEs) [13]. There are two main classes of
TEs in genomes. Class II elements, the DNA transpo-
sons, replicate by a “cut and paste” mechanism, although
no active transposons exist in humans. Class I elements,
the retrotransposons, move by a “copy and paste” mech-
anism involving reverse transcription of an RNA inter-
mediate and insertion of its cDNA copy at a new site in

the genome. There are two major subgroups of Class I
elements: long terminal repeat (LTR) and non-LTR ret-
rotransposons. LTR retrotransposons include endogen-
ous retroviruses (ERVs), relics of past rounds of
germline infection by viruses that lost their ability to re-
infect new cells. Human (H)ERVs compose 8% of our
genome, although no remaining retrotransposition-
competent HERVs have been identified. Nevertheless,
genetic evidence suggests recent HERV activity in
humans, and some HERV-K(HML-2) copies are poly-
morphic in the human population [14–16]. In humans
the only autonomously active TE is LINE-1 (L1), a non-
LTR retrotransposon with approximately half a million
copies occupying about 17% of our genome [17]. L1s
have also been responsible for the insertion in trans of
over ten thousand processed pseudogenes and a million
non-autonomous Short Interspersed Elements (SINEs),
including Alu and SINE-VNTR-Alu (SVA) elements [18,
19]. A full-length active six kilobase bicistronic human
L1 contains two non-overlapping open reading frames
(ORFs) that encode the RNA-binding ORF1 protein
(ORF1p) and the longer ORF2p, which functions both as
a reverse transcriptase and DNA endonuclease (Fig. 1).
Retrotransposition of a non-LTR retrotransposon is fun-
damentally different from that of an ERV, whose replica-
tion cycle involves reverse transcription of its genome in
the cytoplasm. L1-encoded endonuclease nicks the bot-
tom strand of target chromosomal DNA exposing a 3′-

Fig. 1 The biology of a LINE-1 retrotransposon. The structure of a human L1 is shown. TSD: target site duplication; UTR: untranslated region; EN:
endonuclease; RT: reverse transcriptase; C: carboxy-terminal segment; An: polyadenylation signal and tail. The LINE-1 replication cycle involves
transcription and export of its RNA to the cytoplasm, which is translated and assembled in a ribonucleoprotein particle (RNP) together with L1
ORF1p and ORF2p. There is a strong cis-preference for L1 ORF1 and ORF2 proteins to bind their own encoding RNA in a retrotransposition-
competent RNP. ORF1p binds L1 RNA as a trimer, however, it is unclear if it remains bound at the time of import of the RNP into the nucleus
(denoted by ?) ) [20–22]. Reverse transcription of LINE-1 RNA to generate complementary (cDNA) occurs at the site of chromosomal insertion by
TPRT [23]. L1s frequently become 5′-truncated when inserted in the genome
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hydoxyl group that primes reverse transcription of the
L1 RNA and synthesis of cDNA bound at the site of in-
sertion, a process known as target primed reverse tran-
scription (TPRT) [23].
Most L1s are 5′ truncated and otherwise rearranged or

mutated, and hence are incapable of retrotransposition.
However, it is considered that about 100 LINE-1 se-
quences are full-length with intact ORFs and potentially
active, although fewer than ten are considered to be “hot”
and these consistently account for the bulk of new retro-
transposition in humans [24–27]. Up to 5% of newborn
children have a new retrotransposon insertion, and to date
there have been 125 known human disease-causing germ-
line non-LTR retrotransposon insertions [28–32]. The
genomic revolution, including high-throughput (HT) se-
quencing analyses, has allowed estimates of the rates of L1
retrotransposition in mammals; indeed, recent studies in-
dicate that a new L1 insertion may occur in 1 in 62 human
births (1 in 40 births in the case of Alus), and 1 in 8 births
in mice [33, 34]. The cell has evolved a battery of defenses
to protect against unfettered retrotransposition (reviewed
in [35, 36]). However, in some somatic cell types or under
certain cellular conditions the defenses are lowered and
retrotransposition increases.

Retrotransposon activity and its control in early
embryonic development
In addition to the massive germ line expansion of L1s that
occurred during mammalian evolution, recent investiga-
tions have documented ongoing retrotransposition in
some somatic cell types, including neural progenitor cells,
some tumors, stem cells, and notably early embryos
(reviewed in [37–49]). Transgenic mouse and human
studies demonstrated that somatic retrotransposition oc-
curs in early-stage embryos causing somatic mosaicism
[33, 50–53]. Cultured human embryonic stem cells (ESCs)
and induced pluripotent stem cells (iPSCs) express en-
dogenous L1 RNA and proteins and support both retro-
transposition of transfected reporter constructs [54–60]
and modest levels of endogenous retrotransposition [61–
63]. Recently, Muñoz-Lopez et al. [63] showed expression
of non-LTR retrotransposons in the inner cell mass (ICM)
and trophectoderm cells of pre-implantation human em-
bryos and, using HT sequencing, de novo endogenous
LINE-1 insertions within cells of the ICM as well as
insertions restricted to the placenta. Thus, the cellular en-
vironment of early embryonic cells supports active
retrotransposition. Of course, activity during early em-
bryogenesis is beneficial for the evolutionary success of
the L1, as new insertions have a high chance of being
transmitted to the next generation.
Various cellular mechanisms restrict retrotransposition

in the germline and embryos. For example, small inter-
fering RNA (siRNA)-mediated gene silencing is an

ancient strategy for controlling activity of TEs. RNA
interference acts at the post-transcriptional level by caus-
ing RNA degradation and loss of translation, or at the
transcriptional level by causing epigenetic modifications,
including de novo methylation of TE sequences. piRNAs
are small RNAs found in testes as well as human fetal
ovaries that specifically silence TEs in the germline ( [64];
reviewed in [65–69]). A large percentage of mouse prepa-
chytene piRNAs derives from retrotransposon sequences
[70, 71], and the importance of piRNA pathway proteins
in repressing retrotransposon expression in prenatal
gonad development and spermatogenesis has repeatedly
been demonstrated in mutant mouse lines defective for
piRNA pathway proteins (reviewed in [36]).
It has been proposed that DNA methylation of CpGs

evolved primarily as a host defense mechanism against
TEs [72, 73]. Indeed, the L1 promoter is a prototypical
CpG island and L1 promoter methylation is inversely
correlated with L1 expression [74, 75]. In early mouse em-
bryogenesis, repression of retrotransposons is maintained
by histone and DNA methylation. However, successive
waves of demethylation occur in the developing embryo
and open windows for increased retrotransposon activity
[76–78]. The first wave occurs shortly after fertilization
until the morula stage. Around E8.5, demethylation occurs
again in post-implantation primordial germ cells (PGCs)
and continues to around E13 when PGCs have colonized
the genital ridges (summarized in [79–82]).
The promoters of young active L1 elements are hypo-

methylated in hESCs compared to differentiated cells,
which accounts in part for their higher levels of expres-
sion [83, 84]. In the case of embryonic tissues, human
L1 methylation status has mostly been studied for the
placenta, and both hypermethylation and hypomethyla-
tion have been reported. According to one study, LINE-
1 methylation is significantly decreased in third trimester
compared with first trimester placentas, a trend not par-
alleled by change in global methylation [85]. Perrin et al.
[86] found that, compared with unaffected individuals,
LINE-1 hypermethylation during development and dif-
ferentiation of the placenta is two-fold higher in human
hydatidiform mole patients, a condition involving abnor-
mal placental growth and spontaneous abortion; methy-
lation of other repeats and global methylation did not
differ. Vasil’ev et al. [87] observed increased LINE-1
methylation in placental tissues of spontaneous abor-
tions having mosaic aneuploidy but not in miscarriages
with complete aneuploidy or in induced abortions. On
the other hand, in extraembryonic tissues of spontan-
eous abortions with normal karyotype, LINE-1s were ex-
cessively hypomethylated. LINE-1 hypomethylation can
result in enhanced L1 activation and consequent
mutational insertions. Consistent with this hypothesis,
Sanchez-Luque et al. [84] recently uncovered the critical
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role for DNA methylation in controlling activity of “hot”
L1s in humans.

Many genes are involved in early embyogenesis
In principle, a new L1 insertion into a lethal gene could
initiate a cascade leading to fetal death, although our
diploid nature limits such consequences. Many signaling
pathways and genes are involved in the process of mis-
carriage and single gene mutations may cause spontan-
eous abortion [6]. Based on a study of 489 single gene
knockout mouse models, White et al. [88] found 29 per-
cent of the genes to be lethal and 13 percent sublethal.
KIF7 (kinesin family member gene 7) was the first hu-
man gene associated with fetal lethality when it was
found to cause hydrolethalus and acrocallosal syndromes
[89], and since then many other candidate genes have
been identified. A review of 50 human studies identified
a range of possible causative gene and copy number var-
iations (CNVs) for miscarriage, including CHRNA1
(cholinergic receptor, nicotinic, alpha polypeptide 1),
DYNC2H1 (dynein, cytoplasmic 2, heavy chain 1), and
RYR1 (ryanodine receptor 1), which were reported by
multiple studies [6]. Several whole exome sequence ana-
lyses of euploid miscarriages have been conducted, in-
cluding a study of 30 fetuses in which mutations in
FGFR3 (fibroblast growth factor receptor 3), COL2A1
(collagen, type II, alpha 1), and OFD1 (oral-facial-digital
syndrome 1) genes, in addition to structural variants,
accounted for 10 percent of the cohort [90]. Fang et al.
[91] found that expression of VEGF (vascular endothelial
growth factor), part of the angiogenesis signaling path-
way, was significantly decreased in missed abortion tis-
sue and correlated with increased levels of VEGFR1
(Vascular Endothelial Growth Factor Receptor 1) and
Notch-1. Adache et al. [92] reviewed the key role of the
cyclooxygenase (COX)-1 and -2 signaling pathways for
repeated failure of embryo implantation. Affected genes
found in other studies include KIF14 (kinesin family
member 14) [93], IFT122 (intraflagellar transport 122)
[94], PLCD4 (phospholipase C delta 4), and OSBPL5
(protein-like 5) [95]. In the case of recurrent miscarriage,
cytokine gene polymorphisms, novel HLA alelles, and
mutations in inflammatory factors and synaptonemal
complex protein 3 (SYCP3) have been implicated.
SYCP3 encodes an essential structural component of the
synaptonemal complex and its mutation may result in
chromosome abnormalities [96–99]. Thus, it is increas-
ingly evident that mutation of any of many cellular path-
way genes can initiate miscarriage.
Studies have demonstrated that healthy humans carry

many mutated gene alleles [100]: elevated L1 retrotran-
sposition during early embryogenesis could contribute to
this mutation burden. It is possible that during early de-
velopment epigenetic change or loss of a retrotransposon

inhibiting factor could trigger derepression of active retro-
transposons increasing the likelihood of an L1 inserting
into a lethal gene. Recent studies have revealed the com-
plexity of cellular factors and pathways regulating the ac-
tivity of human retrotransposons. To date about 80
factors have been identified that limit expression or inser-
tion of retrotransposons in cell culture or mouse models
([101]; reviewed in [36]). For example, knockout of DNA
Methyltransferase 3 Like (DNMT3L) protein in mouse
germ cells was accompanied by epigenetic change, reacti-
vation of retrotransposons, and meiotic collapse [77]. Loss
of TEX19.1 in mice leads to placental growth retardation,
increased embryonic lethality, and derepressed retro-
transposon expression in placenta and hypomethylated
trophectoderm-derived cells, and its loss in mouse
pluripotent embryonic stem cells increases retrotran-
sposition of engineered L1 constructs [60, 102]. To
cite another example, using a digital droplet PCR de-
tection strategy, a startling 70-fold increase in retro-
transposition of an L1 reporter transgene in a mouse
deficient for MOV10L1, a piRNA pathway protein,
was claimed by Newkirk et al. [103].
The impacts of retrotransposons on gene integrity ex-

tend beyond simple mutation by insertion: these have
been the subjects of many reviews [18, 32, 104–107].
Ongoing retrotransposition events salt genomes with
novel splice sites, polyadenylation signals, promoters,
and transcription factor binding sites that can alter gene
expression. Recombination between retrotransposons
causes deletions, duplications, or rearrangements of gene
sequence, and this is especially true for Alus [108]. L1-
mediated retrotransposition insertion can also cause
deletions up to a megabase at their sites of insertion
[18, 105, 109–112]: one example is the deletion of an
entire HLA-A gene caused by an SVA insertion that re-
sulted in leukemia [113]. Retrotransposons are also associ-
ated with segmental duplications [114]; significantly, CNVs
have also been linked with human miscarriage [115, 116].
Even more dramatic non-LTR retrotransposon-mediated
genomic rearrangements may occur. L1 endonuclease ac-
tivity and SVA retrotransposition leading to multiple DNA
breaks was proposed as causal for one case of human germ-
line chromothripsis [117], a phenomenon involving numer-
ous chromosomal rearrangements in a single event, and
one that has also been linked with severe congenital defects
[118]. In summary, the mutagenic potential of active hu-
man retrotransposons can be significant.

A possible role for misregulation of retrotransposon
expression in embryonic failure
Apart from insertion mutation, various studies have pro-
posed physiological roles for retrotransposon expression,
and these roles may turn pathological when expression
is misregulated. Significant research has centered on the
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cellular effects of reverse transcriptase with implications
for the developing embryo.
Functional RT activity has been reported in mature

spermatozoa and pre-implantation embryos of mice
[119–121]. Treatment of early stage mouse embryos
with either antisense L1 oligonucleotides, an antibody to
RT, or the RT inhibitor nevirapine reportedly arrested
preimplantation development at the 2- to 4-cell stage,
perhaps by altering levels of cellular cDNA synthesized
by RT [120, 122]. (However, It should be noted, non-
nucleoside reverse transciptase inhibitors like nevirapine,
while they inhibit ERVs, were subsequently shown to
not inhibit L1 cell culture retrotransposition [123–125]).
More recently, using antisense oligonucleotides to de-

plete L1 transcripts, Percharde et al. [126, 127] presented
evidence that LINE1 expression plays a role in mouse
embryonic exit from the 2-cell stage by recruiting nucleo-
lin and Kap1 to repress the master transcriptional regula-
tor Dux and activate rRNA synthesis. Furthermore,
Jachowicz et al. [128] reported that LINE-1 activation after
fertilization regulates global chromatin accessibility, and
that artificial prolongation of L1 transcription in mouse
embryos interferes with their development. Thus, both
teams obtained comparable results after altering LINE-1
expression in mouse embryos, suggesting that proper
functioning of a potential mutagen paradoxically also
plays a role in embryonic development.
Elevated expression of an L1 transgene in mice null

for Maelstrom, a piRNA pathway gene, was associated
with increased meiotic prophase I defects, DNA damage,
and fetal oocyte attrition [129, 130]. Oocyte attrition is a
mysterious process involving loss of about two-thirds of
human meiotic prophase oocytes [131]. The fact that
treating mice with a nucleoside analog blocked oocyte
attrition suggests roles for retrotransposon RT and per-
haps endonuclease activities. As a normal part of TPRT,
L1 ORF2 endonuclease generates dsDNA breaks that re-
cruit repair proteins to the site of element insertion.
However, transient transfection of an L1 in cell culture
has been reported to induce DNA breaks manyfold in
excess of what would be expected for TPRT-mediated
insertions alone, and DNA damage caused by overex-
pression of ORF2p can induce genotoxic stress and cell
death [132–134].
Recent evidence suggests that cellular conditions that

stimulate increased expression of L1s, and therefore
ORF2 protein and its RT, may generate ectopic retro-
transposon cDNAs not engaged in TPRT at the site of
genome integration. For example, aged cells and mice
accumulate cytoplasmic L1-derived cDNAs, triggering
an interferon response as a result of misidentification of
these self-derived nucleic acids as non-self, while treat-
ment with reverse transcriptase inhibitors reduces in-
flammation and increases viability and lifespan [135,

136]. Thomas et al. [137] also reported an interferon re-
sponse and toxicity associated with accumulation of
extrachomosomal L1-related single-stranded DNAs in
neurons derived from hESCs lacking TREX1, a DNA exo-
nuclease mutated in patients with Aicardi-Goutières syn-
drome (AGS), a rare childhood Type I interferonopathy
involving loss of brain white matter [138].
While some studies have suggested that interferons

play crucial roles in mammalian pregnancy, abnormal
inflammatory reactions have also been associated with
early pregnancy loss (reviewed in [139, 140]). Higher
levels of Th1-type or pro-inflammatory cytokines,
including IFNγ, were found in women with recurrent
miscarriage when compared with women with normal
pregnancies [141, 142]. Whether increased expression
of retrotransposon-encoded RT can induce an inter-
feron response in the developing embryo remains to
be tested.

Testing the hypothesis
Recent years have seen the development of various
HT sequencing strategies that could be applied to
detection of de novo non-LTR retrotransposon inser-
tions in genomic DNA of miscarriage samples. These
include hybridization-based enrichment methods (in-
cluding RC-seq [143]), selective PCR amplification
(including ATLAS-Seq, L1-Seq, TIP-seq, and other
methods [144–150]), and algorithms to analyze whole
genome sequence (including The Transposable Element
Analyzer (Tea), TEBreak, The Mobile Element Locator
Tool (MELT), and others (https://github.com/adamewing/
tebreak; [31, 151–156]). Candidate insertions are com-
pared with insertions detected in the reference human
genome, databases of non-reference polymorphic retro-
tansposons (such as dbRIP and euL1db [157, 158]), and
parental blood DNA sequence to ascertain that the inser-
tions occurred during development of the embryo or
within the parental germline. One should further validate
the insertions by site-specific PCR and Sanger sequencing
of the amplicons to confirm the exact location of the 3′
and 5′ junctions. The best candidate tissues for initial test-
ing for retrotransposon-caused defects may be recurrent
miscarriages, which affect 1 to 2 percent of couples and
for which cause can be identified in only half of cases [10,
159–161]. If available fetal tissue amounts are limited,
primary cell lines may be derived and expanded in culture.
Alternatively, and despite significant challenges [162], single
cell genomics may be used to identify new L1 insertions in
miscarriage samples. Of course, studies to assess retrotrans-
poson insertions in early human embryonic development
may be frustrated by access to tissues, so alternatively trans-
genic mouse models for L1 retrotransposition can be useful
[51, 53, 163–165].
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L1 RNA expression in miscarriage-related samples may
be assessed by RT-qPCR, Northern blotting, RNA FISH,
and RNA-Seq methods. A number of papers discuss the
analysis algorithms, special protocols, difficulties, and ca-
veats to be considered when analyzing expression of high-
copy number retrotransposon loci with highly similar se-
quences [42, 83, 165–170]. Changes in L1 protein levels or
patterns of subcellular distribution may be assayed using
immunohistochemistry and Western blotting. Many labs
have developed effective L1 α-ORF1p antibodies; we rec-
ommend the 4H1 α-ORF1p antibody available from Milli-
poreSigma [171]. Endogenous L1 ORF2p is expressed at
very low levels and few effective antibodies have been
reported [172–174].
If increased retroelement mRNA and proteins are de-

tected in miscarriage samples, one would predict an in-
crease in RT activity with possible consequences for the
cell, as noted above. Various assays have been established
to detect RT activity in cells, whether deriving from L1
ORF2p or HERV pol genes [175–177]. Using RT-qPCR to
assay changes in expression of interferon-stimulated genes
may also reveal autoinflammatory effects of retrotrans-
poson misregulation, as described above for AGS and
some other autoimmune conditions [137, 178–180].
If this hypothesis is supported, that retrotransposon activ-

ity significantly contributes to fetal damage in some pa-
tients, ameliorative options are conceivable. Administration
of low doses of RT inhibitor to such patients could reduce
the incidence of future retrotransposition and miscarriage.
In cell culture experiments, L1 retrotransposition is
strongly inhibited by nucleoside reverse transcriptase inhib-
itors (NRTIs) and recent studies have identified NRTIs that
limit L1s and/or HERVs, including drugs widely used
against HIV-1 infection [123–125]. Of interest, pilot clinical
trials using NRTI inhibitors to reduce retrotransposon ac-
tivity have begun for amyotrophic lateral sclerosis (Clinical-
Trials.gov Identifiers NCT02437110, NCT02868580, [181])
and AGS (NCT02363452, NCT03304717). One of the AGS
trials, now completed, reported reduction in interferon-
stimulated gene expression in treated patients [182].
In summary, we propose that increased LINE-1 activ-

ity may be one cause of spontaneous miscarriage. This
concept is reasonable according to the points outlined
above, and especially considering the reported involve-
ment L1 RNAs in proper preimplantation embryo devel-
opment [126, 128] and the increased activity of L1s in
early human embryos [63]. Deleterious cell effects of ele-
vated retrotransposon activity may involve L1-mediated
gene disruption by insertion mutation or the initiation
of inflammatory or DNA damage responses. However, as
for oocyte attrition in mice [129], it is possible that
human embryos typically clear damaged embryonic cells
by apoptosis and related mechanisms. If active L1s are
indeed involved in miscarriage, it would increase

understanding of spontaneous miscarriage mechanisms
and have clinical significance for pregnant women.
LINE-1 insertions may become a new reason given to
miscarriage patients, and such knowledge could be used
to develop novel preventive measures.
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